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What are these two lectures about?

We are going to study how NS can form binaries

This is because we look for GW sources

NS can form a binary with another NS

or with a stellar-mass black hole

Or they can form a binary with a supermassive black hole
Or with an intermediate-mass black hole

We will study this in the context of dynamics
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Applications to the formation of NS binaries, and mixed binaries
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Friday 07/July

v~ Formation of a different type of binary
v NS with supermassive black holes

v NS with intermediate-mass black holes
v~ What are SMBHs and IMBHs?

v" Prospects of GW Astronomy thanks to neutron stars



The different windows in GW As-
tronomy
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Gravitational Waves

> Predicted in 1918 by Albert Einstein
> Electromagnetic waves produced by accelerated charged particles

> Gravitational Waves produced by accelerated masses
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What are they good for?

> Slow decay: Propagate to very long distances

> Difficult to detect: Almost do not interact with matter

>> Pristine probe: They contain very detailed information about space
and time

@) [Film: Jungle and galaxy, win+j, win+0]



How to form binaries of neutron
stars, and mixed binaries, with
stellar dynamics



The equation
The Almighty Equation N
=N .
Gy m )

3
j=i, j#i ]r,- - rf|

* r; position vector of jth star at t, m its mass, G a constant
* Recognize it?
+ Good approximation to solve

solar system ...300 yrs later we also do

star clusters

whole galaxies as well as

clusters of galaxies

Not bad for a single equation
11



Gravity = attractive long-range force

Electromagnetism too, but positive and negative charges tend to
screen each other

Short-range forces (gas pressure) only important on small scales
(interior stars)

Stellar dynamics is simple (but not easy), contrary to plasma
astrophysics, radiative transfer, or nuclear astrophysics (complex
and not easy)

If you care about GWs: GR

12



Stellar dynamics

Stellar dynamics := studying the consequences of
“The Equation” in astrophysical contexts

Historically: Planets, celestial mechanics

Solar system is a very regular system

Planets move in orbits close to the ecliptic

All revolve in the same direction

Orbits are well-separated

No close encounters take place

Not true for stars in the galactic plane, or in globular clusters
Very irregular systems: Computer needed

Still: (semi-) analytical approaches important

13



Collisional and collisionless dynamics

v/ Stars = point particles
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Collisional and collisionless dynamics

Stars = point particles

Collisional means long-term effects of close
stellar encounters

The evolution of a star cluster is governed by the slow diffusion
of “heat”

Like heat conduction in the air in a room

14



What kind of system?

Some globular clusters from the MW (from

http://spider.seds.org/spider/MWGC/mwgc.html)
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Some globular clusters from the MW (from

http://spider.seds.org/spider/MWGC/mwgc.html)

Some systems in nature can be
approximated well

For instance globular clusters

2011: 157 Milky Way globular
clusters
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Coeval, same chemistry and age
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Perfect testbeds? Hal

Oldest components of the Milky
Way and on wide orbits around it

Nearly spherical, do not rotate
much

Isolated, some 10° stars
Coeval, same chemistry and age
“Perfect testbeds for stellar
dynamics” (not really)
p ~ 10°Mg /pc?

higher than in our
neighbourhood

Stellar swarm M80 (NGC 6093)
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Formation of globular clusters

Dimensions: 82500. AU Time: 45688. yr

@9 [Film: Forming cluster, win+c
&) [ g ]

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Log Calumn Density [g/cm’] Matthew Bate
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Formation of globular clusters

Dimensions: 82500. AU Time: 45688. yr

Formation of GCs

Simulation gas cloud
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Formation of globular clusters

Dimensions: 82500. AU Time: 45688. yr

Formation of GCs
Simulation gas cloud

1.2 light-years across

@9 [Film: Forming cluster, win+c
&) [ g ]
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Formation of globular clusters

Dimensions: 82500. AU Time: 45688. yr

Formation of GCs
Simulation gas cloud
1.2 light-years across
50Mg

@) [Film: Forming cluster, win+c,
& 9 1

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Log Calumn Density [g/cm’] Matthew Bate
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Free parameters

“I remember my friend Johnny von Neumann used to say, with
four parameters | can fit an elephant,and with five | can make him
wiggle his trunk.” Enrico Fermi

The formation of GCs is not well-understood

Some clues: gas-rich merging galaxies contain large numbers of
young massive star clusters

Physical processes related to star formation are very complex

Single or multiple generations over a period of several 108 years?

18



Multiple populations
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Multiple populations
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Multiple populations
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Single or multiple populations?
w Cen good example

Single, simple stellar populations
challenged

Increasing number of
photometric observations:
multiple stellar populations in
Galactic globular clusters
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Globular clusters: Tracers of MBH and galaxy growth

NGC 2808 (HST)
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Globular clusters: Tracers of MBH and galaxy growth

Ngc o total luminosity of the
galaxy’'s spheroidal
component

NGC 2808 (HST)
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Globular clusters: Tracers of MBH and galaxy growth

Ngc o total luminosity of the
galaxy’'s spheroidal
component

SN = NGC X 100'4(MV+]‘5)

NGC 2808 (HST)
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Globular clusters: Tracers of MBH and galaxy growth
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Globular clusters: Tracers of MBH and galaxy growth
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Thermodynamics



The Coupling Constant

G =6.67 x 10 8cm3g1sec?

> One single coupling constant
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The Coupling Constant

G =6.67 x 10 8cm3g1sec?

- One single coupling constant

- No decoupling of scales

~ [Cannot separate local and global aspects]
Only freedom: # bodies, N

23



N governs...

- Granularity
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N governs...

> Granularity

- Speed

> Size
Nature

- Rate
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We can solve

B N = 2 in Newtonian gravity
B N = 3 in the “restricted” approach

BN — c0?
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Interior of plasma ball (credit: Ruy Lestrade)

26



Important analogues to the
N — oo problem

Interior of plasma ball (credit: Ruy Lestrade)

26



Important analogues to the
N — oo problem

Inverse square laws: Plasma
physics

Interior of plasma ball (credit: Ruy Lestrade)

26



Important analogues to the
N — oo problem

Inverse square laws: Plasma
physics
But: plasmas often nearly

uniform, rest and large spatial
extent

Interior of plasma ball (credit: Ruy Lestrade)

26



Important analogues to the
N — oo problem

Inverse square laws: Plasma
physics
But: plasmas often nearly

uniform, rest and large spatial
extent

Still: Coulomb logarithm ...

Interior of plasma ball (credit: Ruy Lestrade)
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Can we use thermodynamics?

% Thermodynamics excludes a description of self-gravitating systems
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Can we use thermodynamics?

s Thermodynamics excludes a description of self-gravitating systems

s Gravitational long-range forces violate the notion of an asymptotic
thermodynamic limit

s Physical quantities must be either intensive or extensive
s In gravity we cannot ignore the effect of long-range interactions

% No, we cannot! But let’s do it anyway...

27
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A box of stars

Take one and enlarge it keeping p., Tfm constant
Hence M, « R3, Exin x M
Surprise, surprise: Epo; oc M?/R oc M°/3

Thermodynamics intensive variables stay constant when we enlarge
the system

Extensive variables grow linearly with the mass of the system
Epot is superextensive, growing faster than linear

The specific gravitational potential energy of the system, E,qt /N,
grows without bounds when N becomes larger

We cannot reach an asymptotic thermodynamic limit

28



Cheating ...This is physics, after all

The formal inability to apply traditional thermodynamic concepts
does not seriously hinder us from thinking and working with
them.

29



Puzzling thermodynamics

> Let's play with a cluster

Thinking NGC 6752 out of the box

30



Puzzling thermodynamics

> Let’s play with a cluster
> Only two rules:

Thinking NGC 6752 out of the box

30



Puzzling thermodynamics

> Let’s play with a cluster
> Only two rules:

1. We can put it into a larger box
with a different temperature

Thinking NGC 6752 out of the box

30



Puzzling thermodynamics

> Let’s play with a cluster
> Only two rules:

1. We can put it into a larger box
with a different temperature
2. We can change the size of the box

Thinking NGC 6752 out of the box

30



Puzzling thermodynamics

> Let’s play with a cluster
> Only two rules:

1. We can put it into a larger box
with a different temperature
2. We can change the size of the box

> What happens?

Thinking NGC 6752 out of the box

30



Puzzling thermodynamics

> Let’s play with a cluster

> Only two rules:
1. We can put it into a larger box
with a different temperature
2. We can change the size of the box

> What happens?
> [Meet negative heat capacity]

Thinking NGC 6752 out of the box
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Cheating with thermodynamics

B Place it in a colder box: It heats
up without limits

Thinking NGC 6752 outside of the box
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heating with thermodynamics

[l Place it in a colder box: It heats
up without limits

B Want to cool it down? Place it in
an even hotter one

B “stars act like donkeys slowing
down when pulled forwards and
speeding up when held back.”

[Lynden-Bell and Kalnajs (1972)]

Thinking NGC 6752 outside of the box
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The power of binaries

B If we wait “long enough” a
simultaneous close three-body
encounter will produce a tightly
bound pair

Thinking NGC 6752 outside of the box
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The power of binaries

W If we wait “long enough” a
simultaneous close three-body
encounter will produce a tightly
bound pair

B Heggie’s law: It will grow tighter
and tighter, giving off more and
more energy

B Supply of Tk to all bodies,
including CoM of binary

B Mass points with no spatial
extension: Can come arbitrarily
close

B Ey;, arbitrarily large: Unlimited
amount of +E to the rest of the
system .

Thinking NGC 6752 outside of the box
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Spherical potentials

B Two orbits differing in eccentricity
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Newtonian periapsis retard

Y/Rmﬂ

0.4

0.2

Orbit within Ripg

0.5

Y/Rinﬂ

Perihelion retard, counterclockwise

Result of having not a point but an extended mass distribution

[ Hapo= 0.8 Rug
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Newtonian periapsis retard

B The star feels more mass far away than closer to the centre
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Newtonian periapsis retard

B The star feels more mass far away than closer to the centre

B When crossing the sphere, the trajectory abruptly changes and
becomes a smaller ellipse

B The object goes back to the centre faster

B The orbit precesses in the opposite direction to the orbital one
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Non-spherical potentials

i B Most general case: Triaxial potential
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Non-spherical potentials

B Most general case: Triaxial potential

B No component conserved of J

B Numerical models of crashing galaxies:
r< Rini'l:

[® |
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|
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J
0

Centrophobic orbits - Never reach centre
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Non-spherical potentials

'(?5

KON
100

Centrophobic orbits - Never reach centre

B Most general case: Triaxial potential

B No component conserved of J

B Numerical models of crashing galaxies:

r < Riuna:
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Non-spherical potentials

B Most general case: Triaxial potential

B No component conserved of J

B Numerical models of crashing galaxies:
r < R

B Shape of the potential close to the

Centrophobic orbits - Never reach centre M B H 7
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Centrophilic orbits

B Pyramid or box orbits: Reqular, and can

get very close

Centrophilic orbits - Get very close centre
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Centrophilic orbits

B Pyramid or box orbits: Reqular, and can
get very close

B Probability for an orbit to get within d
of MBH?

'y @

B Proportional to d and not d? (random

ch)*‘ ' \ﬂ/

case)
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Centrophilic orbits

B Pyramid or box orbits: Reqular, and can
get very close

B Probability for an orbit to get within d
of MBH?

B Proportional to d and not d? (random
case)

Centrophilic orbits - Get very close centre
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Centrophilic orbits

Centrophilic orbits - Get very close centre

Pyramid or box orbits: Reqgular, and can
get very close

Probability for an orbit to get within d
of MBH?

Proportional to d and not d? (random
case)

The projectile is attracted by the target

38



Relaxation




Two-body relaxation

B Back to a spherical system world
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Two-body relaxation

B Back to a spherical system world

B Exchange of E and J

B Secular effects : Modify J, not E

B a <~ Eand, foragivena, e < J
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Two-body relaxation

Back to a spherical system world

Exchange of E and J

Secular effects : Modify J, not E

a <+ Eand, foragivena, e <+ J

40



Two-body relaxation

For very dense stellar systems as galactic nuclei, one cannot sup-
pose any longer that stars are moving under the influence of the
mean potential generated by all other particles (which is what we
call a collision-less system, related to the Boltzmann equation).
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Two-body relaxation

Relaxation (This is not the transition of an atom)

For very dense stellar systems as galactic nuclei, one cannot sup-
pose any longer that stars are moving under the influence of the
mean potential generated by all other particles (which is what we
call a collision-less system, related to the Boltzmann equation).

Exchange of E and J : After many tugs = forget trajectory

41



The kernel of relaxation

B Two stars, masses m; and m;
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B Two stars, masses m; and m»

B vy is high, 8 is small
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The kernel of relaxation

B Two stars, masses m; and m,
B vy is high, 8 is small

B Relaxation rate: Integrate over all b
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Integrate over all b

m ot
*2* "
?,;,.L(l **if__//’/l/:
Vie XK *** Os,
X %
Ty

B Integrate b, keep v, and the masses fix
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Integrate over all b
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Il Integrate b, keep v,¢ and the masses fix

n ()at =0
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Integrate over all b
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Dynamical friction




Dynamical friction

B One star more massive than average
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Dynamical friction

B One star more massive than average
B Much shorter timescale than T,

B If mass 10 times smaller, timescale also 10 times shorter
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Dynamical friction in action |

% Massive intruder: Stellar BH in a
homogeneous sea of stars
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Dynamical friction in action |

s Massive intruder: Stellar BH in a
homogeneous sea of stars

e

g

p

* % The projected component in the
g direction of the deflection is
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Dynamical friction in action |

Massive intruder: Stellar BH in a
homogeneous sea of stars

The projected component in the
direction of the deflection is
shorter
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Dynamical friction in action Il
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Dynamical friction in action Il

r % *ow s Massive perturber accumulates
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Dynamical friction in action Il
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Dynamical friction in action Il

r % *ow s Massive perturber accumulates
X - i . q .
% e region high density
e - : isx}?w 5?
- v = ® - %}i Yﬁ>;i>
s " * s Direction does not change to
% % % first-order
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%

47



Analysis of dynamical friction

% Intruder feels a force
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Analysis of dynamical friction

Y Intruder feels a force

s Plug in velocity from perturber, v~ o

* Fpp ox M2
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Analysis of dynamical friction

Intruder feels a force

Plug in velocity from perturber, v~ o

FDF 0.8 ME

48



Mass segregation without a MBH

Density in N-body units

Density in N—body units

T =0.00e+00T,,(0)
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Mass segregation with a MBH

T=151e-01T,(0)
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Core collapse

T=7.22x107°T,, =2.03x 106 yrs

Stellar radii magnified 1.6x10%times Stellar radii magnified 2.0x10* times



NS form binaries

B NS sink to the centre and increase in number density
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NS form binaries

11037007 " 0071513

B NS sink to the centre and increase in number density

B They go through multiple interactions with other stars
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NS form binaries

101007 " t-p007:181

B NS sink to the centre and increase in number density

B They go through multiple interactions with other stars

B They are likely to form a binary with another star which stands a
good chance of being another NS
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NS form binaries

B NS sink to the centre and increase in number density

B They go through multiple interactions with other stars

B They are likely to form a binary with another star which stands a
good chance of being another NS

B They form a NS binary and a source of GWs which will merge or not
in a Hubble time depending on their orbital properties
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Binaries with massive black holes




Black holes come in different flavors
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http://www.dneg.com

Black holes come in different flavors

Formed by the gravitational collapse of a massive star, “collapsars”,
mun/Me € [5, few tens|, everywhere in the galaxy

Formation debated, 10° < Mg /Mg < 107, galactic nuclei

Formation unclear, o


http://www.dneg.com

Black holes: Do they exist?




Do black holes exist?

50,000 lightyears
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Do black holes exist?

50,000 lightyears

Unique, defining characteristic: The event horizon

We have an excellent probe...
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Facts about black holes

v General Relativity predicts their existence
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Facts about black holes

v/ General Relativity predicts their existence
v/ We have a long list of indirect observational indications

v We have a long list of theoretical motivations for their existence

Why such long lists?

57



Wait... We do have direct proofs now!

v’ General RelatiV
v We have a long list Oications

v We have a long list of th® ons for their existence

Why such log

Pt have a direct evidence
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Why is this so important?

% From the point of view of fundamental physics:

1. Waves GW150914 and GW151226 are a prediction of general
relativity in the strong regime

% From the point of view of astrophysics:
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Why is this so important?

% From the point of view of fundamental physics:

1. Waves GW150914 and GW151226 are a prediction of general
relativity in the strong regime

2. We have a proof that gravitational waves exist and that objects
consistent with General Relativity (stellar-mass) black holes are
present in the Universe

% From the point of view of astrophysics:

1. These dark objects exist with masses larger than the nominal 10 Mg,

2. They form binaries

60



NS as probes of supermassive
black holes




Quasars

62



Quasars

“quasi-stellar radio sources”, z € [0.06, 6.5]
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Quasars

“quasi-stellar radio sources”, z € [0.06, 6.5]

in the whole
universe

active galaxies

a thousand of times the energy of our Galaxy
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Accretion

Accretion requires a mass between a million and a thousand millions
the mass of the Sun
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Accretion

between a million and a thousand millions
the mass of the Sun
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Accretion

between a million and a thousand millions
the mass of the Sun

the SMBH consumes 10
stars per year

63



The SMBH in our Galaxy: Our best candidate

% Observations of the Galactic Center reveal a strange fact
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The SMBH in our Galaxy: Our best candidate

% Observations of the Galactic Center reveal a strange fact

% Stars move... around a point (a radio source called SgrA*)

+ Four millions of solar masses, four millions of Suns

% Within a radius of 22 millions of km, enclosed in ~ 1/3 times the
distance to the Sun
@&, [Fim: 5-Stars, win+1]
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Correlations
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NS and GWs: A unique probe of MBHs

[Film: Extreme-mass ratio inspiral, S. Drasco, win+2 and Natalia Amaro, win+3]

&

X Stellar mass object spiraling into 10% — 10° M,

X This range of masses corresponds to relaxed nuclei (!)
X Only compact objects - extended stars disrupted early
X WithLISAz ~ 1

TSN

[Amaro-Seoane et al 2012ab,
= [ ]
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Four important points

@ Extreme-mass ratio inspirals: There has not been any other mission
conceived, planned or even thought of ever that can do the science
that we can do with them

JM% [Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane 2012, Amaro-Seoane et al 2015]
=
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Four important points

© Extreme-mass ratio inspirals: There has not been any other mission
conceived, planned or even thought of ever that can do the science
that we can do with them

® General Relativity is a theory, needs corroboration: this is a unique
probe in the strong regime

o

| ; [Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane 2012, Amaro-Seoane et al 2015]
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Four important points

© Extreme-mass ratio inspirals: There has not been any other mission
conceived, planned or even thought of ever that can do the science
that we can do with them

® General Relativity is a theory, needs corroboration: this is a unique
probe in the strong regime

©® Tests of alternative theories of gravity: “Geo”desic mapping of
space-time

o

| ; [Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane 2012, Amaro-Seoane et al 2015]
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Four important points

© Extreme-mass ratio inspirals: There has not been any other mission
conceived, planned or even thought of ever that can do the science
that we can do with them

® General Relativity is a theory, needs corroboration: this is a unique
probe in the strong regime

® Tests of alternative theories of gravity: “Geo”desic mapping of
space-time

@ Measures mass and spin with unprecedent precision

o

| ; [Amaro-Seoane et al 2007, 2012a, 2012b, Amaro-Seoane 2012, Amaro-Seoane et al 2015]
=
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A problem of 10 orders o itude

Cluster dynamics
Newtonian, collisional

( ~\ . :
| B | o o ~ 109 — 108 Mg pe—?
0y ~ 100 — 1000 km s !
ti, o ~ 108 =101 yis

P gal ~ 0.05 Mepe™3
Oy, gal ~ 40km 51
gl ~ 101 yrs

Relativistic dynamics
collisional or not (low N)
Me ~10° - 10° Mo

Rgapy = 1077 = 1074 pe

Note: 1pc ~ 3 light years

=" [Amaro-Seoane 2012]

=8
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Macro- and microphysics, GR and Theoretical Astrophysics

¢ This is the two-body problem in General Relativity

o

| ; [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
=
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Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity

Unsolved at these mass ratios even with supercomputers

o

| 2 [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
=

69



Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity
Unsolved at these mass ratios even with supercomputers
v This is the 10°-10® body problem in Newtonian gravity

o

| ; [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
=
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Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity
Unsolved at these mass ratios even with supercomputers
v This is the 10°-108 body problem in Newtonian gravity

Getting there with supercomputers but still out of reach

o

| 2 [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
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Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity
Unsolved at these mass ratios even with supercomputers

v This is the 10°-108 body problem in Newtonian gravity
Getting there with supercomputers but still out of reach

¢/ To understand the problem you need both

[=_» [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
|
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Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity
Unsolved at these mass ratios even with supercomputers
v This is the 10°-108 body problem in Newtonian gravity
Getting there with supercomputers but still out of reach
v’ To understand the problem you need both

+ General Relativity in the strong regime

[=_» [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
—
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Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity
Unsolved at these mass ratios even with supercomputers
v This is the 10°-108 body problem in Newtonian gravity
Getting there with supercomputers but still out of reach
v’ To understand the problem you need both
* General Relativity in the strong regime

* Theoretical astrophysics

[=_» [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
|
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Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity
Unsolved at these mass ratios even with supercomputers
v This is the 10°-108 body problem in Newtonian gravity
Getting there with supercomputers but still out of reach
v’ To understand the problem you need both
* General Relativity in the strong regime
* Theoretical astrophysics

v/ Science to be made is a genuine paradigm shift

[=_» [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
|
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Macro- and microphysics, GR and Theoretical Astrophysics

v This is the two-body problem in General Relativity
Unsolved at these mass ratios even with supercomputers
v This is the 10°-108 body problem in Newtonian gravity
Getting there with supercomputers but still out of reach
v’ To understand the problem you need both
* General Relativity in the strong regime
* Theoretical astrophysics
v Science to be made is a genuine paradigm shift

We are already making completely new discoveries many years
before LISA

[=_» [Amaro-Seoane et al 2007, 2012a, 2012b, 2015, Amaro-Seoane 2012]
=
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Range of masses
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Dichotomizing an EMRI
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Do we expect these things to ex-
ist?




Do we have compact objects close to the massive black hole?

0 (Mgyn/pC%)

1000

« M32 (Lauer et al.)

0.01

Q.1 1 10

r (pe)

How
many stars? How are they
distributed?
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> How
many stars? How are they
distributed?

> Relevant
region difficult to resolve
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Do we have compact objects close to the massive black hole?

0 (Mgyn/pC%)

1000

« M32 (Lauer et al.)

0.01

Q.1 1 10

r (pe)

How
many stars? How are they
distributed?

Relevant
region difficult to resolve

Many
assumptions made to study inner
region
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Do we have compact objects close to the massive black hole?

How

\/

many stars? How are they
distributed?

> Relevant
region difficult to resolve

> Many
assumptions made to study inner

0 (Mgyn/pC%)

region

« M32 (Lauer et al.)

1000

Are these profiles a

001 o - ! 10 coincidence?
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Mass segregation

> 7 Statistical thermal
equilibrium f(E) o e E/9" must be violated close to the MBH
(Rt, Rschw, Reon)
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Mass segregation

> . Statistical thermal
equilibrium f(E) o~ e “/7" must be violated close to the MBH
(RN R,\‘('h\\'; R('«»H)

> Steady state with net inward flux of stars and energy

> If single-mass: quasi-steady solution takes power-law form
(isotropic DF) f(E) ~ EP, p(r) ~r=7, withy=3/2+p
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Mass segregation

> Statistical thermal
equilibrium f(E) e © " must be violated close to the MBH
(Rt, Rschws Reon)

> Steady state with net inward flux of stars and energy

> If single-mass: quasi-steady solution takes power-law form
(isotropic DF) f(E) ~ EP, p(r) ~r 7, withy = 3/2 4 p
detailed kinematic treatment for single-mass
cy=7/4andp=~v-3/2=1/4
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Strong mass segregation

> “Only a fool tries the harder problem when he does not understand
the simplest special case”

Donald Lynden-Bell (Sec. 4.5 of Lynden-Bell & Wood 1968, MNRAS)
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Strong mass segregation

> “Only a fool tries the harder problem when he does not understand
the simplest special case”
Donald Lynden-Bell (Sec. 4.5 of Lynden-Bell & Wood 1968, MNRAS)

> Properties of multi-mass systems poorly
reproduced by single-mass models
Initial Mass Functions € [0.1, ~ 120]M, to first order by two
(well-separated) mass scales: O(1Mg)

O(10My,)
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Strong mass segregation

> “Only a fool tries the harder problem when he does not understand
the simplest special case”

Donald Lynden-Bell (Sec. 4.5 of Lynden-Bell & Wood 1968, MNRAS)

> Properties of multi-mass systems poorly
reproduced by single-mass models

> Initial Mass Functions to first order by two
(well-separated) mass scales
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Impact on rates

+o0 n(E)
r - fo dE
PMRE= e e I0e(E) he) Tox(E)

B f, number fraction of SBHs
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+o0 n(E)
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PMRE= e e I0e(E) he) Tox(E)

W f, number fraction of SBHs
B n(E) number of stars per unit energy

B J.(E) is the specific angular momentum of a circular orbit of energy E
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Impact on rates

+o0 n(E)
r - fo dE
PMRE= e e I0e(E) he) Tox(E)

W f, number fraction of SBHs
B n(E) number of stars per unit energy
B J.(E) is the specific angular momentum of a circular orbit of energy E

B acw, or energy Egw, for EMRIs is: agw = 0.01r,
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Boost on rates
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Milky Way type nucleus, Mg,=4x10% M R=10 ——
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Cusps in distress




A problem in our Galactic Center?

100.0 i
{ T > We can distinguish the young
p 00 E and old population and see a
: ] i 1 }f b4 deficit of old stars

Old Stars I ==0.12:0.16
Young Stars I =151£0.21
0.1 L

1
Radius (arcsec)

sources/arcsec®2

JDD; [Schédel+ and Pau Amaro-Seoane, 2016, Baumgardt, Amaro-Seoane & Schédel 2016] 79
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A problem in our Galactic Center?

100.0

g > We can distinguish the young
and old population and see a
i bigf deficit of old stars

i f{ | i f

N stars / arcsec”

10

Old Stars I ==0.12:0.16
Young Stars I =151£0.21

All Stars [ =0.19:0.06, ‘

> Best fits seem to favor negative
Radius (arcsec) slopes /Y < l

0.1

> Possibility of a core with p,
decreasing, looks like someone
carved a hole
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A problem in our Galactic Center?

100.0

g > We can distinguish the young
and old population and see a
] i o Loppf deficit of old stars

N stars / arcsec”

10

Old Stars I ==0.12:0.16
Young Stars I =151£0.21

All Stars [ =0.19:0.06, ‘

> Best fits seem to favor negative
Radius (arcsec) slopes /Y < l

0.1

> Possibility of a core with p,
decreasing, looks like someone
carved a hole

sources/arcsec®2

> This is old news We know that

the problem is not that acute

Jm; [Schédel+ and Pau Amaro-Seoane, 2016, Baumgardt, Amaro-Seoane & Schédel 2016] 79
=



Why would this be a problem?

@ If there are no stars around SgrA*, extreme-mass ratio inspirals rate
drops there
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Why would this be a problem?

@ If there are no stars around SgrA*, extreme-mass ratio inspirals rate
drops there

@ The Milky Way is template for LISA targets

® If by extrapolation this is typical of many galaxies, cosmic rate drops
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How do you carve a hole at the Galactic Center?

1. Infalling clusters carve a hole

| mm} [Preto & Amaro-Seoane 2010, Amaro-Seoane & Preto 2010]
=
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How do you carve a hole at the Galactic Center?

1. Infalling clusters carve a hole

2. SgrA* is a binary MBH

> Too early
>> Must invoke unlikely events

‘““% [Preto & Amaro-Seoane 2010, Amaro-Seoane & Preto 2010]
=
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How do you carve a hole at the Galactic Center?

1. Infalling clusters carve a hole

2. SgrA* is a binary MBH

> Too early
>> Must invoke unlikely events
>> Let’s play the game

oo
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Isocore ... regrowth
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Isocore ... regrowth

Y=1/2, fu =103 R=10
T 0

T T T
Light Heavy

AF AF 4| > Byt~ 0.25T.x(rh), cusps fully
2 o, 1 developed (~ 0.02 pc if scaled
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b b 1 > Enough to re-growth very steep

1 cusp of compact objects if
carving happened more than 6
Gyr ago
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Isocore ... regrowth

Y=1/2, fr=10"% R=10
T 0

T T T
Light Heavy

Al 1 = Byt~ 0.25T,.(r), cusps fully
developed (~ 0.02 pc if scaled

o
T
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S R 1 > Enough to re-growth very steep
i < / 1 cusp of compact objects if
== B e carving happened more than 6
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Light |

1 > Disagreement with Merritt
1 . Different approach:

o S ] e ] Neglection of H-H and H-L
$al \ | : ] scattering, valid long as py < o1
1 Vool ] > Our results confirmed later
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What does this mean for EMRIs?

B Stellar cusps may re-grow in less than a Ty but the existence of
cored nuclei still remains a possibility
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What does this mean for EMRIs?

I Stellar cusps may re-grow in less than a Ty but the existence of
cored nuclei still remains a possibility

B The Milky Way nucleus is not necessarily the prototype of the
nucleus from which e-LISA detections will be more frequent

B We still expect that a substantial fraction of EMRI events will
originate from segregated stellar cusps, in particular with our new
solution of mass segregation
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Stellar-mass compact objects pile up in galactic nuclei

Milky Way type nucleus, Mg,=4x10° Mgy R0 ——

Stellar-mass compact objects
distribute in the galactic nucleus
trying to reach an equipartition of
energy in such a way that they will
dominate in mass density close to
the density center of the nucleus.

log10 I'sus/Taw

o

ooon

| } [PAS et al 2004, Khalisi, PAS & Spurzem 2006, PAS & Preto 2010, Preto & PAS 2010]
=
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Intermediate-mass black holes




IMBHs
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5.1
Mgw ~ 0.1% Mgpheroia and Mph, g o< 055
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Formation of IMBHs

> Follow the growth of a runaway star
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NS as probes of IMBHs with GWs

¢/ NS can be captured by IMBHs in a process that we call
intermediate-mass ratio inspiral
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NS as probes of IMBHs with GWs

¢/ NS can be captured by IMBHs in a process that we call
intermediate-mass ratio inspiral

¢’ IMRIs will allow us to discover a hidden IMBH with a very high
degree of accuracy

v’ IMBHs are likely to be found at the centres of dense stellar systems
and we know that NS should segregate there, too
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Live formation of an IMRI
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NS are excellent probes of GWs

¢’ NS are prominent sources of gravitational radiation
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