

Stellar flares in photometric time-series data

Beate Stelzer

(Universität Tübingen, INAF - Osservatorio Astronomico di Palermo)

Input from: S.Raetz (Uni Tübingen), K.Vida (Konkoly Obs.), K.Stassun (Vanderbilt Uni.) & PLATO STESCI WGflares

Aims of WG "Stellar flares" (a sub-group in WP123 100)

- (A) Removal of flare events to "clean" lightcurve for other purposes,e.g. search for periodic signals (planets, rotation, oscillations, ...)
- (B) Study the physics of stellar flares
 - -- Flares are crucial for habitability ... and stellar physics --

Status of WG "Stellar flares"

- starting NOW
- no results from coordinated efforts yet

Effect of flares on RV measurements

Relevance of flares for G dwarfs

Kepler sample of ~ 27000 stars with measurement of P_{rot} (as age proxy):

RESULTS:

- * flare rate higher for lower-mass stars
- * drop of flare rate with age stronger for higher-mass stars

But:

* even at Gyr age ~ 20% of G stars show flares

Note:

Contamination by sub-giants → true flare rate of G dwarfs may be higher

Relevance of flares for G dwarfs

Flare identification + validation

in photometric high-cadence lightcurves

Steps:

- (1) flare detection[identification of data points possibly belonging to flares ("outliers")]
- (2) flare validation [identification of flares among "outliers"]
- (3) extraction of physical information from flare signature, e.g. peak luminosity, energy, duration

(1) Identification of candidate flares

This step depends crucially on a proper treatment of other (smooth) variability, i.e. the rotational modulation.

Method 1:

smoothing + σ -clipping

- Boxcar smoothing of lightcurve (red curve)
- 2. Subtraction of smoothed curve (top panel)
- 3. Determination of STDDEV, S_{flat} (green)
- 4. Flagging and removal of "outliers"
 i.e. data points Xσ above STDDEV, S_{flat}
- 5. Flare candidate: minimum of X consecutive outliers

Iteration

(1) Identification of candidate flares

This step depends crucially on a proper treatment of other (smooth) variability, i.e. the rotational modulation.

(1) Identification of candidate flares

This step depends crucially on a proper treatment of other (smooth) variability, i.e. the rotational modulation.

Method 3:

polynomial fit + σ -clipping

- Polynomial fit to windows of 1.5 P_{rot} (black curve)
- 2. Identification of outliers with RANSAC (red in bottom panel)
- 3. Flare candidate: minimum of X consecutive outliers

Vida et al. (2018)

Possible approach in WP123

Other WPs 120 :

Please provide sets of lightcurves for tests of flare detection algorithms.

(2) Flare validation

This implementation requires some knowledge on what a stellar flare looks like.

Method:

automated verification of "typical" flare morphology:

(3) Extraction of flare physical information

(3) Extraction of flare physical information

Simulations - PLATO lightcurves with flares

Simulated PLATO lightcurve

- -- based on a real Kepler lightcurve where outliers removed, smoothed, gaps interpolated
- -- noise added based on the PSLS ('PLATO solar-like light curve simulator',Samadi et al. 2019)
- -- interpolated to 25s cadence

Simulated PLATO lightcurve after flare injection

(see next slide)

PLATO STESCI Workshop III, Barcelona, Spain, 21/11/2019

0.100

Amplitude 0.010

0.001

10

duration (min)

100

In Relative Flux

Simulations – Flare injection

^{*} apply flare template shape $\rightarrow \tau_{rise}, \tau_{decay}$

S.Raetz

 Time (t_{1/2})
 Time (t_{1/2})

 PLATO STESCI Workshop III, Barcelona, Spain, 21/11/2019

2 3

4

5

6

0

0.2

0.0

-1

17 | Beate Stelzer

Simulations – Flare recovery

FIRST RESULTS:

- * 17 % of injected flares recovered with detection algorithm No.2
- * short flares recovered (down to $\tau \sim 3$ min)
- * low-amplitude flares missed (for $A_{peak} < 2\%$)
- * recovery complete to 90% for $\tau > 20$ min and $A_{peak} > 1\%$

Science with stellar flares: **Rotation-activity relation**

Example: M dwarfs observed in K2 mission

\rightarrow

* A clear bimodality with high activity for P<10 d and low activity for P>10d in all activity diagnostics:

- -- flares.
- -- rotational modulation.
- -- residual "noise", S_{flat}

^{2.0} Stelzer et al. (2016); Raetz et al. (2019)

0.5

1.0

 $\log P_{rot}[d]$

1.5

2.0

0.0

0.25

0.20

0.15

0.10

0.05

0.00

-0.5

N_{flares} / day

Activity related photometric variability across spectral type

Table 5: Mean values and standard deviations measured for photome	etric
activity diagnostics in the Kepler / XMM-Newton sample.	F

rreasing riability	SpT	$N_{ m f}/day$	$\log R_{ m per}$ [%]	$S_{ m ph}$ [ppm]	
	A	0.001	-1.02	$3.47\cdot 10^2$	
	F	0.01	-0.74	$1.10\cdot 10^3$	
	G	0.02	0.01	$5.39 \cdot 10^3$	0
	Κ	0.04	0.25	$8.69\cdot 10^3$	0
va Va	Μ	0.12	0.46	$1.10\cdot 10^4$	
		flare rate	amplitude of rot.mod.	STDDEV (dominated by rot.mod.)	
Pizzoca	ro et al.	(2019)			

Mathematisch-Naturwissenschaftliche Fakultät

FB Physik, Institut für Astronomie & Astrophysik

Thank you !

Science with stellar flares: Flare energy number distributions

 \rightarrow

- * Slow rotators have flares of lower energy than fast rotators
- * Slow rotators have less flares than fast rotators

Raetz et al., in prep.

Science with stellar flares: Flare energy number distributions

Kepler / XMM-Newton sample (Pizzocaro et al. 2019):

Kepler / XMM-Newton sample (Pizzocaro et al. 2019):

