

Recent advances in spot modelling

Nadège Meunier & WP123100

Institut de planétologie et d'astrophysique de Grenoble

PLATO STESCI Workshop III, Barcelona Nov 2019

Outline

- Objective of spot modelling
- Challenges
- Main approaches & general properties
- Recent advances
- How to lift degeneracies?
- Conclusion
- Focus on out-of-transit modelling

Objective of spot modelling (ideally)

With

functions

ъdf

Spot properties

- Rotation rates
- ΔΩ
- Activity cycle
- Longitude, latitude
- Lifetimes
- Size, contrast

Plages

Do this for different spectral types / ages

- Degeneracies -> Plage/spot ratio
- Informations on plages properties

Challenges

Residual between spots and plages

True for other observables (polarimetry, RV)

Main degeneracies

- Spot plage coverage
- Size contrast (spot & plage)
- Small/large spots
- Latitude stellar inclination
- Unspotted level / activity coverage

Other issues

- Structure evolution / finite lifetime
- Instrumental long-term trends / offsets / normalizations (spot-plage regime)

1/ Spot models

- Fit N spots
 - Different N Values
 - Large N, ex Mosser+09 = many short-lifetime spots
 - Small N, ex. Walkowicz+13
 - Tools including spot (linear) evolution (Kipping12, Wilson12)
 - Usually analytic
 - Impact of morphology on parameters determination Walkowicz+13

3-spot model + plages

- Lanza+03 (used in Lanza+07,09,09b,10,11,12...)
- Useful to determine Q=plage/spot ratio
- Numerical approach
- Multi-λ possibilities (Lanza+04)

2/ Maps

▶ Pixel maps \rightarrow spot & plage coverage

- Need regularization (100s parameters)
 - Bias towards a certain size distribution
- Lanza+98,02
 - Used in many papers (Lanza+06,07,09,09b,10,11,12,19)
 - Q fixed from 3-spot modelling
 - More efficient than 3-spot model in the solar case
- Harmon&Crews00 (LI)
 - Roettenbacher+II
- Longitudinal strips
 - Huber+09,10
 - No regularization (less parameters)
 - N chosen to get minimum χ2, reconstruction with different starting points

Indirect - filling factors

General properties

Strong assumptions needed

- Contrast are fixed (dependent on μ for plages)
- Center to limb darkening fixed (sensitive: Kipping I 2)
- Reference level S0 (no activity) unknown: assumption necessary
- Degeneracy / inclination: helps if input
- Fixed parameters \rightarrow impact a posteriori pdf

Computationnal issues

- Need to search for Q
- Manual adjustment of subset size to each target
- Stability problems, iterations on fits
- Time consuming
- Different minimisation schemes (including Bayesian minimisation: Croll+06, Froehlich+12, Lanza+14)
- Bayesian criterion to determine N: too much information in LC (Froehlich+12)
- Use of wavelength dependence: noisy

Claimed robust outputs: longitudinal pattern, total spotted area (but S0 effect!!!)

Recent advances

- Not many spot modelling publications on Kepler data!
- Use of previously published methods (Lanza+19, Huber+18)
- Attempt combined modelling with other observables: simultaneous and well sampled
 - Spot modelling of RV+LC Giguere+16
 - RV included in LC fit Herrero+16 [Starsim, public]
 - Haywood+14 Rajpul+15, Diaz+18 RV+LC with GPs

Main advances

- Minimization techniques / more developments bayesian approaches
- Attempts to fit evolution + contrasts take
- Few publications
 - Zhan+19 based on Gunther&Daylan 8 spots, contrast AND size are fitted, nested sampling [allesfitter, public]
 - Luo+19, bipartite regularization on LI / contrast
 - Bruno+16 (out and in transit), structure evolution / longer subsets (MCMC / Ksint Montalto+14 [public])
 - Prvak, used in Reindl+19, genetic algorithm, spot only

Unspotted reference level: Basri+18

- Change in amplitude: spot coverage & evolution, spot distribution $(\Delta \Omega)$
 - + Impact plages
 - + Impact inclination (persistent spottedness, ampl.)
- If all quarters are normalized to same median: removal of variability at these scale (faculae)
- No good solution to estimate the unspotted reference level
 - Flat: better if dominated $\Delta\Omega$
 - Midfit: often better, worse in certain conditions
- Solar case: not bad, perhaps because of median normalization? (but seems completely wrong for quiet Sun)
- Absolute photometry: does not help because noisy (Kepler)

Long-term variability / cycle, spot/plage regime

Spot / plage dominated regimes

- From photometry+LogR'HK: Radick+98, Lockwood+07, Radick+18
- From Kepler: Montet+17
 - Correlation absolute flux and rms LC

• Simulations \rightarrow interpretation

- Shapiro+14, Meunier+19
- Strong impact of inclination (on variability, spot/plage regime)
- Regime not always intrinsic to the star
- + probably other factors (Witzke+18)

Need for long-term stability (trends/normalization , stitching)

PLATO STESCI Workshop III, Barcelona Nov

2019

Are alternative approaches useful?

- Power spectrum fits
 - Harvey+85; Karoff+12,13
 - Information on times scales

Autocorrelation functions

- On LC: Giles+17
- On FT peaks amplitude: Arkhypov+15,16,18
- Information on lifetimes + stability of time series
- Different weight spot / plage?

Aspot from signal amplitude

- E.g. Shibayama+13, Notsu+13, Maehara+17, Savanov+14, Howard+19
- Need contrasts (Tspot)
- Strong impact of S0, plage degeneracy, inclination, different sources of variability

Morphology metrics

- Successive local minima in light curves Namekata+18 → decay/emergence rates, lifetime
- Double dipping Basri&Nguyen18
- Ingress/egress shape, visibility Walkowicz+13
- Degree of periodocity He+15, 17, used in Mehrabi+17
- Neglect inclination, plage effects

As a preliminary step? Input guesses/parameters Subset size Selection purposes Classification

How to lift degeneracies

Need for more theoretical/independant observations to better constrain the fits

- Constraints on spot contrasts for similar stars (obs Berdyugina 05, models Panga+19)
- Constraints on plage contrast for similar stars (models, e.g. Norris+18)
- Chromospheric emission for plages (useless if not simultaneous?)
 - Could constrain range of brightness variations due to plages?
- Other TBD

- Prot (ΔΩ) (guess) / WPI23500
- Constraints from in-transit spot modelling (guess) / WPI23600
 - Spot size, contrast distribution from a subsample
- Alternative analysis (preliminary step)
- Stellar parameters (fixed) WPI 22300
- Limb darkening (fixed) / WPI22400
- Inclination (range of parameters)
 - Asteroseismology Gizon&Solanki 04
 - Derived from R_* , (v sin i) & Prot
- Other seismic inference?
 - Activity latitude from mode cycle dependence (e.g. Gizon&Solanki 03, Thomas+19)

Conclusion

- Assumptions and star selection necessary
- Future work will need to
 - Simulate realistic LC
 - Compare performance: model + assumptions + minimisation schemes
 - Determine stellar type, SNR regime where acceptable / selection
 - Determine which trend can be reliable (trends in biases?)
 - Determine which inputs need to be fixed & necessary precision / effect on final uncertainties
 - Improve computing time?

Need

Simulating tools (several exists + work done on input parameters) Spot modelling tools from the community to test/compare People willing to be involved in these tests