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There are still many puzzling hadrons out there 

• XYZ, charmonium, bottomonium, Roper…

Nonperturbative QCD dynamics present in relevant processes: 

• CP violating decays:  ,  , K → ππ K → πππ D → ππ, KK̄, (ππππ), . . .

First-principles nuclear interactions.

Quantum Chromodynamics

4
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This Talk:
How to extract S-matrix elements from Lattice QCD: 

• Two-particle scattering in finite volume 

• Lattice results for three particles

5
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Lattice QCD is the state-of-the-art treatment of  the strong interaction at hadronic energies

• Euclidean time: action has statistical meaning

𝒵 = ∫ DψDψ̄DAe−SE(ψ,ψ̄,Aμ)

lattice spacing

a

Uμ = eiaAμ
gauge 
links

• Discretize gauge fields and fermion fields: 

Under control but technical  

(e.g., discretization effects and continuum limit)

→

• Compute correlation functions

⟨𝒪(t)𝒪(0)⟩ =
1
𝒵 ∫ DψDψ̄DA 𝒪(t)𝒪(0)e−S(ψ,ψ̄,Aμ)
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C(t) = ⟨𝒪(t)𝒪(0)⟩ = ∑
n

⟨0 |𝒪(t) |n⟩⟨n |𝒪(0) |0⟩

= ∑
n

⟨0 |𝒪(0) |n⟩
2
e−Ent

Lattice QCD Basics (II)

8

A0e−E0tt → ∞

Multiple operators to obtain several energy levels  

The Spectrum

E0

E1

E2

E3

Hörz, Hanlon [arXiv:1905.04277]

𝒪 ∼ π+π+

Mπ=200 MeV
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  Free scalar particles in finite volume 
with periodic BC

⃗p =
2π
L

(nx, ny, nz)

Two particles: E = 2 m2 +
4π2

L2
⃗n 2

Interactions change the spectrum: 
it can be treated as a perturbation

The energy shift of  the two-particle ground state  
is related to the  scattering amplitude2 → 2

Ground state to leading order

E2 − 2m = ⟨ϕ( ⃗0 )ϕ( ⃗0 ) |HI |ϕ( ⃗0 )ϕ( ⃗0 )⟩

ΔE2 =
ℳ2(E = 2m)

8m2L3
+ O(L−4)

[Huang, Yang, 1958]

In general a problem of  

Quantum Field Theory  

in finite volume



/24

The Lüscher Formalism 

11

A new field was opened by M. Lüscher in ‘86

finite-volume  
spectrum of  
two identical  

scalars

s-wave 
scattering  
amplitude



/24

The Lüscher Formalism 

11

A new field was opened by M. Lüscher in ‘86

finite-volume  
spectrum of  
two identical  

scalars

s-wave 
scattering  
amplitude

Hot topic in  
lattice QCD



/24

The Lüscher Formalism 

11

A new field was opened by M. Lüscher in ‘86

finite-volume  
spectrum of  
two identical  

scalars

s-wave 
scattering  
amplitude

Hot topic in  
lattice QCD

Fully general formalism exists up to date:

• Multichannel, non-identical  scattering for  
  particles with spin in all partial waves. Including 
  for weak decays, such as  (Lellouch-Lüscher)

2 → 2

K → ππ

• Many people have contributed over the years:

Rummukainen and Gottlieb 
Kim, Sachrajda and Sharpe                 
Göckeler, Horsley, Lage, Meißner, Rakow, Rusetsky, Schierholz, Zanotti 
Briceño
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Quantization Condition(I)
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⟶ ∫ d3k + ∑⃗
k

− ∫ d3k

In order to derive the full relation, consider the finite-volume correlator:

[à la Kim, Sachrajda, Sharpe] 

CL(E, ⃗P ) = ∫ eiPx⟨𝒪(x) |𝒪(0)⟩ = 𝒪 𝒪 𝒪 𝒪+ B2 𝒪 𝒪B2+ B2 + ⋯

Skeleton expansion

Bethe-Salpeter Kernels

B2 + + + ⋯=

Only exponentially  
small effects in L

∑⃗
k

Finite-volume 
sums

CL(E, ⃗P ) = C∞(E, ⃗P ) + A† 1
𝒦2 + F−1

A + O(e−mL)

ℳ−1
2 = 𝒦−1

2 − i s − 2m2

Known kinematic 
function

1. Separation of  finite-volume effects 

2.  Resumation of  diagrams
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Quantization Condition(II)

13

CL(E, ⃗P ) = = C∞(E, ⃗P ) + A† 1
𝒦2 + F−1

A + O(e−mL)some algebra …

det [𝒦2(En) + F−1(En, ⃗P , L)] = 0
Scattering  
K-Matrix

Known kinematic 
function

Two-particle Quantization Condition

“QC2”! It holds below Ecm < 4m

Finite-volume states appear  
when the correlation function 

 has a pole
𝒦ℓ

2 =
16π s

q2ℓ+1 cot δℓ

K-matrix parametrized  
in terms of  phase shift
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Two pions in s-wave one 
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a phase 
shift  
point
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Isospin-2 ππ scattering

15

s-wave d-wave

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC) ] 

Mπ=139 MeV

fit to experiment

Very prolific field! 

 ρ, coupled channels…
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Quantization Condition (I)

17

det [𝒦df,3(E) + F−1
3 (E, ⃗P , L)] = 0

Three-particle Quantization Condition 
for identical scalars with G-parity

Matrix indices are more complicated: 

[  of  the spectator] x [  of  the “pair”]⃗k ℓm

                 is real, divergence-free. It is an  

intermediate cutoff-dependent quantity with 

the symmetries of  the physical amplitude

𝒦df,3

            depends on  kinematical functions 

and on the two-to-two scattering amplitude

F3

Truncation: 
neglect higher   +  cutoff  functionℓ

Recovering the physical 
amplitude requires a further step 

[Hansen, Sharpe]
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1.  and    parametrize interactions. 

They can be obtained from the spectrum

𝒦2 𝒦df,3

[Hansen, Sharpe]

Alternative approaches:  
[Mai, Döring], [Hammer, et al.]
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E0

E1

E2

E3

2π and 3π 
Spectrum 1.  and    parametrize interactions. 

They can be obtained from the spectrum

𝒦2 𝒦df,3

[Hansen, Sharpe]

Alternative approaches:  
[Mai, Döring], [Hammer, et al.]

2. Solve integral equations to obtain 
the physical three-to-three amplitude

𝒦2, 𝒦df,3

Physical 3->3  
amplitude

ℳ3
Integral 
equations

Derived by [Hansen, Sharpe]

Solved in [Briceño et al] , [Hansen et al.], [Jackura et al.]

det [𝒦2 + F−1
2 ] = 0

2π 

det [𝒦df,3 + F−1
3 ] = 0

3π 
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three-π+ energies

Mπ=200 MeV

[Hörz,Hanlon (PRL)]

First full analysis of  the finite-
volume  spectrum of  2π+ and 3π+!
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Fit results

20

𝒦df,3Parametrize              including only s-wave interactions: 

𝒦df,3 = 𝒦iso,0
df,3 + 𝒦iso,1

df,3 ( s − 9M2

9M2 )

q
M

cot δ0 =
sM

s − z2
2

(B0 + B1q2 + ⋯)
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Fit results
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𝒦df,3

1. 2σ evidence for  .𝒦df,3 ≠ 0

2. Some tension with ChPT.
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Chiral dependence 

21

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC) ] 

On a later article, the chiral dependence of   has been studied, including physical pions.𝒦df,3

see also other studies: 
[ Mai et al., Culver et al. ] 

𝒦df,3 = 𝒦iso,0
df,3 + 𝒦iso,1

df,3 ( s − 9M2

9M2 )
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On a later article, the chiral dependence of   has been studied, including physical pions.𝒦df,3

Tension with ChPT remains

Mπ=139 MeV

Constant term seems well-behaved

Mπ=340 MeV

Alre
ady m

aking  

summary plots 

see also other studies: 
[ Mai et al., Culver et al. ] 

𝒦df,3 = 𝒦iso,0
df,3 + 𝒦iso,1

df,3 ( s − 9M2

9M2 )
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Two- and three-kaons

22

Preliminary!

[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe (in preparation)] 

Other simple systems can also be studied: 2K+ & 3K+

Many energy levels that allow for s- and d-wave interactions to be extracted! 
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Two- and three-kaons

22

Preliminary!

prediction from QC3[Blanton, Hanlon, Hörz, Morningstar, FRL, Sharpe (in preparation)] 

Other simple systems can also be studied: 2K+ & 3K+

Many energy levels that allow for s- and d-wave interactions to be extracted! 
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1. Lattice studies of  3π resonances (ω, h1) 
[Hansen, FRL, Sharpe, arXiv:2003.10974] 

2. Generalizing the formalism for generic two- and three- particle systems, 
   (e.g. nucleons, Roper resonance) 

3. Formalism for three-particle decays, such as   , K → 3π γ → 3π

4. Beyond three particles!

Thanks! 


