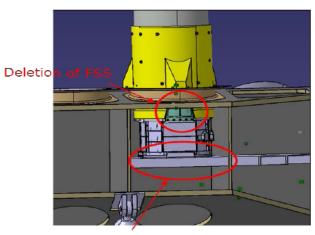


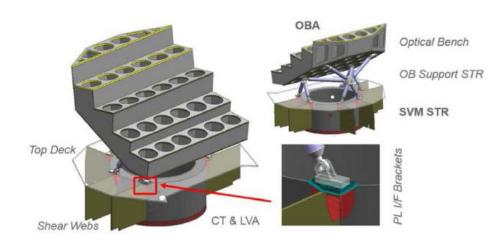
Project milestones


ESA UNCLASSIFIED - For Official Use

Spacecraft status - SRR successful

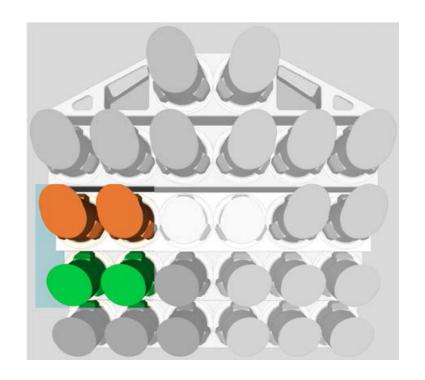
- Successful spacecraft System Requirements Review (SRR) (November 2018)
- Issue: Excessive power dissipation of Fast cameras Front-End Electronics (F-FEE)
 - Technical solution found, based on conductive coupling between F-FEE and Optical Bench Assembly
 - Significant design work is being done on both spacecraft and F-FEE, which will be finished for spacecraft PDR and F-FEE PDR respectively

Mounting principle



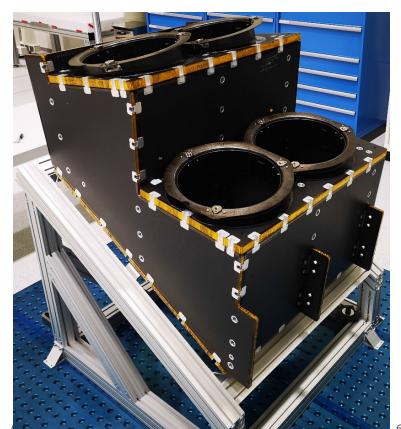
Direct mounting of F-FEE onto OBA panel

Spacecraft status - Isostatic decoupling


- Isostatic decoupling between Service Module and Optical Bench Assembly improved with flex joints (less risky solution with similar performance) instead of spherical bearings
- Characterization tests close to completion

Spacecraft status – DMBB Manufacturing and Test

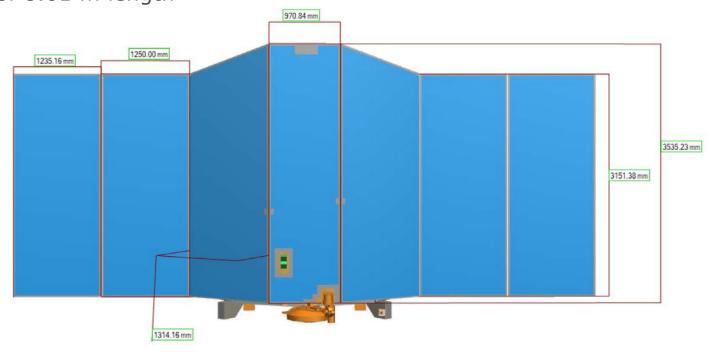
The investigation on the thermo-elastic distortion (TED) is considered one of the early key developments to confirm that the scientific requirements on the pointing stability of the instrument can be met.



Spacecraft status – DMBB Manufacturing and Test

Manufacturing and test of an early Development Model Breadboard (DMBB):

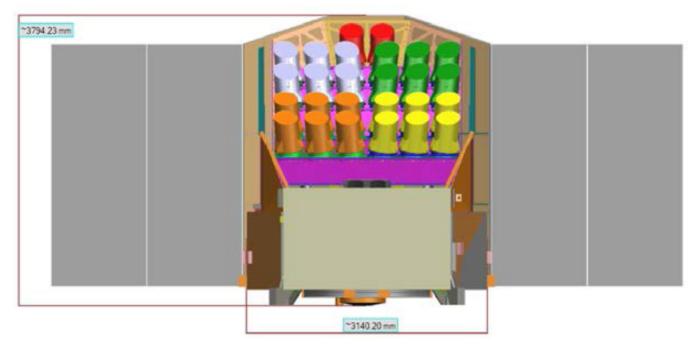
- to correlate the Thermal Mathematical Model of the Optical Bench
- to demonstrate the (novel)
 measurement technique and measure
 TED stability under as close as possible
 in-orbit boundary conditions.
- Interferometry tests carried out in August
- Videogrametry tests in progress at ESTEC



Spacecraft status – Power budget

Sunshield concept under revision to allow power increase: Sunshield/solar array envelope of 8.61 m length

ESA UNCLASSIFIED - For Official Use



Spacecraft status – Power budget

Sunshield concept under revision to allow power increase: Sunshield/solar array envelope of 8.61 m length

ESA UNCLASSIFIED - For Official Use

Mission Critical Requirements Review

Mission level review assesses:

- Mission Requirements flow-down and consistency
- Mission Performance (against Mission Req. Doc. requirements)
- Mission Architecture and development status
- Mission segment interfaces
- Mission Operations and Calibration
- Launcher progress and interfaces

The Review was declared successful

- The objectives of the Mission RCR are all achieved. A number of recommendations were issued
- No major issue identified. Ariane 6.2 considered as the only viable launcher in the PLATO launch date

Payload PDR

Successful Payload Preliminary Design Review (PDR, March 2019), with actions:

Improve performance budget top-down definition	Refine optical design and check feasibility and manufacturability of the Telescope: Feasibility and manufacturability of the L1 aspheric lens was shown via prototyping
Reinforce interface management and system engineering	Reinforce MAIV and organise an AIV review with test houses: MAIV Coordination group formed
Close follow-up of payload elements not yet funded	Reinforce schedule management: Schedule Coordination group established

Payload Unit PDRs

Unit	Status
FEU	Review successful
AEU	In progress
MEU	Review successful
N-FEE	Review declared not successful; delta-PDR necessary. New data package received in November.
ICU	Board meeting by end November.
FPA	Review successful
F-FEE	In progress
Camera MLI	Review successful
TOU PDR#1	Report under finalisation for Part 1 Board
TOU PDR#2	Kick-off in Jan 2020
MAIV Review	In progress
SW PDR	In progress

ESA UNCLASSIFIED - For Official Use

PLATO CCDs

104 CCDs (4 CCDs per camera) 4510 x 4510 pixels

First flight model CCDs delivered by Teledyne-e2v to ESA:

 CCDs for 10 N-cameras have been received

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

Science Requirements Document updated (issue 7.0)

Main requirement change:

R-SCI-600 The total number of targets in stellar sample 1 to be observed simultaneously in each Long Duration Observation Phase sky field shall be at least 7 500 dwarf and subgiant stars of spectral types from F5 to K7 and magnitude lower than $m_V = 11$, with a goal of 10 000.

R-SCI-620 The random noise for each star's light curve of sample 1 shall be lower than 3450 ppm in one hour.

Reasons for change:

- Improved evaluation of system noise contributions and performance
- Contaminants model improved
- Possibility of loosing 2 cameras included
- Better knowledge of the star spectral classes with Gaia DR2 catalogue

Stellar samples – Modified definitions

		Core sample		Statistical sample		Colour sample
		Sample 1	Sample 2	Sample 4	Sample 5	
Stars		≥ 15,000 (goal 20000)	≥ 1,000	≥ 5,000	≥ 245,000	300
Spectral type		Dwarf and subgiants F5-K7	Dwarf and subgiants F5-K7	Cool late type dwarfs	Dwarf and subgiants F5-K	Anywhere in the HR diagram
Limit m _V		11	8.5	16	13	-
Random noise (ppm in 1 hour)		≤ 50	≤ 50	-	-	-
Observation sampling times	Imagettes	25 s	25 s 2.5 s for a subsample	25 s for > 5,000 targets	25 s for > 9,000 targets	2.5 s
	Light-curves	-	-	-	≤ 600 s	-
	Centroid measurements	-	-	-	≤ 50 s for 5% of targets	-
	Transit oversampling	-	-	-	≤ 50 s for 10% of targets	-
Wavelength			Red and blue spectral bands			

Ground Segment status

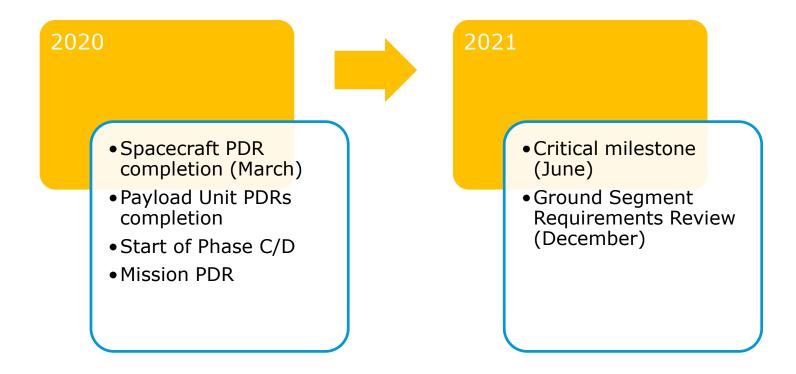
- Ground Segment Customer Requirements Review (GSCRR) closed (Top level ESA documents for Mission and Science Operations)
- Consolidation of Science Implementation Requirements Document (SIRD) on-going
- Ground Segment WGs with MOC, SOC, and PMC are now meeting on regular basis:
 - Ground Segment System & Operations Engineering WG (GSEWG)
 - PLATO Calibration and Operations Team (PCOT)
 - Data Management Working Group (DMWG)
- Overall Ground Segment Progress meetings (2-3 per year) started

Science Ground Segment status

- Ground Data Processing L0/L1 URD scope definition agreed between SOC and PMC – Joint document
- Top level system drawings of L0, L1 process flows made in collaboration SOC/PMC
- Consolidation of requirements for the Calibration Parameter Derivation System
- Common Infrastructure for S/W development in place at ESAC (SCIP)
- Product Definition WG (PMC and ESA) agreed Terms of reference

Science Ground Segment status - SOC

- SOC System Design Activities on-going
- SOC Checkpoint#1 (internal ESA review) successful
- Definition of the top level SOC Subsystems
- Review of the SOC Database & file storage
- Review of the Pipeline Framework infrastructure
- Definition of QLA/RTA system requirements
- Initiating the software & infrastructure at ESAC for the PLATO Mission Parameter Database.
- Ad-hoc participation of SOC in PMC coordination bi-weekly telecons



Future Project milestones

