Introduction to the 3rd WP12 meeting

SOC

MJ Goupil, K. Belkacem, R-M Ouazzani, A. Serenelli, T. Morel, N. Lanza, M. Cunha, J. Christensen-Dalsgaard, J. Ballot, B. Mosser, W. Chaplin

Barcelona, Nov 19th-22th 2019

Main data products

From WP12 point of view, PLATO observations will provide photometric light curves by sectors of 3 months (L1)

	Product	Designation	Level
Produced by the stellar pipeline	Calibrated lightcurves and centroid curves	DP1	L1
	Planet candidate transits and	DP2	L2
	parameters		
	Asteroseismic mode parameters	DP3	L2
	Stellar rotation and activity	DP4	L2
	Stellar masses and ages	DP5	L2
	Confirmed planet systems and their characteristics	DP6	L2

Organization:

- PSM/WP12 must specify the stellar pipeline (SAS), the methods and algorithms, the validation tests and benchmark stars
- PDC/WP37 must implement and run the SAS pipeline and carry out the tests, provide the outputs
- PSM/WP12 in charge of evaluation of PLATO stellar performances, validation of the tests and of the outputs of the SAS pipeline after implementation by the PDC

Samples of target stars

With 24 telescopes and the current baseline observing strategy, the set of target stars in the core programme is divided into four samples:

• the P1 sample : about **15000** (~ **20000**) bright dwarfs and subgiants (V \leq 11); spectral type F5-K7, a noise level \leq 34 ppm/h, long observing run (LOP); 25s cadence. This sample will include the PLATO 'Rosetta stones';

• the P2 sample : more than 1 000 dwarfs and sub- giants (V \leq 8.2) (300 stars with 2 colours) ; spectral type F5-K7, a noise level of \leq 34 ppm/h, LOP; a 2.5s cadence.

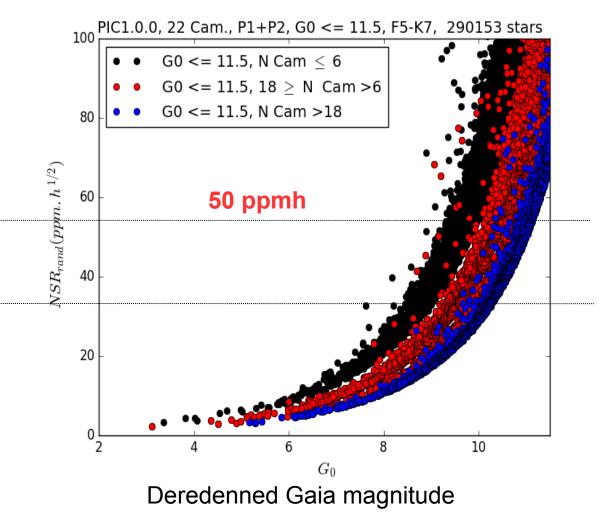
• the P4 sample : more than 5000 M dwarfs V \leq 16, sampling time 25s, noise level 800 ppm/h.

• the P5 sample : \geq 245,000 dwarfs and subgiants (V \leq 13) ; spectral type F5-K7 ; lower SNR than P1 ; 25s cadence. This sample is subdivided in two sub-samples:

- P5-bright (V \leq 11) stars for which mass measurements from ground will be possible;

- P5-faint (11 < V \leq 13) stars with a lower SNR

Requirements

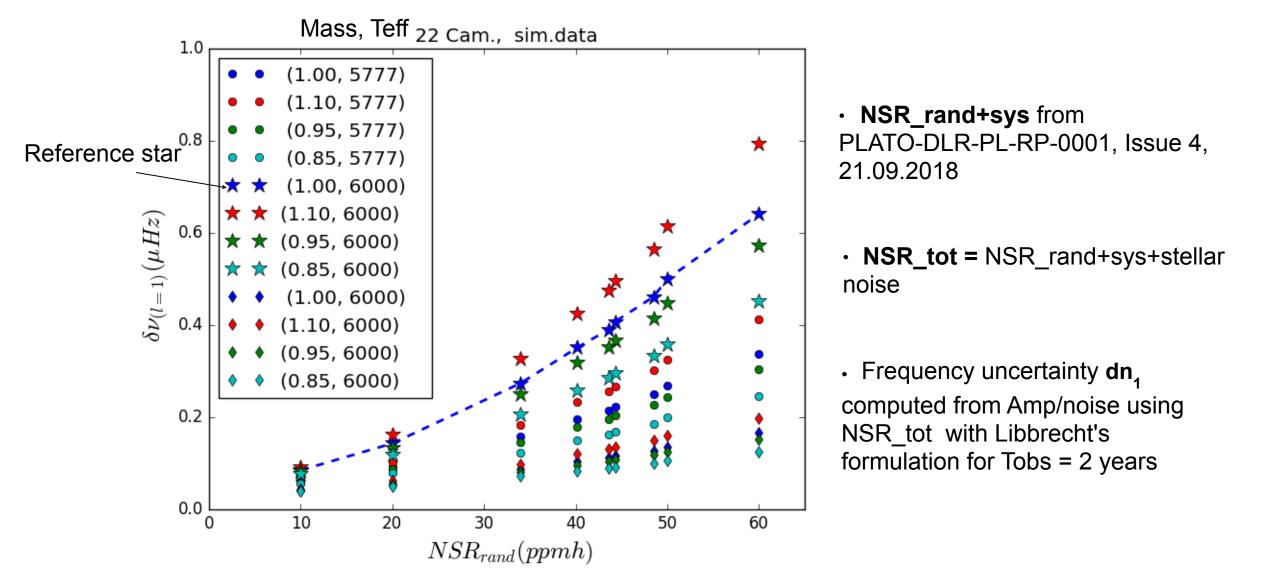

• From SciRD (PTO-EST-SCI-RS-0150, issue 7, July 7^h 2019)

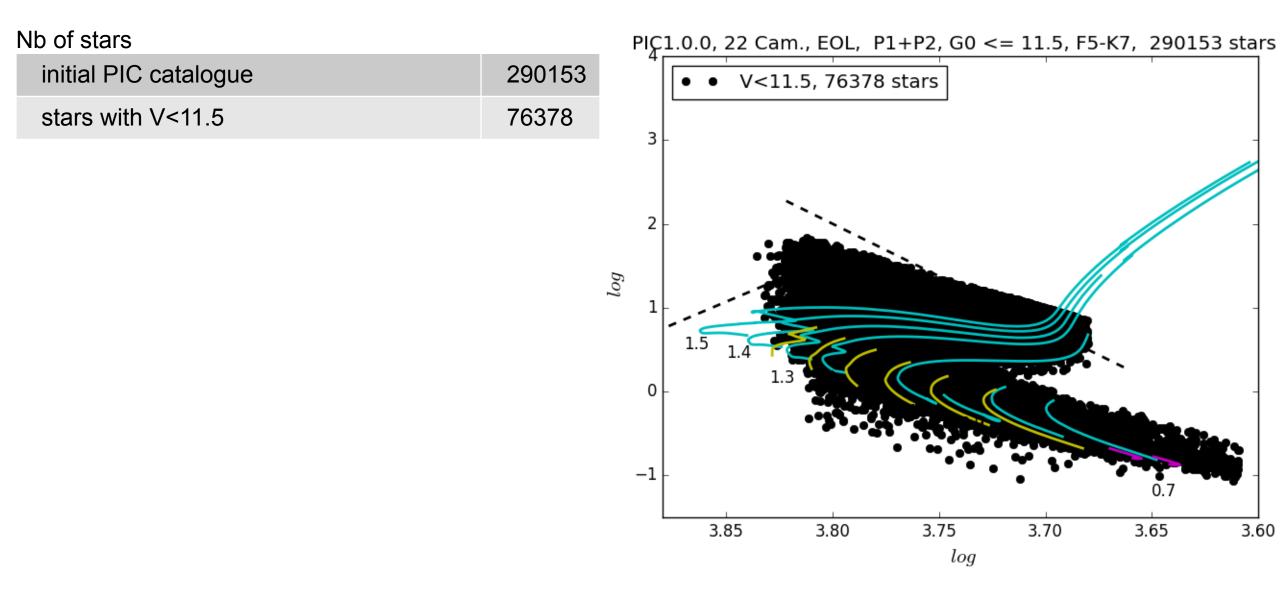
For a GOV star

- 2 % uncertainty on the stellar radius
- 15 % on mass
- 10% on age
- 0.3-0.5 mHz for frequencies around numax
- NSR_rand <= 50 ppmh* at V=10 (goal 11)

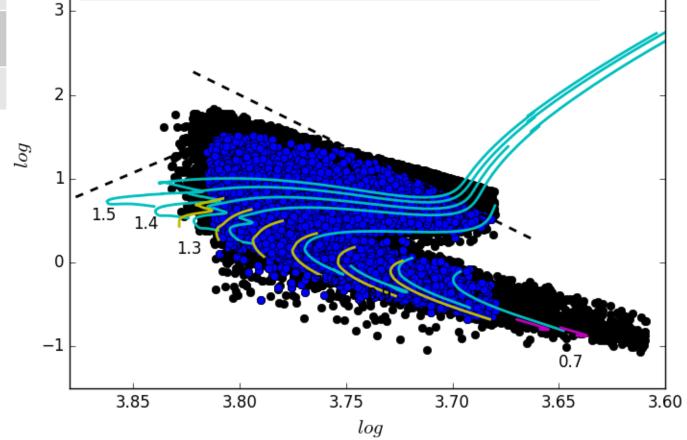
• NSR depends on the number of cameras and instrumental noise and magnitude of the star

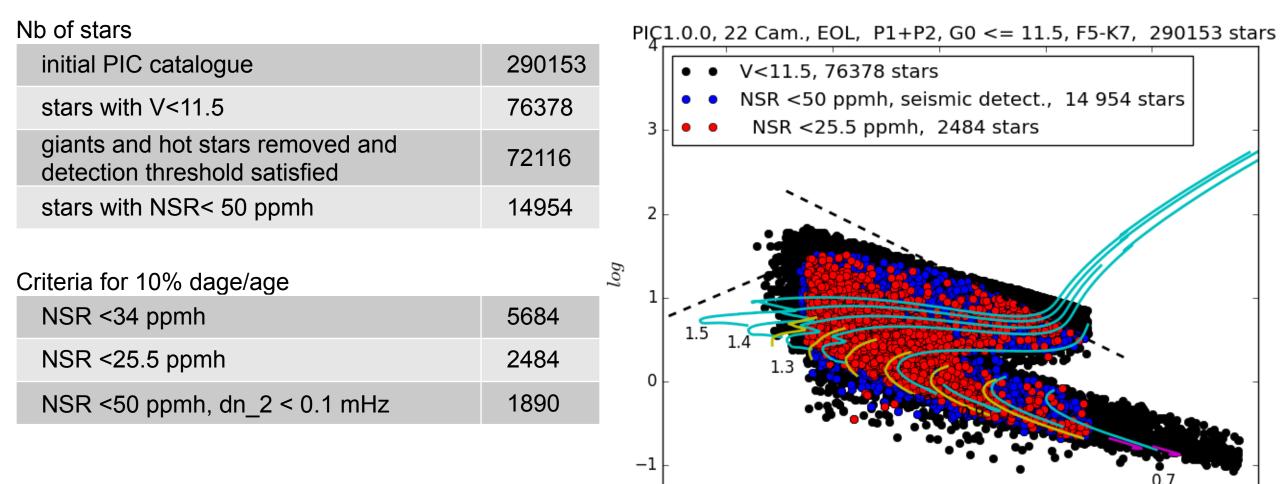
PIC1.0.0 (WP13) + NSR estimate by DLR




*ppmh = ppm. $h^1/2$

(PLATO-UPD-SCI-TN-015, issue1, Rev6, march 2019)


NSR to frequency uncertainty dn₁



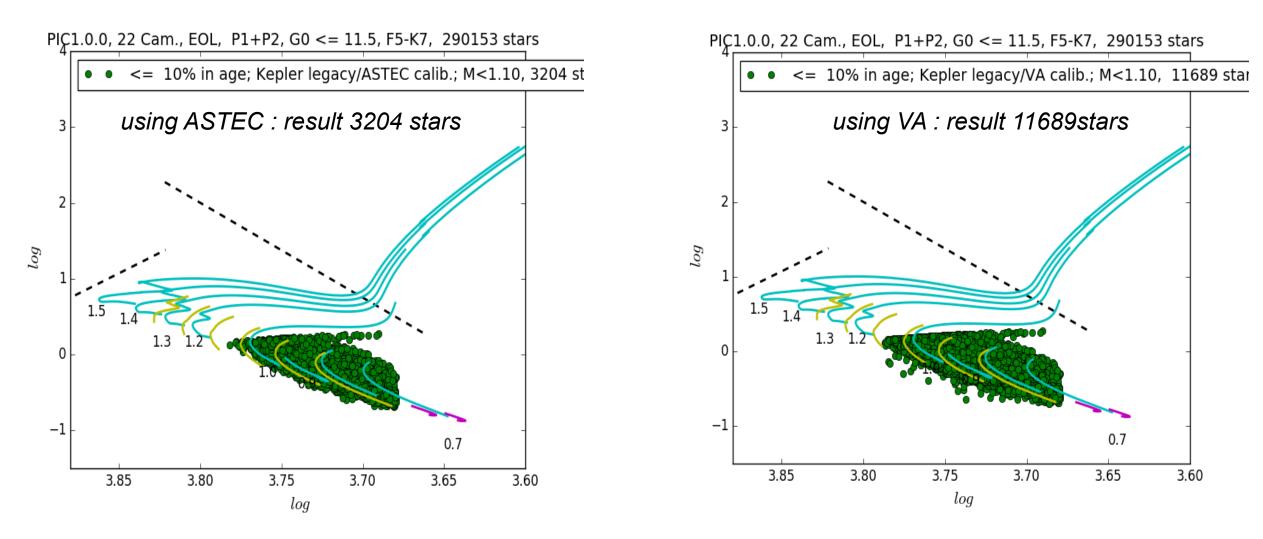
Nb of stars		PIC1.0.0, 22 Cam., EOL, P1+P2, G0 <= 11.5, F5-K7, 290153 stars
initial PIC catalogue	290153	4 ● V<11.5, 76378 stars
stars with V<11.5	76378	• • NSR <50 ppmh, seismic detect., 14 954 stars
giants and hot stars removed and detection threshold satisfied	72116	3-
stars with NSR< 50 ppmh	14954	2

3.85

3.80

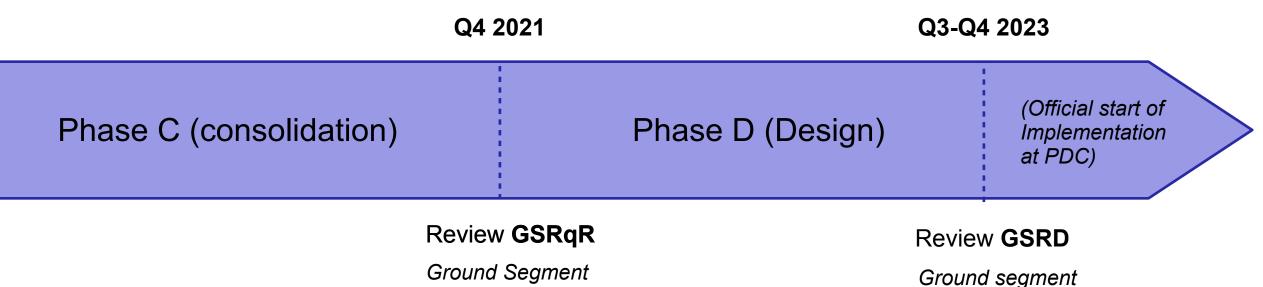
3.75

log


3.70

3.65

3.60


Nb of stars PIC1.0.0, 22 Cam., EOL, P1+P2, G0 <= 11.5, F5-K7, 290153 stars initial PIC catalogue 290153 V<11.5, 76378 stars NSR <50 ppmh, seismic detect., 14 954 stars stars with V<11.5 76378 NSR <25.5 ppmh, 2484 stars giants and hot stars removed and <= 10% in age; Kepler legacy/ASTEC calib.; M<1.10, 3</p> 72116 detection threshold satisfied 14954 stars with NSR< 50 ppmh 2 logCriteria for 10% dage/age 5684 NSR <34 ppmh NSR <25.5 ppmh 2484 0 NSR <50 ppmh, dn_2 < 0.1 mHz 1890 NSR <50 ppmh, calibration Kepler legacy stars/ASTEC M<=1.10; -13204 dage<=10% 3.85 3.80 3.75 3.70 3.65 3.60

log

Calibration using legacy stars with mass <1.10 Msun and dage/age <10% based on results from Silva Aguirre et al (2017)

Deadlines/schedule

Requirement review

Ground segme design review

GSRqR

- L2/L3 URDs : Top level description of requirements for the EAS/SAS pipelines
- Validation tests
- Input/output Data
- Work package description
- Science Implementation Plan (SIP)
- Interface description

Deadlines/schedule

Q1 2020	Q4 2021		Q3-Q4 2023
Phase C (consolida	tion)	Phase D (Design)	(Official start of Implementation at PDC)
Internal	Review GSRqR		Review GSRD
review #1	Ground Segment Requirement revie	eW	Ground segment design review

Internal reviews :

- L2/L3 URDs : Top level description of requirements for the EAS/SAS pipelines
- Work package description
- Science Implementation Plan (SIP)

Deadlines/schedule

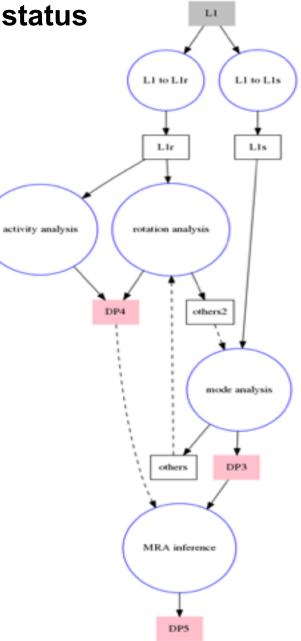
Q1 2020	Q1 2021	Q4 2021	Q3-	Q4 2023
Phase C (d	consolidation)		Phase D (Design)	(Official start of Implementation at PDC)
Internal	Internal	Review GSRqR	Rev	ew GSRD
review #1 review #2	Ground Segment Requirement review		ind segment gn review	

Internal reviews :

- L2/L3 URDs : Top level description of requirements for the EAS/SAS pipelines
- Work package description
- Science Implementation Plan (SIP)
- Design of the pipeline + Input/output data
- Data products description
- Validation tests
- Interface description

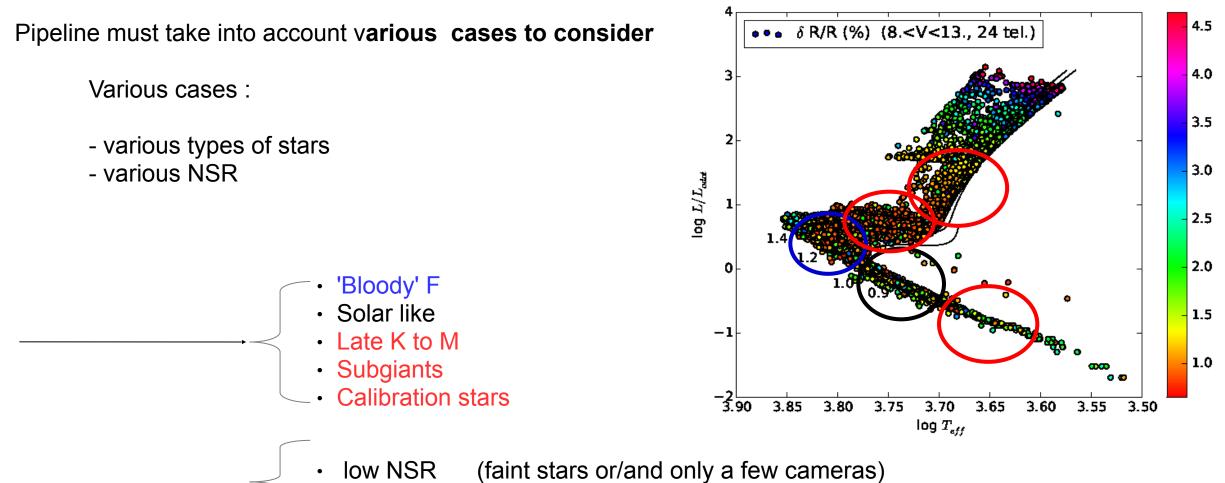
WP12 : where are we ?

General request from David (at PW8, April 2019)


Start thinking about how to achieve your WP objectives: o What algorithms and tools exist? o What are the inputs and outputs? o Which other WPs does this interact with?

WP12 pipeline and tools: current status

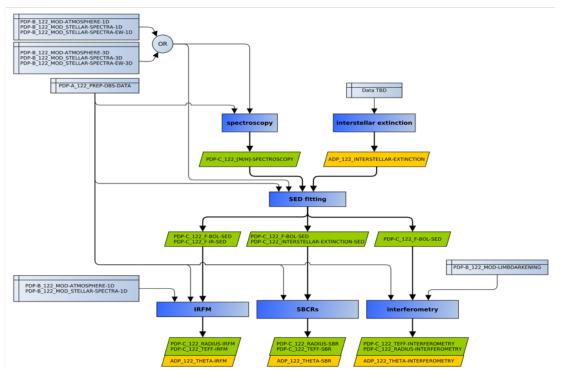
All procedures are known, the algorithms exist, the global architecture of the pipeline is defined


Architecture definition tasks	Status
Pipeline architecture - Level 0: 5 Main Modules defined (described in the URDs)	Done
Input/output for each module (WP120 data-product document)	To be consolidated
Pipeline architecture - Level 1: detailed architecture (data-flow + sub-module description)	In progress
Validation tests	To be defined
Interfaces (with EAS, etc)	To be defined

Tools	Status
Grid of stellar models associated numerical frequencies	In progress
Grid of initial stellar parameters (Teff, Z/X, M,R,A) \rightarrow another pipeline	In progress
Benchmark stars	In progress
Simulations for validation tests	To be defined

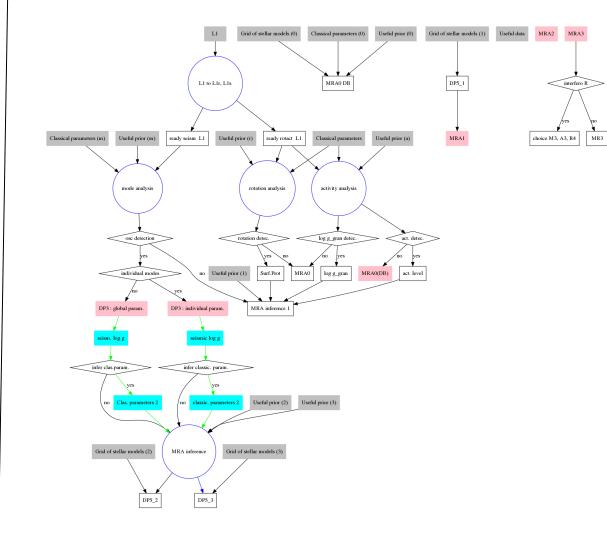
Iterations between modules to be consolidated

WP12 pipeline and tools: current status



• High NSR (bright stars or/and many cameras)

WP12 preparatory developments: current status


Before launch

- To build a grid of stellar models (specification in progress)
- To compute the associated frequency sets (specification in progress)
- To determine precise/accurate classical stellar parameters

Note : fields will be defined 2 years before launch

Goal of the meeting

- to discuss results of several HH exercises and other works and draw conclusions and make decisions
- to consolidate decisions which have been taken by mail or over coffee \rightarrow TN
- to discuss and solve some pending issues or to define action in order to solve them

Exemples of issues:

- interaction between the procedures providing DP3 and DP4 (inclination angle, surface rotation period/seismic one, DP5 as input for DP4?)

- specification of the grid of stellar models (uniform density ? number of free parameters , space allocation ? timescale for building/updating the grid)

- * Version 1 for the prototype
- * Version 2 to deliver to PDC in 2023
- pending issue of the log g_seis

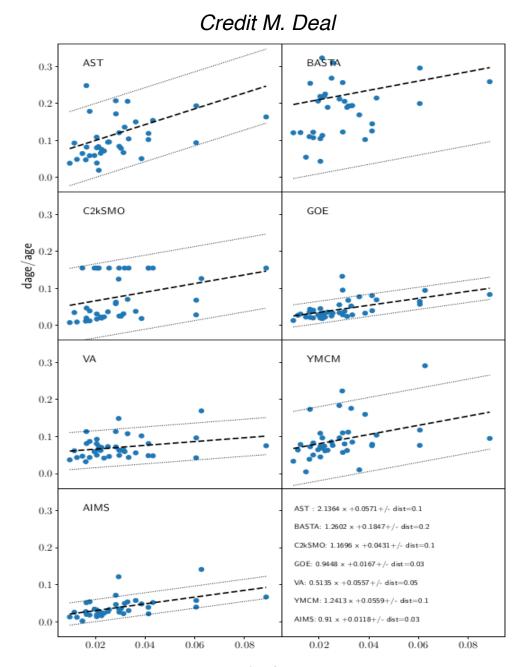
Two issues : - does the log g_seism provide a real improvment for the Teff and Z determination ?

- Is the Teff, Z improvments significant enough to improve the DP5 output ? Likely this depends on the target case (low SNR) ?

- what do we do about surface effects ?
- do we choose one or several methods/algorithms to measure the rotation period, to infer DP5
- automatization of mass, radius and age inferences for subgiants ?
- definition of the uncertainties
- format of input/output data and their uncertainties (pdf, quartiles, correlations ?)
- decision about validation tests (which simulated cases, real cases to test what)
- to establish the decision criteria and procedure in case of multiple choices

Issue to establich the decision criteria and procedure in case of multiple choices

Multiple-choice for DP5: criteria for choosing ?


Kepler legacy : uncertainties on the age (Silva Aguirre + 2017)

Different pipelines :

- various optimisation methods,
- various stellar codes and grids
- various way of
- assessing the age uncertainties

Lead to various results !!!

Urgent to define decision criteria

Lundt+2017, Christophe2018

Relative uncertainties of the seismic observable r02

•No proceeding

•The SOC will write a synthetized report about the outcome of the meeting

•Send comments, minutes, notes taken during the meeting (if relevant ;-) !!)

to PLATO plato.wp120-office@obspm.fr

END

Criteria for the requirements

- Based on CoRoT and Kepler, NSR <= 34 ppmh give 10% on age (?)
- <=34ppmh equivalent to 0.1-0.2 mHz at \mathbf{n}_{max} (?) give 10% on age (?)
- dn at n_{max} gives dr_{02} and with r_{02} (age) give dage