Using Patched Models

Andreas C. S. Jørgensen

University of Birmingham

Collaborators: Andrea Miglio, Achim Weiss, George Angelou, Jakob R. Mosumgaard, Jørgen Christensen-Dalsgaard, Victor Silva Aguirre

PLATO STESCI Workshop III, Barcelona, November 2019

Max-Planck-Institut für Astrophysik

The surface effect

Structural surface effect (Simplified surface layers, MLT)

+

Modal surface effect (Adiabatic frequency calculations)

Aims of 1D vs. 3D simulations

Stellar evolution codes:

Holistic picture of evolution

1) 1D, *T*(*r*,*t*)

2) MLT, nuclear time-scale

Simplified *superadiabatic* layers

Aims of 1D vs. 3D simulations

Stellar evolution codes:

Holistic picture of evolution

1) 1D, *T*(*r*,*t*)

2) MLT, nuclear time-scale

Simplified *superadiabatic* layers

Aims of 1D vs. 3D simulations

Stellar evolution codes:

Holistic picture of evolution

1) 1D, *T*(*r*,*t*)

2) MLT, nuclear time-scale

Simplified *superadiabatic* layers

3D simulations are not holistic:

Mm, dynamical time-scale

[R. Collet]

3D hydrodynamic models of convection

3D hydrodynamic models of convection

3D hydrodynamic models of convection

Patching:

Substitution of the outermost layers of the *final* 1D stellar model with mean 3D simulations

Induced frequency shift

[Sonoi et al. (2015)]

Induced frequency shift

[[]Jørgensen et al. (2019)]

Parameterizations & bias

Coupling:

The stellar evolution code uses 3D simulations directly to set the **outer boundary conditions** and appends these at **every time-step**

Turbulent pressure: $P_{turb} \propto \rho v^2$

[Jørgensen & Weiss (2019)]

Continuous structures

Frequencies (reduced Γ_1 **approximation)**

Frequencies (reduced Γ_1 **approximation)**

Evolution tracks

[see Jørgensen & Weiss (2019), Jørgensen & Angelou (2019), and Mosumgaard et al. (2019)]

The structural inadequacies that underlie the surface effect affect **the evolution tracks** through the outer boundary conditions

Summary

- We overcome the structural surface effect by including 3D simulations.
- More realistic outer boundary conditions affect the evolution tracks.
- These models are also a diagnostic tool for surface correction relations.

How to deal with the surface effect:

Kjeldsen et al. 2008 (biased)

Ball & Gizon 2014

Correcting frequencies -

Sonoi et al. 2015

(evolution not corrected) (\checkmark)

(biased)

Circumventing problem \sim Ratios (r01, r02...) (evolution not corrected) (\checkmark)

Correcting structurePatching, final model (evolution not corrected) \bigcirc Coupling, all time-steps (not enough 3D sim.)($\checkmark \checkmark \checkmark$)

Hare & hound exercise

[Jørgensen et al. (2019)]

Parameterizations of patched models

[Trampedach et al. (2014)]

[Mosumgaard et al. (2018)]

Comparison with parameterization

