SELECTION AND VERIFICATION OF SEISMIC DATA
OR HOW TO COMPARE APPLES AND BANANAS
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HOW DOES IT ALL WORK?
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SO

We will receive R, M and ages with uncertainties (PDFs) from:
WP 124 (Seismic diagnostics),
WP 125 100 (Scaling Laws)
WP 125 200 (Incorporation Classical Parameters)

From WP 122 we will also receive effective temperature, luminosity and composition, but these will first have to be
consolidated by WP 125 200, as will R, M and ages. We will also receive input from WP 125 400 and WP 125 500.

Based on this we need

To produce the final set of stellar properties (should we use parameters from individual frequencies, from
scaling laws or classical parameters)

Quality control (can the provided uncertainties be trusted)
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Input Output

* R(seis), M(seis), Age(seis) e R(final)
® R(scal), M(scal), Age(scal) e M(final)

¢ R(clas), M(clas), Age(clas) * Age(final)
T, L, [Fe/H] T, L[Fe/H]
* Benchmark stars

And a flag
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SUMMARY OF SESSION 4

l:l Pre-processing (not a part of LAM) I:I Run-time analysis (LAM or part of SAS) l:l Other WP

WP 122100 WP 122200 WP 121100 WP 124000
| NLTE departures || Model atmospheres | | Stellar structure | WP 125300 WP 122500
MULTI Marcs | Spectra || Parallaxes " Photometry || A/Seismology || Extinction

<3D> models ST Gaia RVS Gaia Gaia PLATO Dust maps
Full 3D del Gaia-ESO 2MASS TESS
ull 30 models or SESAM

4MOST WISE

- LAMOST Tycho
Asteroseismic
data (Vimax, 6V)
Payne training —>| Bayesian code
Asteroseismic PDF [==-=> Coarse grid Postgrlor PDF Ada;:_tive metsh N iterations
Spectroscopy PDF — refinemen

Photometry 1 PDF (SED, SBCR, IRFM...) | — Quality Control

Quality Assurance

Photometry 2 PDF (Mag + Distance) I — Automatic checks

Flags/metadata

Interferometry PDF SQL/FITS conversion

Tetr, log(g), [Fe/H], R, L, [age, mass], abundances, Vsini, Viac, Vimic, RV, extinction €
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SUMMARY OF SESSION 5

Accuracy of fits: Fractional difference Hound—Hare for 5 stars, 6 Hounds
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DIFFERENCE BETWEEN SCALLING LAWS AND MODELLING
OF INDIVIDUAL FREQUENCIES

Y N Av NP sv Y/ T \° ¢
v = () (an) (o) () o (em)
Yo Vmax,® Avg oVe Tetr o

PBjam very brief method:
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THE EXCLUSIVE WAY (DECISION TREE)
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Figure 13. Fractional differences in estimated radii, R, for analyses performed on the entire ensemble, with Av and vgax, the photometric (IRFM) Tegr and field [Fe/H]
values used as inputs. The plots show differences with respect to the BeSPP pipeline run with the GARSTEC grid run using model-calculated eigenfrequencies to
estimate the Av of each model in its grid. Gray lines mark the median 1o envelope of the grid-pipeline returned, formal ies. These lines are included to help
judge the fypical precision only. The bottom right-hand panel shows results from direct application of the scaling relations, the black lines showing the median 1o
envelope on the resulting uncertainties.
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THE INCLUSIVE WAY (ENSEMBLE LEARNING)

Linear opinion pool:
n
p(0) = Z w;p;(0),
i=1

where n is the number of methods (seis, scal, clas) of the PDF, p; (@) is the PDF of method i. w; is a
weight we assign to each method. E.i. we might want to say that we trust the seismic results from
individual frequencies mores than the scaling relations or ...
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THE INCLUSIVE WAY (ENSEMBLE LEARNING)

Logarithmic opinion pool:
n
p@ =k | [m(o)~
i=1

where k is a normalizing constant, n is the number of method (seis, scal, clas) of the PDF, p;(0) is the
PDF of method i. w; is a weight we assign to each method. E.i. we might want to say that we trust the
seismic results from individual frequencies mores than the scaling relations or ...
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THE INCLUSIVE WAY (ENSEMBLE LEARNING)

Bayesian approach
p* =p0lg1, -, gn) x D(O)L(g1, -, gnl0),

where p* is the updated a prior distribution p(8). g1, ..., gn is the PDF of 8 provided by model n and L
represents the likelihood function associated with the PDF of model n.

The problem is however, that L should account for the precision and bias of the individual PDFs and
should also be able to model the dependences among the different PDFs.
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THE INCLUSIVE WAY (ENSEMBLE LEARNING)

The copula approach

POIfis ) < cl1 = F2(0), .. 1= Fu(®] | [ i)
i=1

where c represents the copula density function and F;(0) is the cumulative distribution function and
£:(8) is the continuous density of model i.

Here the evaluation of the individual models is separated from the evaluation of the dependences
between the different models.
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QUALITY CONTROL

That is simple...

Flag all results were seis, scal and clas differ by more than one sigma defined by the PDF

This could also include results from e.g. binary stars, gyrochronology, filcker etc.

Maybe we should define a decision tree on what to do if a star is flaged?
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