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PLATO	Data	Products (a	short	summary)	

• Level-0 (L0): Validated light curves of selected targets for all individual telescopes; no instrument corrections
except than those already applied on-board;

• Level-1 (L1): Calibrated light curves for each target, corrected for instrumental effects (temperature sensitivity,
jitter, differential aberration, pixel sensitivity dropout, PSF variations, and so on). The L1 light curves of each target
are averaged over the normal telescopes and their uncertainty is provided;

• Level-2 (L2) forWP 123000:Data Products 4 (rotation and activity) derived from L1 light curves.



Preparation of	light	curves for	WP	123	analysis

• WP 123 is interested in a wide range of periodicities from minutes (convection and flares) to years (activity
cycles);

• This poses formidable problems in the preservation of the true variability of the observed stars;

• The range of variability timescales required for asteroseismic or transit analyses is much more restricted;

• Looking at previous space experiments (e.g., CoRoT, Kepler), different approaches have been proposed:

• Try to preserve all the periodicities, independently of their timescale (very challenging); this may come at
the cost of leaving residual instrumental effects in the time series;

• Optimize transit detection not caring about periodicities on timescale longer than 10-20 days (e.g., Kepler
PDC ms-MAP pipeline; see plots by Gilliland et al. (2015) below); this does not affect the detection of
transits and p-modes, but it is problem for us in WP123.



What we want to	remove before WP	123	analysis
We identify three main kinds of variations to be removed after correcting instrumental effects in L0 light curves (e.g.,
sudden sensitivity dropouts in some pixels, cosmic ray features, jitter effects, relativistic aberration, outliers, etc.):

• Discontinuities produced by astrophysical phenomena (transits and flares); [flare catalogue to be kept as an ADP; see
B. Stelzer’s presentation in Session 7];

• Residual instrumental effects.

v Instrumental effects can be classified into two broad categories:

a) Those correlated with some measured spacecraft or focal plane parameters (attitude, temperature, etc.);
these can be removed by implementing, e.g., the EPD approach (Bakos et al. 2010) that fits an ensemble of
basis functions built from the time series of the parameters; => Warning: consider the unwanted
possibility of fitting some component of the true astrophysical variability;

b) Those that are not correlated with the above parameters (residual instrumental effects) and appear as
trends common to ensembles of stars with similar characteristics (focal plane position, magnitude, colour,
amplitude of variability). [see Grolleau et al. 2018, PLATO-LESIA-PDC-RP-023, Sect. 3.2.5];

• Data gaps.



Detection of	discontinuities and	correction (I)
• In	Corot,	(Ollivier et	al.	2016,	CoRoT Legacy Book	p.	41)	an	algorithm was devised based on	the	comparison of	the	

mean normalized flux before and	after each point i:	

Description of processes and corrections from observation to delivery

The two first e↵ects cannot be investigated using only the
data that are available. The last e↵ect has been clearly ob-
served and led to a change in the way the background in
the bright and faint stars channels is corrected (see corre-
sponding section in this paper).

5.4. Origins of the instrument failure
The instrument failure happened in two steps:

– the 8th of March 2009: loss of the communication with
one of the two detection chains leading to the loss of the
A1 (bright stars) and E1 (faint stars) CCDs;

– the 2nd of November 2012: loss of the communication
with the second detection chain, leading to the end
of the scientific mission after further investigation in
June 2013.

Even now and after several months of dedicated investi-
gations and tests on the instrument, including a complete
switch-o↵ and reboot of all the sub-systems, the instrument
remained silent, and the origins of these two failures are not
clearly understood. They are certainly due to the ageing of
several electronic devices in charge of the power control of
the detection chain, preventing from normal reboot of the
DPU. Let us remind that the mission was designed for a
mission duration of 3 yr, and the final lifetime of the sec-
ond detection chain reached almost 6 yr.

6. Conclusions

The CoRoT legacy data are now delivered to the commu-
nity. The corrections applied to the raw data correspond to
the state-of-the-art knowledge of the instrument behaviour
and evolution. Several extends, with di↵erent sets of cor-
rections or post-processing are available to maximize their
scientific uses. Anyway, our final knowledge is certainly not
complete and other e↵ects may be identified in the data in
the future, and further investigation may be needed, par-
ticularly in the context of CHEOPS and PLATO, for which
the same type of detectors will be used. A priori, no new ver-
sion of the data including new corrections will be created.

Acknowledgements. The CoRoT space mission, launched on Decem-
ber 27, 2006, has been developed and operated by the CNES with the
contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.
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Appendix A: Jump detection failure

The jump detection algorithm overcomes the star variabil-
ity in the light curve by computing a di↵erential vector nor-
malised by the local standard deviation. Thus the impact
of the local variability of the star is minimised. For each
point of the light curve, the di↵erential vector is computed
as following:

�(i) =
fluxafter i � fluxbefore iq

�
2
before i + �

2
after i

Then to detect a jump, each point is compared to the global
standard deviation of the full length of the di↵erential vec-
tor �0.. A jump is detected at the “i” index if:

�(i) > 7.2�0

Where:

�0 = stddev(�)

This method allows considering the global disturbance level
of the star. For a strongly perturbed star the �0 value will
be higher and the detection of a jump will be more rigorous.

However the method presents two limitations. It works
in term of elements and does not consider the time vector.
It works only on the filtered data and does not take into
account the points recorded during the SAA crossing.

These limitations can lead to false detections especially
with highly variable stars as the RR Lyrae stars, because
of an unfortunate synchronisation of the star patterns and
SAA crossing.

Figure A.1 shows a jump detection failure, the
SAA crossing is synchronized with the intensity increase
of the star, causing an abnormal increase of the di↵eren-
tial value. A SAA crossing longer than usual is su�cient to
make the di↵erential vector exceed the detection value (red
line).
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curves resembling exponential decays. In these cases, increasing the
sizes of the masks can often remove this effect resulting in much
cleaner time series.

To redefine the pixel masks, we employ an iterative procedure
developed by S. Bloemen et al. (see Mathur et al., in preparation)
which starts from the original Kepler mask and iteratively adds or
removes pixels to the edge of the aperture based on the amount of
flux in each pixel. Pixels are added to the mask as long as they
contain significant flux and as long as the flux is dropping when
moving away from the centre of the target. If on the other hand the
flux starts rising, this is flagged as a contamination from a nearby
bright star and the associated pixels are not used. The outcome of
this is a new mask that most often is slightly bigger than the original
mask. An obvious danger of this procedure is a slightly heightened
risk of contamination from other faint nearby objects falling inside
the aperture, but this risk is generally outweighed by the benefits.
An exception could be dense regions in clusters.

Once the new mask is created, the light curve is extracted by
simple aperture photometry, summing up all the light within the
mask for each time step. Our data set from now on consists of a
series of stellar brightness measurements, x = {x1, x2, . . . , xN},
taken at incremental timestamps, t = {t1, t2, . . . , tN}.

Step 2. In the next step, the extracted light curve is read-in and,
as mentioned above, sorted in time. Timestamps with a flux value
of -Inf is changed to NaN (Not-a-Number) – this is purely for
consistency with later steps in the filter. In addition, we read in the
values of the ‘Quality’ flag. This entry contains bit values for each
datum indicating if the specific datum has been subject to one or
more known artefacts. See Table A1 in Appendix A for an overview
of the different possible bit values (see also Fraquelli & Thompson
2012) and our actions taken for each of these. For the ones with the
‘Remove’ action, we set the flux value of the datum to NaN.

Step 3. The filter now corrects the sudden jumps in measured flux
caused by the roll of the spacecraft between observing quarters in
addition to jumps at timestamps with a flagged discontinuity or
attitude tweak in the original Kepler data (i.e. having the action
‘Correct’ in Table A1). The end result of this is a relatively smooth
concatenated time series where the individual observing quarters
have been stitched together.

The changes between quarters can primarily be attributed to (mul-
tiplicative) sensitivity variations between the CCDs upon which a
given star falls (see e.g. Bányai et al. 2013; Van Eylen et al. 2013),
see also Kinemuchi et al. (2012) and Garcı́a et al. (2011). Further-
more, additive changes between quarters from differences between
pixel masks, and hence amount of captured flux, is kept at a mini-
mum from the use of the generally larger custom masks, as described
in Step 1 above. There might be a minor additive contribution from
a change in the crowding of background stars. Changes in flux aris-
ing from telescope attitude tweaks are additive as the cause here is
a minor drift of the star on the CCD relative to the mask for the star.
The attitude tweak repositions the star on its mask upon which a
flux level close to the original is achieved.

We found that the following procedure for the stitching returned
the best result with respect to the quality of the power spectrum,
especially for planet hosts where transit features are removed (see
Section 4.1 for more on the various procedures attempted): given a
list of timestamps where jumps might be present, extracted from the
flags or beginnings of quarters, constant offsets and linear trends are
found in 3 d segments before and after each identified jump, and a
correction is made to the part of the time series after the jump, either

Figure 1. Illustration of the proposed method for obtaining the linear func-
tion for jump corrections (dashed red), namely by use of first a LOWESS
smoothing followed by the Theil–Sen median slope estimation, here ap-
plied to a part of the HAT-P-7 time series. Also shown is the result of using
a simple LS linear regression (solid red). The vertical dash–dotted line gives
the time stamp at which the linear function are compared, with the applied
correction given by the difference between the functions at this point.

multiplicatively or additively, from the difference between the trends
at the midpoint between the two sides of the jump. The different
models (no correction, constant offsets or linear trends) are then
compared where the model with the lowest Bayesian Information
Criterion describing the 6 d segment around the jump is accepted and
the correction is applied to the entire time series following the jump.
Rather than making a least-squares (LS) fit of a linear function to
the 3 d segments (see e.g. Bányai et al. 2013), we estimate the linear
trend in a robust manner by first running a LOWESS4 regression
(see Cleveland 1979, 1981), and on the smoothed signal find the
trend as the Theil–Sen5 median slope (Theil 1950; Sen 1968; see
also Feigelson & Babu 2012). The added robustness over an LS fit is
especially important for stars showing transits features, as the trend
estimated for one side of a jump (e.g. between quarters) ending or
starting in a transit will deviate greatly from the trend of the main
out-of-transit component of the light curve (see Fig. 1), and the
correction will generally lead to a bad stitching.

Step 4. Next, gaps in the time series (i.e. missing measurements) are
filled with NaNs, resulting in a time series on an (approximately)
regular grid in time. This is done to ensure that in the following
steps, a given number of data points will correspond to a constant
span in time. It is important to emphasize that this does not create
any new data points to be used, as the NaN values are ignored in all
following steps, but it simply ensures that the filter behaves well at
the edges of data gaps.

Step 5. After these initial preparations of the time series, we have
to take out the long-term trends arising both from instrumental
drifts and stellar activity. We do this by applying a moving median
filter to the time series, essentially calculating the median of the
measurements in a given window of time around each timestamp.
This generates a new low-passed version of the time series:

xlong = movingmedian(x, τlong) , (1)

4 Using the PYTHON module statsmodels.
5 Also known as the Kendall robust line-fit method.
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Treatment of jumps in the KASOC filter:

Using the BIC, we compare different models (no correction,
constant offset, linear trends) to describe a segment centred
on the jump (typically of 6 days length);

Jump correction through estimation of the amplitude from a
robust linear fitting to segments before and after the jump
(Handberg & Lund 2014).



 

 

 
Figure 3: A raw flux time series with two random discontinuities is shown in the upper panel. The detection 
statistics formulated by correlating the second derivative of the time series with the discontinuity template are 
plotted in the lower panel. The detection statistics are circled for the cadence indices returned by the detector. 

 

3.2 Systematic error correction  

Systematic errors are introduced into long and short cadence light curves by a variety of sources over a broad spectrum 
of dynamic ranges and time scales. In the first year of science data collection it has become apparent that the systematic 
errors are caused primarily by target motion at the pixel or sub-pixel level. Target motion in turn produces changes in 
target flux levels. The motion polynomials7 produced in PA by fitting the centroids of selected targets for each cadence 
as a function of the celestial target coordinates are therefore well suited for removing systematic effects on a module 
output basis. 

The dominant long-term systematic effect is DVA, which causes targets to trace small ellipses on the respective CCD 
detectors over the period of the heliocentric orbit of the photometer2. The maximum motion due to DVA is 0.6 pixels per 
observing quarter2. Other significant systematic errors2,4 in flight science data have resulted from variable (eclipsing 
binary) Fine Guidance Sensor (FGS) reference targets, short-period (~3 hours) reaction wheel heater cycling, long 
duration (~4-5 days) thermal transients following safe modes and monthly downlinks, and commanded photometer 
attitude adjustments. Early in the mission it was necessary to perform multiple attitude adjustments in a single quarter 
(Q2) to accommodate drift in photometer pointing14. 

The ability to correct systematic errors in PDC directly impacts performance of the transiting planet search in TPS and 
hence, the detectability of the very planets that the Kepler Mission was designed to discover. Systematic errors must be 
corrected so that they do not trigger massive numbers of TCEs in the transiting planet search, and so that they do not 
prevent detection of Earth-size planets transiting pipeline targets. The scale of the systematic errors in the light curves 
may be multiple orders of magnitude larger than the transit signatures of such planets. 

Systematic error correction is performed in PDC by identifying signatures in the raw flux light curves that are correlated 
with ancillary engineering and pipeline data and temporal motion polynomial sequences. Ancillary data is first 
synchronized to mid-cadence timestamps of the science data. A least squares fitting algorithm is employed, utilizing the 
SVD of the ancillary design matrix. The projection of raw flux for each target into the column space of the design matrix 
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Kepler	algorithm to	find discontinuities

After Twicken et	al.	(2010).	Derivatives of	the	photometric time	series are	computed numerically with	Savitzky-Golay filtering.	



Detection of	discontinuities and	corrections (II)	
• The	detection of	planetary transits and	eclipsing binaries will be	performed by	specific modules of	the	pipeline	

outside of	WP	123;

• We shall use	the	provided transit models to	correct points inside	 the	 transits [an	interface should be	established];	

Ø Warning: systematic residuals are	present in	the	case	of	active stars,	due	to	the	occultation of	starspots.	These will
be	modelled by	WP	123	600	(coordinated by	A.	Valio)	 [Catalogue of	occulted spots to	be	kept as an	ADP].

The Astrophysical Journal, 788:1 (10pp), 2014 June 10 Béky et al.

8–10, 12–14, and 16–17, with transits of Kepler-17b removed
and each quarter scaled to have unit mean). The blue vertical
lines indicate multiples of 12.01 days, the stellar rotation period
reported by Bonomo & Lanza (2012), instead of eight times
the planetary orbital period, which is 11.89 days. The first peak
of the autocorrelation function is at 12.10 days (with FWHM
3.13 days), while the periodogram peaks at 12.25 days (with
FWHM 0.11 days). It is interesting to note that HAT-P-11 and
Kepler-17 are in the same Kepler subfield on the sky; therefore,
we see gaps in both light curves during quarters 7, 11, and 15
due to the failure of a readout module.

The main reason for studying the autocorrelation function
and the periodogram is to exclude the possibility of frequency
aliases. If we interpret the half-width at half-maximum of
the autocorrelation function as a direct indicator for period
uncertainty (as done, for example, by Aigrain et al. 2008),
the resulting range is consistent with the proposed rotational
periods for both stars. We refer the reader to McQuillan et al.
(2013) for a discussion of using the autocorrelation function as
a complementary method to periodograms for studying stellar
rotation.

Note that Kepler data are dense in time, with long runs of
almost continuous observations. We confirm that the spectral
window function does not have large values at periods above
30 minutes, the cadence of observations. Therefore, unlike for
sparsely sampled ground-based observations, frequency aliasing
(Dawson & Fabrycky 2010) does not pose a problem in this
analysis.

The periodograms rule out that we are dealing with an alias
of the rotational rate. However, the narrow periodogram peak is
located at a period slightly larger than the proposed rotational
period for both stars. McQuillan et al. (2013) observe that spot
evolution and differential rotation can cause periodogram peaks
to split up into multiple narrow peaks, thus the FWHM may
not correspond directly to the period uncertainty. Therefore,
the periodograms are not inconsistent with the proposed rota-
tional periods of 29.33 days for HAT-P-11 and 12.01 days for
Kepler-17.

3. STROBOSCOPIC EFFECT ON HAT-P-11

Winn et al. (2010) were the first to note that the ratio between
the stellar rotation period of HAT-P-11 and the orbital period
of HAT-P-11b is approximately 6:1. If it was close enough to
6:1 and there were spots that lived long enough, then one would
be able to detect multiple light-curve anomalies because of the
same spot every sixth transit. However, HAT-P-11b has a polar
orbit with respect to the stellar spin axis; therefore, if the periods
were incommensurable, then the spot could not fall repeatedly
under the transit chord.

Sanchis-Ojeda & Winn (2011) pointed out that a 6:1 period
ratio is a priori unlikely. They were looking for recurrence of
transit anomalies, but quarters 0, 1, and 2 of Kepler data available
at the time did not provide a large enough sample for such
investigations.

In this section, we study a single extraordinary example
of spot recurrence observed by the Kepler space telescope
on HAT-P-11, presented on Figure 3. Light curves of transits
217, 223, 229, and 235 exhibit very similarly shaped spot-
induced anomalies. The striking similarity between these four
anomalies, spaced apart by six planetary orbits, suggests that
they are caused by the same spot, which evolves little during
these observations. If this is indeed the case, then we are
seeing the same stroboscopic effect as Désert et al. (2011) on

Figure 3. Transit anomalies providing evidence for the 6:1 commensurability.
The transits, from top to bottom, are separated by six planetary orbits, which
is the proposed stellar rotation period. Left panels show detrended Kepler short
cadence photometry, along with best-fit model light curve with single spot. Right
panels show the projected stellar disk, transit chord, and best-fit spot. Note that
spot seems to be stationary over this time period, which suggests a tight 6:1
commensurability.
(A color version of this figure is available in the online journal.)

Kepler-17, and the similarity of transit anomalies implies that
the period ratio is very close to 6:1.

However, the same transit anomaly might be caused by a
continuous active band encircling the star along a constant
latitude. In this case, the anomaly shape would not depend on
how much the star rotates between each six transits and thus
would provide no information on a possible commensurability.
To exclude this possibility, we look at all transits surrounding the
ones highlighted on Figure 3. We subtract the model transit light
curve without spots (Mandel & Agol 2002) from the observed
data and plot the residuals for each transit on Figure 4.

We look for anomalies in adjacent transits that are similar
to the one seen on Figure 3 in transits 217, 223, 229, and 235.
However, these adjacent transits exhibit anomalies either with
much smaller amplitude (in transits 218, 224, 228, 230, and
236), or at a different orbital phase (in transit 234), or none at
all (in transits 216 and 222). Therefore, we can exclude the case
of a continuous dark band around the star, because such a band
would cause transit anomalies of comparable amplitude at the
same phase in every single transit.

Note, however, that it is not possible to determine the exact
shape of the spots on the basis of transit anomalies that only scan
the star along sparse transit chords; therefore, the determination
of stellar rotation period hinges on the assumed shape of the
spots, which were circular in our case. If, on the other hand,
the spots were elongated in longitude, then the shape of the
transit anomaly would not be sensitive to the stellar rotation
rate and the stroboscopic effect could thus be observed even for
incommensurable periods.

Also note that there are signs of other spots evolving on
Figure 4, for example, between transits 225 (one small spot),
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HAT-P-11	(Beky et	al.	2014)

3. Starspot Model

The model used here, described in Silva (2003), simulates
the crossing of a dark disc, the planet, in front of a synthesized
star with limb darkening (see top panel of Figure 4). The
quadratic limb darkening law is given by:

( ) ( ) ( ) ( )m
m m= - - - -

I
I

u u1 1 1 1
c

1 2
2

where ( )m q= cos , and θ is the angle between the line of sight
and the emergent intensity. Thus, ( )m= =I I 1c is the intensity
at the stellar disc center. The coefficients used for Kepler-17 are
given in Table 1 and are very similar to those given by Desert
et al. (2011) (u 1=0.433 and u 2=0.101).

The orbit of the planet is then calculated according to the
semimajor axis and inclination angle, and assumed to be
circular (i.e., zero eccentricity). Even though the model allows
for the transit to be oblique, i.e., when the orbital plane is not
parallel to the stellar equator, in the case of Kepler-17,
following Desert et al. (2011), we considered the orbital axis to
coincide with that of the stellar spin. At intervals of two
minutes (or another desired time), the dark disc of the planet is
centered at its estimated position within the orbit. The sum of
the intensity of all the pixels in the image yields the light curve
value at that instant in time.

An unique feature of this model is the possibility to add
round spots to the stellar disc. Each spot is modeled with three
parameters: radius (in units of planet radius, Rp), intensity (with
respect to the central stellar disc intensity, Ic), and longitude,
because the latitude is fixed and depends on the transit
projection. The model also considers the foreshortening effect
when the spots are close to the stellar limb.

An example of a transit across a star with spots is shown in
Figure 4. The top panel depicts the synthesized limb darkened
star with three spots, whereas the middle panel shows the data
(black curve), smoothed by a running mean every five points.
Also shown in this panel is the model light curve of a star
without any spots (blue curve). Subtracting this model from the
data yields the residuals, shown in the bottom panel of
Figure 4, where three “bumps” that superseded the threshold

are clearly seen. These are interpreted as signature of spots, and
modeled as such.
To avoid overfitting, we only consider signals that are above

10 times the average CDPP of the smoothed data, marked by
the dotted horizontal line. Moreover, we only fit the spot
signals within longitudes ofo n70 to avoid the steep ingress and
egress regions of the transit light curve. This region is delimited
by the vertical dashed lines in both the middle and bottom
panels of Figure 4. From the 583 transits, only 507 transits
satisfied these criteria. The maximum number of spots in a
given transit was set to four; only for one transit was it
necessary to fit five spots.
The residuals of each transit light curve were fit individually

using this model. The number of spots was determined a priori
for each transit, as well as the initial guess for its longitude,
lgspot, calculated from the approximate time of the “bump”
maximum intensity, ts (in hours), given by

( )
( )

( )=
n - n⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

lg a
a

lat
sin

cos 90

cos
, 2

t
P

spot

360
24

spot

s

orb

where a is the semimajor axis and Porb, the orbital period in
days. Initial guesses for the radius and intensity of the spots
were fixed at 0.5. The best fit was then calculated using the
AMOEBA routine, which minimizes c2. These fits are depicted
as red curves in Figure 4.

4. Spot Characteristics

From the 507 transits that showed “bumps” in the residual
light curve above the adopted threshold, a total of 1069 spots
were modeled, which amounts to an average number of 2±1
spots per transit. Each spot was modeled by three parameters:
size, intensity, and longitude. The spot parameter errors,

Table 1
Stellar and Planetary Parameters. Those Marked by an Asterisk

Are the Result of this Work

Parameter Value

Star G2V
Mass ( :M ) 1.16±0.06
Radius ( :R ) 1.05±0.03
Effective Temperature (K) 5780±80
Age (Gyr) <1.78
Rotation Period (day) 12.4±0.1
Limb Darkening Coefficients u 1=0.44±0.01*

u 2=0.10±0.02*

Planet
Mass (MJup) 2.45±0.014
Radius (Rstar) 0.138±0.001*

Radius (RJup) 1.41±0.02*

Orbital Period (day) 1.4857108±2×10−7

Semimajor Axis (Rstar) 5.738±0.005*

Semimajor Axis (au) 0.028±0.007*

Inclination Angle (89.0±0.1)°* Figure 4. The 100th transit of Kepler-17b was taken as a typical example of the
spot fit by the model. Top: synthesized star with three spots. Middle: transit
light curve. Over-plotted are the model of a spotless star (blue) and a star with
three spots (red curve). Bottom: remainder of the transit light curve, after
subtraction of a spotless star model. The red curve shows the fit to the data
“bumps.” The dotted horizontal line represents the threshold for spot modeling,
and is 10 times the CDPP, whereas the vertical dashed lines represent the
transit portion that is modeled within o n70 longitudes.
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Detection of	discontinuities and	corrections (III)
• Stellar	 flares (see talk	by	Beate	Stelzer in	Session	7	on	Thursday afternoon);	

• Can	be	fitted with	an	appropriate	 model	and	removed [a	WG	was recently established to	this purpose];	

• Important for	young F and	G	stars and	for	young and	old K	and	M	stars on	the	main sequence.	

The Astrophysical Journal Supplement Series, 209:5 (13pp), 2013 November Shibayama et al.
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Figure 3. Light curves of the most energetic superflares. Horizontal and vertical axes correspond to days from the flare, and stellar brightness normalized by the
brightness just before the flare (F0), respectively. Panels on the left side show the 30 day time variation of stellar brightness, while panels on the right side show
detailed brightness variation of a flare in a short period (0.9 days). Vertical short lines in some left panels show the time at which the flare was detected. Each bar with
heads located just before the flare shows the detection threshold of superflare for the light curve. The star ID (Kepler ID), the Julian date of flare peak, and released
total flare energy are shown in the upper right corner of figures in the right column.
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Examples of	two Kepler	 superflare stars (Shibayama et	al.	2013)



Detection of	discontinuities and	correction (iv)
• The	proposed standard	methods to	detect discontinuies (see above)	work	well in	white noise and	provided that there

are	 few data	gaps;	

• Aigrain et	al.	(2017)	proposed an	alternative	 method based on:
a) Gaussian Process (GP)	regression with	a	change-point built into the	covariance matrix;	 the	discontinuity detection

is based on	a	moving-window likelihood-ratio	 test	between with- and	without-discontinuity GP	models.
Robust, open-source removal of systematics in Kepler data 763

2 D E T E C T I O N A N D C O R R E C T I O N O F
I N D I V I D UA L D I S C O N T I N U I T I E S

Prior to correction using CBVs, it is vital to remove and correct
for the numerous discontinuities present in the light curves. This
sudden pixel sensitivity dropout (SPSD) correction is divided into
(a) detection, (b) classification and (c) correction of discontinuities.
The detection phase identifies discontinuities in the light curve, the
classification phase identifies the type of the discontinuity (SPSD,
flare or transit) and the correction phase corrects the SPSDs but
leaves flares and transits untouched. Each of these steps is detailed
below.

Simple approaches to discontinuity detection such as convolving
a step function with the light curve (matched filter) or looking for
outliers in the difference between consecutive data points (or be-
tween every other data point) perform very well in white noise and
provided there are very few data gaps. However, we were keen to
develop a method that performed well even for light curves con-
taining significant amounts of short-term variability. We therefore
opted for an approach based on Gaussian Process (GP) regression
with a change-point built into the covariance matrix. Early in the
process of developing this method, we carried out simple tests on
example light curves, which confirmed that this approach outper-
forms the matched filter and first- or second-difference approaches
for variable stars, while performing equivalently well for quiet stars.

The discontinuity detection is based on a moving window likeli-
hood ratio test between with- and without-discontinuity GP models.
The light curve, f , is modelled as a zero-mean GP with a covariance
matrix K, that is

f ∼ N (0,K). (1)

The covariance matrix elements are defined by a covariance function
(kernel) with the light-curve cadences c as the input parameter.
We use two kernels, without and with a breakpoint (K0 and K1,
respectively), defined as

K0,ij = a2 exp
(

− |ci − cj |
λ

)
+ σ 2δij , (2)

K1,ij = a2 exp
(

− |ci − cj |
λ

)
× B(β, ci , cj ) + σ 2δij . (3)

The kernels represent the light curve as a sum of an exponential
kernel with an output scale a and input scale λ and an average white
noise term. The with-breakpoint kernel, K1, includes a breakpoint
function

B(β, ci , cj ) =
{

1 if
(
ci ≤ β ∧ cj ≤ β

)
∨ (ci ≥ β ∧ cj ≥ β)

0 else

that forces the covariances between the points on the different sides
of a given breakpoint cadence, β, to zero.

The discontinuity search starts with the removal of strong in-
dividual outliers identified using a narrow running median filter.
Next, we learn the K0 hyperparameters a, λ, and σ by maximiz-
ing the GP likelihood for a subset of the light curve. Then, we fix
the hyperparameters to the optimized values, and calculate K1 log
likelihoods, logL1, for each β = [0...N] using a np cadence-wide
moving window centred around β (where np = 150 by default).
We also calculate K0 log likelihoods, logL0, for each window, and
subtract these from logL1 to obtain a series of log likelihood ratios,
log(L1/L0). Finally, we identify discontinuities as positive outliers
in the log likelihood ratio, as illustrated in Fig. 3.

Figure 3. An example illustrating the discontinuity search: a light curve
containing long-period variability, white noise, correlated noise, outliers and
two SPSD signals (top), and the GP log likelihood difference between the
with-breakpoint and without-breakpoint GP kernels, and the 10–80 MAD
(median absolute deviation) levels for the log likelihood distribution marked
as horizontal slashed lines (bottom).

The Kepler light curves contain several types of signals that can
cause rapid changes in the flux. Besides the instrumental SPSDs that
we want to find and correct, we also have astrophysical signals –
such as planetary transits, binary eclipses and stellar flares – that we
do not want to remove. Thus, an automated SPSD correction routine
needs a way to distinguish an SPSD from these other discontinu-
ities. The discontinuity classification uses a Bayesian information
criterion (BIC)-based model selection approach to select between a
set of possible discontinuity models. The current code implements
five models: (a) false alarm modelled by a low-order polynomial,
(b) transit-like, (c) flare, (d) SPSD and (e) SPSD followed by an ex-
ponential drift to a new level. The discontinuity classification phase
fits the models to each discontinuity, modelling the flux baseline
with either a low-order polynomial or a GP, and selects the model
with the lowest BIC value as the true model, as shown in Fig. 4.

Finally, in phase (c), we correct the identified SPSDs based on
the fitted discontinuity model and save the information about the
identified discontinuities for later use.

3 O P T I M I Z E D U S E O F TH E C B V S

3.1 CBV fitting using variational Bayes

We fit each light curve using the standard linear basis model:

F
(i)
j =

K∑

k=1

w
(i)
k Ckj + ϵ

(i)
j (4)

where F
(i)
j is the flux measured for star i in observation j, Ckj is

the value of the kth basis vector (systematic trend, or CBV) in
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Figure 4. Discontinuity classification. Each row shows a light curve with a discontinuity (blue dots), and each column shows a discontinuity model fitted to
the light curve (black line) with the model’s BIC value relative to the lowest BIC value of the fitted models. The model with the lowest BIC value (thick black
line) is chosen to represent the discontinuity type. The infinite ! BIC values arise when the priors for the model parameters reject the model directly, such as
with flares with negative amplitude.

observation j, w
(i)
k is the coefficient, or weight, relating basis vector

k to light curve i and ϵ
(i)
j represents the residuals of the correction

for star i in observation j. In the remainder of this section, we omit
the superscript (i) for simplicity – the analysis is done separately
for each light curve. Note that ϵ contains both intrinsic variability
and noise, representing the total residual for the purposes of the
systematics correction.

In a simple least-squares framework (such as PDC-LS), one seeks
the set of ws that minimizes the total squared residuals,

∑
j ϵ2

j .
If the residuals are assumed to be drawn independently from a
Gaussian distribution with known precision (inverse variance) β,
this is equivalent to maximizing the likelihood of the model:

p(F|w, C) = N (ϵ; 0, β−1I). (5)

(Note that strict equivalence only holds if β is known, if it is a free
parameter then the full likelihood expression must be used.)

Maximum likelihood linear basis models are notoriously prone to
overfitting. Better results can be obtained in a Bayesian framework,
by using priors over the ws to encapsulate any external information
available over the expected values for the weights, and maximize
the posterior distribution instead of the likelihood.

p(w|F, C) = p(F|w, C) p(w)∫
p(F|w, C) p(w) dw

, (6)

where the normalization constant in the denominator is the model
evidence p(F|C). In the PDC-MAP pipeline, the priors over the ws
are based on the distribution of the coefficients derived in the max-
imum likelihood case (i.e. in the absence of priors), parametrized
as a function of star position and magnitude. This reflects the belief
that stars that are near each other on the detector and have similar
brightnesses should also display similar systematics. As we have
seen, it does reduce the overfitting problems that had been noted
in PDC-LS, but does not entirely do away with them. One plau-
sible explanation for this is that the PDC-MAP priors themselves
are affected by overfitting in the initial, maximum likelihood step.

Furthermore, a fixed prior, as in the MAP model, does not guarantee
model shrinkage as required to avoid overfitting.

To reduce the risk of overfitting further, we perform inference
using Bayesian learning, which allows us to regularize the model
using priors that specifically penalize larger weights, and make it
less likely that one basis vector will compensate for another. A
natural choice for this is to use zero-mean Gaussian priors:

p(wj |αj ) = αj√
2π

exp
(
−αjw

2
j /2

)
(7)

for each j (the individual prior weights are treated as mutually
independent). Furthermore, we do not fix the priors, but instead treat
the inverse variances, α = {αj }, as parameters themselves, subject
to their own prior p(α), for which we use a Gamma distribution.3

Unless there is strong evidence for a non-zero weight for a particular
light curve/basis vector combination, the Gamma prior over α will
tend to make the distribution over w collapse close to a delta function
centred on zero, so most basis vectors will have zero weight in
most light curves. This is often referred to as automatic relevance
determination or shrinkage.

We then seek to evaluate the posterior distribution over the
weights w, marginalized over the prior precisions α:

p(w|F, C) ∝
∫

p(F|w, C) p(w|α) p(α) dα, (8)

and to maximize it with respect to w. In general, the posterior dis-
tribution is unknown and is not analytically tractable. Numerically
evaluating and optimizing the posterior would require evaluating the
likelihood over a very large number of (w,α) combinations, which
is unfeasible, especially as it needs to be done for every Kepler light
curve.

3 Our choice of priors over w and α is also mathematically convenient,
because they are conjugate with each other and with the likelihood (which
is Gaussian), enabling a number of the integrals involved in the inference to
be performed analytically.
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Gap	filling
• Data gaps must be filled for the computation of the power spectrum or the autocorrelation function;

• Short and long gaps are usually treated differently (see Ollivier et al. 2016 for CoRoT or Twicken et al. 2010 for Kepler);

• Some algorithms (e.g., Lomb-Scargle, spot models) can work also in the presence of gaps, but show systematic effects due
to them, especially when the gaps are long;

• Therefore, gaps filling algorithms are important;

• Several methods have been proposed, for example:
a) Inpainting by Pires et al. (2015), based on the assumption that the light curves consists of a discrete set of generalized

Fourier components;
b) Interpolation by auto-regressive and moving averages (e.g., MIARMA, Pascual-Granado et al. 2015).

• For our purposes, it will be very useful to analyse light curves f illed with different methods to see which methods may
produce systematic effects;

• A WG coordinated by S. Aigrain has been created to deal with light curve stitching.
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Fig. 5. Periodogram of HD 51193 obtained after ARMA interpolation (red) and after linear interpolation (blue). In the inset we show the range
from 0 to 130 d−1.
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Fig. 6. Comparison between ARMA interpolation (upper panel in red) and linear interpolation (lower panel in green) for the light curve of
HD 49933 observed by the CoRoT satellite. Valid data are depicted in blue (both panels).

obtained from the linear interpolation provided by the CoRoT
pipeline is clearly biased by the spectral window of the orbital
frequency (13.97 cd−1), in contrast to the ARMA interpolation,
in which this effect has been removed (see Fig. 5).

On the other hand, because of the ultra-high sensitivity of
the instrument detectors, even the very small temperature vari-
ations within the technical specifications are sufficient to make
the instrument response a function of the orbit. This produces
a modulation of the signal, which is more significant for the
frequencies with the highest amplitudes. Such a modulation ap-
pears in both spectra as a peak at 13.97 cd−1, which is the orbital
period of the satellite (inset of Fig. 5).

4.3. HD 49933

The solar-like star HD 49933 was chosen to test MIARMA
with a star showing rapid variations; here the CoRoT gaps
contain several stellar pulsation cycles. In this case, the op-
timal ARMA model for the longest segment without invalid
data (640 datapoints of a total length of 369 601 datapoints)
is ARMA (37, 0), which is a purely autoregressive model
with 37 terms.

Although the most frequent gap length is 9 min
(Appourchaux et al. 2008), some gaps last up to 0.2 days.
Furthermore, this time series has a very high noise level. All
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Description of processes and corrections from observation to delivery

Fig. II.2.10. Example of a proton impact-induced.

Table II.2.1. Lengths of the windows used to compute the

median level or to fit the model as a function of the sampling

rate.

32 s 512 s

Nb of points used to 150 points 20 points
compute the mean before 1.3 hour 2.8 hours
and after a jump
Nb of points used to 200 points 200 points
fit the model 1.77 hour 28.4 hours
Nb of points used to compute 40 points 40 points
the median level before 21.3 min 5.7 hours
the jump

treatment is applied to all the binaries and the transit can-
didates detected by the exoplanet team. Their parameters,
ephemerides, period and transit duration, and their associ-
ated errors (Deleuil et al., 2015) are used as an input of the
function; if a jump is detected in a region of a transit-like
event, the jump is not corrected. The safety region around
the transit events is determined taking into account the
transit duration and its associated uncertainty. In practice,
the safety region duration is about a few hours, which cor-
responds to the longest time window used in the correc-
tion algorithm. In some specific cases, the algorithm failed
and detected non existing (real) jumps. The correction pro-
cess introduced extra perturbations. This phenomenum has
been identified in about one third of the objects of a specific
sample of RR lyrae. This point is considered in Appendix
A at the end of the paper.

4.2.15. Filling the gaps
This process concerns both bright stars and faint stars
channels data.

The Inpainting method developed by Pires et al. (2015)
is used on the CoRoT data to fill the gaps in the light
curves. The gaps can either result from some missing values
during the inflight acquisition, or from the removal of in-
valid data during the ground-based processes. All the gaps
are filled, even those of several days. But to ensure the

Fig. II.2.11. Example of gap filling, using the Inpainting

method (Pires et al. 2015).

proper behaviour of the algorithm, process is performed in
two steps:

– the short timescale gaps (less than two hours) are first
corrected;

– the remaining gaps are filled without limit of duration.

The distinction between the two steps is possible thanks
to the status of the new points, each step having a spe-
cific status. On the bright stars channel, the BARREG ex-
tend is perfectly filled and ready to use in spectral analysis,
with a proper 32-s sampling. On the faint star channel, the
BARFIL extend is also filled, but it is possible to find some
specific gaps in the data. Indeed for the light curves with an
oversampling, the gaps between the two parts at di↵erent
sampling rates, 32s and 512s, cannot be filled. In addition,
some gaps do not last an exact number of 32 exposures,
and thus cannot be corrected. Those gaps can especially be
found at the beginning of the mission. An example of gap
filled light curve is given on Fig. II.2.11.

4.2.16. Correction of systematics
This process concerns only the faint stars channel data.

Even if the global phylosophy for the data processing
consists of correcting only e↵ects that can be clearly iden-
tified, modeled or physically quantified, one must admit,
that, at the end of the global data processing, some light
curve alterations are still visible, and remain uncorrected.
Even if one cannot always exactly identify the origin of
these residuals – some of them are due to cross correlations
between several e↵ects that are corrected individually – we
can notice that they are:

– present on each light curve (systematics);
– with an amplitude that cannot always be quantified us-

ing a simple parametric description.

At the beginning of the project, it was proposed to apply
a “last chance algorithm”, a systematic removal algorithm
such as the SYSREM algorithm (Tamuz et al. 2005). The
method has been optimized and led to a process described
by Guterman et al. (2015). The algorithm works on gap
filled and jump corrected data, and has been implemented
on the last version of the pipeline. A new extend named
SYS has been created in that purpose (see Fig. II.2.2).
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After Ollivier et	al.	(2016),	showing an	example of	
the	Inpainting method by	Pires et	al.	(2015)	

Pascual-Granado et	al.	(2015)	showing gaps	filling by	their
ARMA	method



Correction of	residual instrumental effects
Several algorithms have been proposed to	detect trends	common	to	ensemble	 of	similar stars and	correct them:	

q Trend filtering algorithms (e.g., TFA, Kovacs et al. 2005; SysRem, Tamuz et al. 2005) looking for trends
commons to groups of stars;

q Algorithms adopting a simple model (linear) dependence of the systematic effects on some parameters,
e.g, position on the focal plane (e.g., Guterman et al. 2016, in CoRoT Legacy Book).

• The main limitation is that they tend to fit part of the intrinsic source variability, especially in the case of the
long-term trends for which the amount of information is limited (often less than one complete cycle of the
modulation is covered by the timeseries);

• Adding a priori information to limit “aggressive correction” by chi-square minimization can mitigate this
problem (see Kepler PDCMAP approach in my talk at PW8; or the ARC2 pipeline by Aigrain et al. 2017);

• This increases the complexity of the algorithm and therefore the computational cost;

• Be prepared to make tests of the suppression of long-term periodicities by PLATO pipeline because no
algorithm is perfect.



Suppression of	a	periodic signal in	Kepler	PDC
suited to attempting to characterize activity-induced variations
in a sample of solar-like stars.
With this much longer timescale metric and consideration of

the same stellar sample used in Paper I, some previously
relevant noise terms are now unimportant. At 6.5 hr for CDPP,
the Poisson noise was roughly comparable to the intrinsic
stellar term. At the 12 times longer metric, the intrinsic stellar
term rises due to better sampling primary timescales of stellar
activity, while the Poisson term drops by 12 . Factors from
readout noise on the CCDs, Poisson fluctuations on the counts,
and sky background are now unimportant.
We have attempted to pursue the same type of SVD to

isolate noise terms associated with individual quarters, the stars
themselves, and contributions from the instrument. This has
been relatively unsuccessful. The original CDPP noise
separation leveraged off isolating nearly comparable terms
and benefited from a relatively narrow range of intrinsic stellar
noise. The longer timescale CDPP encounters much more
discrepant components in which the instrumental (or software
inadequacy in dealing with this these) terms are small
compared with intrinsic stellar ones, and more importantly,
the stars show a broader distribution of intrinsic noise. We
therefore concentrate on showing direct evaluations of the
longer timescale CDPP for the Kepler stars, recognizing that if
anything, these will be over-estimates of the intrinsic stellar
noise. We compute the solar metric using the same algorithms
and codes used for the stars. The somewhat surprising results
are shown in Figure 7. Panels are included for analysis of both
the simple aperture photometry (raw), and the calibrated data
(release 9.2; version for release 8.3 is identical for all intents)
for which the distribution of stellar values (median for the 17
quarters is adopted for each star) is shown in relation to

Figure 5. Light curves show filter components from the 24 day quadratic
polynomial filtering (zero response at zero frequency), and sinc function
representation of the 3.25 day binning adopted for the long timescale CDPP.
The bold curve shows the adopted net response function plotted against
frequency with 50% transfer periods of about 8 and 15 days flagged.

Figure 6. This plot shows what fraction of existing signals in the form of
injected test sinusoids at amplitudes corresponding to one standard deviation of
the underlying time series are preserved by data release 8.0 (“regular MAP”—
upper panel), and data releases 8.3 and 9.2 (“msMAP”—lower panel). A signal
corruption of unity corresponds to a total loss of signal, while small values
indicate high fidelity retention of input signals through the systematics removal
step. The corruption metric is qualitatively the same as fractional damping of
the signal amplitude. Clearly, for the current “msMAP,” signals with periods
�20 days are severely damped. Not shown are more subtle and less well
characterized dependencies on signal amplitude. Larger input signals show
relatively better preservation at long periods, while smaller amplitudes show
more damping.

Figure 7. Upper panel shows a histogram of number of stars (of 4529 total) at
different levels of the long timescale CDPP, labeled as stellar noise in parts per
million based on the calibrated time series. The lower panel shows the same
based on use of the direct, or raw data, uncorrected for systematics. The mean
and rms distribution for solar noise levels over quarter-long intervals spanning
a solar cycle are shown by the “+” and heavy horizontal line, with the full
extent of solar noise per quarter shown by the thin line.

7

The Astronomical Journal, 150:133 (10pp), 2015 October Gilliland et al.

(Gilliland et	al.	2015)	

PDC ms-MAP pipeline: better
performance in transit searching, but
almost complete suppression of
rotation and activity signals for
periods longer than 20-25 days.

PDC MAP pipeline: not optimized
according to the timescale of the
variation: non-ideal transit search
performance, but better preservation
of long-term variability.



Some	sample	light	curves:	PDC	vs.	ARC	2	

ARC2 is a de-trending pipeline introduced
by Aigrain et al. (2017) as an alternative to
the PDC pipelines.

Left column: Kepler Simple Aperture
Photometry (SAP) light curves (in gray),
PDC correction (cyan) and ARC2
correction (magenta).

Right column: PDC corrected light curves
(in cyan) and ARC2 corrected light curves
(in magenta).



Binning of	the	time	series

• Some	kind of	data	analysis can	be	performed on	binned data	to	reduce	 the	computation burden and	the	 filling in	of	
the	gaps	(however,	a	gap	changes the	SNR	of	the	binned data);

• Algorithms looking for	rotational modulation or	spot	modelling outside transits can work	with	binned time	series;	

• A	binning window of	2-3	hours	is usually sufficient to	preserve the	interesting information.	



Putting everything together (see talk	by	A.	Moya)
Analysis-ready	light	curves	for	stellar	physics	
	
Authors:	WP128.300	and	WP123.000	teams	for		WP120.000	
A.	Moya,	A.	Lanza,	W.J.	Chaplin,	M.	Lund,	R.	García,	S.	Mathur,	G.R.	Davies,	M.	Nielsen,	J.	Pascual-
Granado,	P.	Gaulme,	R.	Alonso	

	
Flow	chart	version	1	
	

	
Figure	1:	Proposed	flow	chart	for	the	preparation	of	light	curves	for	stellar	physics	analysis.	
	
	

© A.	Moya



Conclusions and	proposals
• Keeping all the astrophysical variability in the L1 light curves from minutes to year timescales is fundamental for WP123,

but it is a formidable task;

• Exchange of information between different PSM and PDC WPs is crucial to this purpose;

• Presently, there is a coordination between WP 128, WP 123, and WP 111 and related PDC WPs; there is also a WG
working on light curve stitching and a WG on stellar flares;

• At some point in the future, a wider WG on the correction of residual instrumental effects could be very useful to keep in
contact people working on data reduction from L0 to L1 (would they include also this correction ?) and people working
on the analysis to produce L2 products;

• Make the full data reduction pipeline (L0 --> L1 --> L2) available for testing possible overcorrection or distortion of
intrinsic variability; this requires a big effort by different teams, but it is worth doing to fully exploit the scientific
potential of PLATO;

• Save information derived during the light curve preparation as ADPs or IDPs (e.g., catalogues of stellar flares, occulted
spots).



Thank you for	your attention



Additional material



 

 

 
Figure 1: Data flow diagram for the Presearch Data Conditioning (PDC) pipeline module. Inputs are shown at the left and 

outputs are shown at the right. Inputs are obtained from the Data Store and outputs are written to the Data Store. 

 

Correct Discontinuities (3.1). Random flux discontinuities have been observed since the first flight data were acquired
4
. 

The random discontinuities are differentiated from discontinuities introduced into many target light curves by spacecraft 

activities and anomalies (monthly downlinks, safe modes) and commanded attitude adjustments. It is likely that the 

random flux discontinuities are caused by impacts of cosmic rays or other energetic particles on CCD pixels. Prior to 

correction of systematic errors in PDC, an algorithm is employed to identify and correct random discontinuities in the 

raw flux light curves. A discontinuity template is correlated against the numerical second derivative of raw flux for each 

target and a threshold is applied to identify significant events. In addition to cadence indices of detected discontinuities, 

step sizes are also estimated. Discontinuities are subsequently corrected for each target by adjusting the flux values 

following each identified discontinuity by the associated step size. The process of discontinuity identification and 

correction is iterated for each target to allow for correction of multiple cadence discontinuities. 

Correct Systematic Errors (3.2). Systematic errors are corrected by a process referred to as cotrending. A design 

matrix is created by separately filtering each of the synchronized ancillary data time series into selectable lowpass, 

midpass, and highpass components. Each raw flux time series is then projected into the column space of the design 

matrix in a least squares sense, and the residual (with mean level restored) between the raw flux and least squares fit 

determines the systematic error corrected flux for each target. This process essentially removes flux signatures that are 

correlated with the ancillary data on the specified time scales. A Singular Value Decomposition (SVD) is utilized to 

perform the projection in a computationally efficient and numerically stable manner. Uncertainties in corrected flux 

values are propagated from uncertainties in the raw flux values in accordance with standard methods. Memory 

limitations prevent the creation of full covariance matrices for each corrected flux time series, however. 
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