

Spectroscopic orbits for astrometric binaries from Gaia

Flavien Kiefer, <u>J.-L. Halbwachs</u>, F. Arenou, H. Boffin, B. Famaey, J.-B. Le Bouquin, D. Pourbaix , P. Guillout, R. Ibata, Y. Lebreton, T. Mazeh, A. Nebot

> @ Institut d'Astrophysique de Paris CNRS/CNES post-doc

Measuring stellar mass

- Why: one of the fundamental properties of a star (with composition & age)
- What for: understanding stellar physics (evolution models, ...) and important for measuring the mass of exoplanets ("*know thy star know thy planet*").
- how to: WP125500 - Benchmark stars

Measuring mass with asteroseismic data. With e.g. scaling relations

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\rm max}}{\nu_{\rm max,\odot}}\right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{\frac{3}{2}}$$

(Kjeldsen & Bedding 1995)

But only approximate and depends on $T_{eff} \dots =>$ indirect measurement

Using stellar models or empirical relations with B-V, M_V , age, T_{eff} , log(g), etc. E.g. (but still indirect)

$$\log M = a_1 + a_2 X + a_3 X^2 + a_4 X^3 + a_5 (\log g)^2 + a_6 (\log g)^3 + a_7 [Fe/H]$$
 (Torres+ 2010)

But the only way to <u>directly measure</u> stellar mass is the measurement of gravitational mass in binary systems.

Gravitational stellar mass in SB2 binary systems

RV variations SB2 orbital elements:

- M₁ sin³i, M₂ sin³i,
- a₁ sin i (au), a₂ sin i (au)

Astrometry:

- i, inclination
- a_{photocenter} (mas),
- π , parallax

SB2 + Gaia $\Rightarrow \mathcal{M}_1$, \mathcal{M}_2 , Δ G (mag)

TODCOR: 2-D cross-correlation

- **2D cross-correlation** of high-resolution spectrum with **2 templates** (e.g. PHOENIX library, Husser+ 2013)
- Least-square spectral matching to derive the best templates, including line broadening LSF and V sin(i)

Observations of SBs with spectrograph Sophie @T193 of OHP since 2010, in order to

- detect the secondary components of SB1 objects
- improve the orbital elements
- m/s precision of RV => accurate M sin³i (<1%)
- Accurate masses (~ 1%) when the Gaia astrometric observations will be delivered (DR4).

The main sample

• 69 SB2 with $m_v > 6 \text{ mag}$

Primary components :

- A0 M1.5
- 5 late-type giants

Primary masses: 0.3 – 2 \mathcal{M}_{\odot}

+ Backup sample (mv ≤ 6 mag)

Status of the program

- 1155 spectra + 21 (Sophie archive)
- •More than 10 years of data
- 20 new secondary components detected + 6 to be confirmed Halbwachs+ (2014)
- 24 revised SB2 orbits published Kiefer+ (2016, 2018)
- 10 more SB2 orbits to be published in 2019
 Halbwachs+ 2019 (submitted)

24 SB2 orbits published

21 / 11 / 2019

10 more SB2 orbits TBP

RV results summary

- M sin³ i of 64 components
- \bullet Mass range: 0.1-1.6 \mathcal{M}_{\odot}
- Period range: 30-3,000 days
- 43 components with precision on M sin³ i better than 1%

Other programmes

- Mercator/HERMES (A. Jorissen & D. Pourbaix) : 7 SB2 in the southern hemisphere.
- 3.5/CARMENES (Tal-Or et al.) : ~ 40 SB1 to observe as SB2 in IR
- VLTI/PIONIER (Halbwachs et al.) : 5 SB2-OHP + 2 SB2-HERMES resolved
- $\Rightarrow \mathcal{M}_1$, \mathcal{M}_2 , π , $\Delta \mathsf{H}$

Validation (and corrections) of the Hipparcos parallaxes

Future validation of the Gaia astrometric orbits in DR4.

Astrometric detections

11 SB2 systems resolved with VLTI/PIONIER, PTI and publicly available astrometric data, with masses of both components derived

Halbwachs+ (2016) Kiefer+ (2016) Kiefer+ (2018) Boffin+ (in prep)

- 7 components with masses at a precision better than 1%
- At least 4 more components to reach the 1%-level with more precise astrometry => GAIA

21 / 11 / 2019

Validation of the Hipparcos-2 parallax

Mass-luminosity relation

Updating empirical mass relations

- Need well derived parameters for both SB2 components.
- Usually a difficult task... more work TBD here
- Issues with line broadening, [Fe/H], undetermined Log(g) if $F_B/F_A < 10\%$, missing lines in the templates...
- Currently performed by **recurrent least-square** spectral matching with PHOENIX templates (Husser+ 2013) around Ca I line @ 6120Å

Confronting with stellar models

- Some good agreements e.g. here HIP104987 : an evolved system (1.1-1.3 Gyr) of massive stars >2 M_{\odot}
- Some more difficult systems, e.g. HIP117186
 - Comp A on a 3 Gyr and comp B on a 7 Gyr isochrone
 - [Fe/H]=-0.60, Teff=6200 K
 - Not compatible with Casagrande+ (2011): [Fe/H]=-0.1 and Teff=6800 K
- => systematics on the spectroscopic parameters Teff and [Fe/H] of SB2s

The issue with the metallicity

- Calibrating the metallicity on the Sun
- Remaining systematics (caused by e.g. line broadening)
- Few 0.1 dex in [Fe/H] -> Few 100K in T_{eff}
- Building a robust spectrum fitting algorithm for SB2
- Every SB2 spectrum is different -> flux ratio, Vsin(i), T_{eff}, log(g) combinations, missing lines...

21 / 11 / 2019

PLATO Stellar Science #3 Workshop

0.20

0.18

0.20

0.22

 $\mathbf{Y}_{\mathbf{A}}$

0.24

0.26

0.28

Conclusion

• 34 accurate SB2 orbits, 35 more within a few years. May be used to check P, e, T_0 , and ω of Gaia astrometric orbit.

• 11 VB accurate orbits, for validation of Gaia astrometric orbits and preliminary parallaxes. **7 components with M better than 1% precision**.

- Our first masses from Gaia with the first Data Release that will include astrometric orbits (2021 ?)
- Extension of the programme with the Gaia astrometric binaries.

• Well-derived M sin³i for both components, and spectroscopic parameters not to difficult to derive (small flux ratio).

