

Fundamental parameters for M dwarfs

Terese Olander Barcelona 21 November 2019

Outline

- M dwarfs, a reminder
- Observational difficulties
- Benchmark M dwarfs for PLATO
- Fundamental parameters of M dwarfs
- Conclusion

M dwarfs a reminder

2000 4000

วบบบบ

- Surface temperature (K) Stellar type 10000 1000 Giant branch 100 10 G absolute magnitude - 1 Main sequence 0.1 10 0.01 White dwarfs 0.001 15 Gaia BP-RP colour
- 70 % of stars in local galaxy
- T_{eff}: 2700-4000 K
- Mass: 0.08-0.6 M_{sun}
- Important in search for exoplanets
 - 2.5 planets with a radius of 1-4 R_F per M dwarf Dressing & Charbonneau (2015)
- Many are magnetically active
- Fully convective

Figure: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

uminosity (L_{s..}

M dwarfs in PLATO

UPPSALA UNIVERSITET

Observational difficulties

M6.6 dwarfs and L5 dwarf

Figure: Stellar Spectral Classification, by Gray and Corbally 2009

Observational difficulties

Optical wavelengths M4.5 dwarf and M9 dwarfs

Figure: Stellar Spectral Classification, by Gray and Corbally 2009

PLATO STESCI Workshop III 2019

Observational difficulties

Benchmark stars

- Parameters derived by spectroscopy or photometry
- Constrained by
 - Angular diameter and bolometric flux (T_{eff} and radius)
 - Binarity (mass)
 - Asteroseismology (mass, radii, and ages)
 - Not possible with M dwarfs

Benchmark M dwarfs for PLATO

- 7 suggested in Gaia-ESO Paper (Pancino et al 2017)
- Need more —> need accurate parameters
- Up to M4, in PLATO input catalogue now

Benchmark M dwarfs in Pancino et al. 2017

- GJ 205 GJ 581*
- GJ 436* GJ 699
- GJ 526 GJ 880*
- GJ 551 *Part of comparison sample on later slides

Spectroscopic methods

Lindgren et al. 2016 & 2017

• 28 stars

UPPSALA

UNIVERSITET

- CRIRES at VLT
 - 1.10-1.40 µm
 - R~50 000
- SME with MARCS

Passegger et al. 2018 & 2019

- 300 stars
- CARMENES, and more
 - 0.52-0.96 μm and 0.96-1.71 μm
 - R~94 600 and 80 500
 - 2 wavelength ranges
- PHOENIX-ACES

11 stars overlap

Stellar Parameters

CRIRES spectra of the outlier GJ908

Comparison between observed spectrum and two synthetic spectra for GJ908

CRIRES spectra and synthetic of GJ908

Comparison between observed spectrum and two synthetic spectra for GJ908

Passegger 2018 Parameters Teff: 3657 K, log g: 4.84 dex, M/H: -0.12

CRIRES spectra and synthetic of GJ908

Comparison between observed spectrum and two synthetic spectra for GJ908

Passegger 2018 Parameters Teff: 3657 K, log g: 4.84 dex, M/H: -0.12 Lindgren Parameters Teff: 3646 K, log g: 4.86 dex, M/H:-0.51

CRIRES spectra and synthetic of GJ203

Comparison between observed spectrum and two synthetic spectra for GJ203

Passegger 2018 Parameters Teff: 3362 K, log g: 5.03 dex, M/H: -0.03 Lindgren Parameters Teff: 3425 K, log g: 5.01 dex, M/H: -0.13

Result

- Compared line core and line wings
 - Very rough first result
 Lindgren et al. 2016 and 2017 better fit in line core
 Passegger et al. 2018 better fit in line wings
- Compared parameters
 - Stars with "smallest" difference -> candidate benchmark

Conclusion and outlook

- Currently, no exhaustive list of benchmark M dwarfs
- Different methods give different parameters.
- Apply improved method on GIANO spectra (30 stars).

- New candidate Benchmark M dwarfs
 - GJ203^
 - GJ514^*
 - (GJ876^*)
 - ^ In Gaia data release 2
 - * In Mann et al. 2015 and Cruzalèbes et al. 2019

Thank you!

terese.olander@physics.uu.se

Stellar Parameters

Comparison Teff

Comparison log g

Stellar Parameters

Comparison metallicity

Spectroscopic compared to photometric

