Three-particle scattering amplitudes from Lattice QCD

Fernando Romero-López University of Valencia

fernando.romero@uv.es

Valencia, 15th Dec

IFIC people

Jorge Baeza-Ballesteros Pilar Hernández

Three-particle people

Tyler Blanton Raúl Briceño Drew Hanlon Max Hansen Ben Hörz Steve Sharpe

VniverSitat de València

Bonn Lattice Group

Mathias Fischer Bartek Kostrzewa Liuming Liu Akaki Rusetsky Nikolas Schlage Martin Ueding Carsten Urbach

in **V**isiblesPlus

Quantum Chromodynamics

4 /24

Towards the GCD S-Matrix

5 /24

O Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

C Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

Euclidean time: action has statistical meaning $\mathcal{Z} = \left[D\psi D\bar{\psi} DAe^{-S_E(\psi,\bar{\psi},A_\mu)} \right]$

O Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

Euclidean time: action has statistical meaning $\mathcal{Z} = \int D\psi D\bar{\psi} DAe^{-S_E(\psi,\bar{\psi},A_\mu)}$

Discretize gauge fields and fermion fields:

 \rightarrow Under control but technical

(e.g., discretization effects and continuum limit)

O Lattice QCD is the state-of-the-art treatment of the strong interaction at hadronic energies

Euclidean time: action has statistical meaning $\mathcal{Z} = \int D\psi D\bar{\psi} DAe^{-S_E(\psi,\bar{\psi},A_\mu)}$

Discretize gauge fields and fermion fields:

 \rightarrow Under control but technical

(e.g., discretization effects and continuum limit)

Compute correlation functions

0

 $C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle = \sum \langle 0 | \mathcal{O}(t) | n \rangle \langle n | \mathcal{O}(0) | 0 \rangle$

In Lattice QCD, we measure energy levels and matrix elements: "Spectral decomposition"

- $= \sum \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^2 e^{-E_n t}$

0

 $C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle = \sum \langle 0 | \mathcal{O}(t) | n \rangle \langle n | \mathcal{O}(0) | 0 \rangle$

In Lattice QCD, we measure energy levels and matrix elements: "Spectral decomposition"

 $= \sum \left| \langle 0 | \mathcal{O}(0) | n \rangle \right|^2 e^{-E_n t} \xrightarrow{t \to \infty} A_0 e^{-E_0 t}$

O In Lattice QCD, we measure energy levels and matrix elements: "Spectral decomposition"

O Multiple operators to obtain several energy levels

The Spectrum

$$\langle 0 | \mathcal{O}(0) | n \rangle \Big|^2 e^{-E_n t} \xrightarrow{t \to \infty} A_0 e^{-E_0 t}$$

10/24

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n}^2$$

10/24

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$= 2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}^2$$

Interactions change the spectrum: it can be treated as a perturbation

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$= 2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}^2$$

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $\underline{E}_2 - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $\Delta E_2 = \frac{\mathcal{M}_2(E=2m)}{8m^2L^3} + O(L^{-4})$ [Huang, Yang, 1958]

$$\overrightarrow{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Two particles: E =

$$= 2\sqrt{m^2 + \frac{4\pi^2}{L^2}} \overrightarrow{n^2}^2$$

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $E_2 - 2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$ $\Delta E_2 = \frac{\mathscr{M}_2(E = 2m)}{8m^2 L^3} + O(L^{-4})$ [Huang, Yang, 1958]

The energy shift of the two-particle ground state is related to the $2\to 2$ scattering amplitude

Interactions change the spectrum: it can be treated as a perturbation

d state to leading order

 $2m = \langle \phi(\vec{0})\phi(\vec{0}) | \mathbf{H}_{\mathbf{I}} | \phi(\vec{0})\phi(\vec{0}) \rangle$

$$E_2 = \frac{\mathscr{M}_2(E=2m)}{8m^2L^3} + O(L^{-4})$$

[Huang, Yang, 1958]

The energy shift of the two-particle ground state is related to the $2 \rightarrow 2$ scattering amplitude

O A new field was opened by M. Lüscher in '86

finite-volume spectrum of two identical scalars

s-wave scattering amplitude

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

O A new field was opened by M. Lüscher in '86

finite-volume spectrum of two identical scalars

s-wave scattering amplitude

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

• A new field was opened by M. Lüscher in '86

- Fully general formalism exists up to date:
 - Multichannel, non-identical $2 \rightarrow 2$ scattering for particles with spin in all partial waves. Including for weak decays, such as $K \to \pi \pi$ (Lellouch-Lüscher)
 - Many people have contributed over the years:
 - **Rummukainen and Gottlieb**
 - Kim, Sachrajda and Sharpe
 - Göckeler, Horsley, Lage, Meißner, Rakow, Rusetsky, Schierholz, Zanotti
 - Briceño

Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories

II. Scattering States

M. Lüscher

Theory Division, Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany

11/24

 $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle \right| =$

[à la Kim, Sachrajda, Sharpe]

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\underbrace{\mathcal{O}}_{++} \underbrace{$

[à la Kim, Sachrajda, Sharpe]

 $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} + \mathcal{O} + \mathcal{O} + \mathcal{O} \right) \right|$

[à la Kim, Sachrajda, Sharpe]

Skeleton expansion

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} \right) + \left(\mathcal{$

[à la Kim, Sachrajda, Sharpe]

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} \right) + \left(\mathcal{$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

Skeleton expansion $C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} + \mathcal{O} + \mathcal{O} + \mathcal{O} \right) \right|$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

Finite-volume sums

In order to derive the full relation, consider the finite-volume correlator:

$C_L(E, \overrightarrow{P}) = \int e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\underbrace{\mathcal{O}(x)}_{i=1}^{i=1} \mathcal{O}(x) + \underbrace{\mathcal{O}(x)}_{$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

1. Separation of finite-volume effects

2. Resumation of diagrams

Skeleton expansion

 $= + + + \cdots$

Finite-volume sums

In order to derive the full relation, consider the finite-volume correlator:

$C_L(E, \overrightarrow{P}) = \left| e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\mathcal{O} \right) + \left(\mathcal{$

[à la Kim, Sachrajda, Sharpe]

Only exponentially small effects in L

Separation of finite-volume effects

2. Resumation of diagrams

 $C_L(E, \overrightarrow{P}) = \text{some algebra } \dots = C_{\infty}(E, \overrightarrow{P}) + A^{\dagger} \frac{1}{\mathscr{K}_2 + F^{-1}} A + O(e^{-mL})$

has a pole

$$\underline{E_n} + F^{-1}(\underline{E_n}, \overrightarrow{P}, L) = 0$$

Two pions in s-wave $\mathscr{K}_{2}^{s-wave}(E_{n}) = \frac{-1}{F_{00}(E_{n}, \overrightarrow{P}, L)}$

Two pions in s-wave $\mathscr{K}_{2}^{s-wave}(E_{n}) =$ $F_{00}(E_n, \overrightarrow{P}, L)$ [Hörz, Hanlon (PRL)] _____ $\frac{E_{\rm cm}}{m_{\pi}}$ 4.0 ······ 4 3.5÷ ------3.0€ -----₽----• 2.52.0 ----- $\times 0 \times 0$

Swave

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

)		ππ	••

	Jan K		

Three-particle Quantization Condition for identical scalars with G-parity det $|\mathcal{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L)| = 0$ [Hansen, Sharpe]

Quantization Condition Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \overrightarrow{P}, L)| = 0$ [Hansen, Sharpe]

Quantization Condition Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L)| = 0$ [Hansen, Sharpe]

Truncation: neglect higher ℓ + cutoff function

Quantization Condition Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \overrightarrow{P}, L)| = 0$ [Hansen, Sharpe]

 \circ $\mathcal{K}_{df.3}$ is real, divergence-free. It is an intermediate cutoff-dependent quantity with the symmetries of the physical amplitude

Quantization Condition Three-particle Quantization Condition for identical scalars with G-parity det $\left| \mathscr{K}_{df,3}(E) + F_3^{-1}(E, \vec{P}, L) \right| = 0$ [Hansen, Sharpe]

• $\mathcal{K}_{df,3}$ is real, divergence-free. It is an intermediate cutoff-dependent quantity with the symmetries of the physical amplitude

 H_3 depends on kinematical functions and on the two-to-two scattering amplitude

Quantization Condition Three-particle Quantization Condition for identical scalars with G-parity det $|\mathscr{K}_{df,3}(E) + F_3^{-1}(E, \overrightarrow{P}, L)| = 0$ [Hansen, Sharpe]

• $\mathcal{K}_{df,3}$ is real, divergence-free. It is an intermediate cutoff-dependent quantity with the symmetries of the physical amplitude

 F_3 depends on kinematical functions and on the two-to-two scattering amplitude

> **Recovering the physical** amplitude requires a further step

Truncation: neglect higher ℓ + cutoff function

\mathscr{K}_2 and $\mathscr{K}_{df,3}$ parametrize interactions. They can be obtained from the spectrum

[Hansen, Sharpe]

\mathscr{K}_2 and $\mathscr{K}_{df,3}$ parametrize interactions. They can be obtained from the spectrum

2TT and 3TT $\det\left[\mathscr{K}_2 + F_2^{-1}\right] = 0$ Spectrum E_0

1. \mathscr{K}_2 and $\mathscr{K}_{df,3}$ parametrize interactions. They can be obtained from the spectrum

[Hansen, Sharpe]

2T and 3T $\det\left[\frac{\mathscr{K}_{2}}{2} + F_{2}^{-1}\right] = 0$ Spectrum det $\left[\frac{\mathcal{K}_{df,3} + F_3^{-1}}{\mathcal{K}_{df,3} + F_3^{-1}} \right] = 0$ E_0

1. \mathscr{K}_2 and $\mathscr{K}_{df,3}$ parametrize interactions. They can be obtained from the spectrum

[Hansen, Sharpe]

2TT and 3TT $\det\left[\mathscr{K}_{2} + F_{2}^{-1}\right] = 0$ Spectrum det $\left[\frac{\mathcal{K}_{df,3} + F_3^{-1}}{\mathcal{K}_{df,3} + F_3^{-1}} \right] = 0$

Solve integral equations to obtain the physical three-to-three amplitude

Derived by [Hansen, Sharpe] Solved in [Briceño et al], [Hansen et al.], [Jackura et al.]

1. \mathscr{K}_2 and $\mathscr{K}_{df,3}$ parametrize interactions. They can be obtained from the spectrum

[Hansen, Sharpe]

Physical 3->3 amplitude $\mathcal{K}_2, \mathcal{K}_{df,3}$ Integral equations

[Hörz, Hanlon (PRL)]

[Hörz, Hanlon (PRL)]

I = 3 three-pion scattering amplitude from lattice QCD

Tyler D. Blanton,¹,^{*} Fernando Romero-López,²,[†] and Stephen R. Sharpe¹,[‡] ¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA ²Instituto de Física Corpuscular, Universitat de València and CSIC, 46980 Paterna, Spain (Dated: February 4, 2020)

[Hörz, Hanlon (PRL)]

I = 3 three-pion scattering amplitude from lattice QCD

Tyler D. Blanton,¹, * Fernando Romero-López,², † and Stephen R. Sharpe¹, ‡ ¹Physics Department, University of Washington, Seattle, WA 98195-1560, USA ²Instituto de Física Corpuscular, Universitat de València and CSIC, 46980 Paterna, Spain (Dated: February 4, 2020)

First full analysis of the finitevolume spectrum of $2\pi^+$ and $3\pi^+$!

$$\frac{q}{M}\cot\delta_{0} = \frac{\sqrt{sM}}{s - z_{2}^{2}} \left(B_{0} + B_{1}q^{2} + \cdots\right)$$
$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^{2}}{9M^{2}}\right)$$

 Fit
 B_0 B_1 z_2^2/M^2 $M^2 \mathcal{K}_{df,3}^{iso,0}$ $M^2 \mathcal{K}_{df,3}^{iso,1}$ χ^2/dof Ma_0 $M^2 ra_0$

 5
 -11.1(7)
 -2.4(3)
 1 (fixed)
 550(330)
 -280(290)
 26.04/(22-4)
 0.090(5)
 2.57(8)

 $\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z_2^2} \left(B_0 + B_1 q^2 + \cdots\right)$ $\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$

 $\frac{\text{Fit} \quad B_0 \quad B_1 \quad z_2^2/M^2 \quad M^2 \mathcal{K}_{\text{df},3}^{\text{iso},0} \quad M^2 \mathcal{K}_{\text{df},3}^{\text{iso},1} \quad \chi^2/\text{dof} \quad Ma_0 \quad M^2 ra_0}{5 \quad -11.1(7) \quad -2.4(3) \quad 1 \text{ (fixed)} \quad 550(330) \quad -280(290) \quad 26.04/(22-4) \quad 0.090(5) \quad 2.57(8)}$

$$\frac{q}{M}\cot\delta_{0} = \frac{\sqrt{sM}}{s - z_{2}^{2}} \left(B_{0} + B_{1}q^{2} + \cdots\right)$$
$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^{2}}{9M^{2}}\right)$$

1. 2σ evidence for $\mathscr{K}_{df,3} \neq 0$.

Fit B_0 B_1 z_2^2/M^2 $M^2 \mathcal{K}_{df,3}^{iso,0}$ $M^2 \mathcal{K}_{df,3}^{iso,1}$ χ^2/dof Ma_0 $M^2 ra_0$ 5-11.1(7)-2.4(3)1 (fixed)550(330)-280(290)26.04/(22-4)0.090(5)2.57(8)

 $\frac{q}{M}\cot\delta_0 = \frac{\sqrt{sM}}{s - z_2^2} \left(B_0 + B_1 q^2 + \cdots\right)$ $\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$

1. 2σ evidence for $\mathscr{K}_{df,3} \neq 0$.

2. Some tension with ChPT.

0 [Fischer, Kostrzewa, Liu, <u>FRL</u>, Ueding, Urbach (ETMC)]

On a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathscr{K}_{df,3} = \mathscr{K}_{df,3}^{iso,0} + \mathscr{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

0 [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

On a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathscr{K}_{df,3} = \mathscr{K}_{df,3}^{iso,0} + \mathscr{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

21/24

Chiral d

0 [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

On a later article, the chiral dependence of $\mathscr{K}_{df,3}$ has been studied, including physical pions.

$$\mathscr{K}_{df,3} = \mathscr{K}_{df,3}^{iso,0} + \mathscr{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

Chiral du

[Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach (ETMC)]

Constant term seems well-behaved

old O On a later article, the chiral dependence of $\mathscr{K}_{df.3}$ has been studied, including physical pions.

$$\mathcal{K}_{df,3} = \mathcal{K}_{df,3}^{iso,0} + \mathcal{K}_{df,3}^{iso,1} \left(\frac{s - 9M^2}{9M^2}\right)$$

23/24

1. Lattice studies of 3π resonances (ω , h_1) [Hansen, FRL, Sharpe, arXiv:2003.10974]

24**/24**

1. Lattice studies of 3π resonances (ω , h_1) [Hansen, FRL, Sharpe, arXiv:2003.10974]

Generalizing the formalism for generic two- and three- particle systems, (e.g. nucleons, Roper resonance)

- Lattice studies of 3π resonances (ω , h_1) [Hansen, FRL, Sharpe, arXiv:2003.10974]
- 2. (e.g. nucleons, Roper resonance)
- **3.** Formalism for three-particle decays, such as $K \to 3\pi$, $\gamma \to 3\pi$

- Lattice studies of 3π resonances (ω , h_1) [Hansen, FRL, Sharpe, arXiv:2003.10974]
- 2. (e.g. nucleons, Roper resonance)
- **3.** Formalism for three-particle decays, such as $K \to 3\pi$, $\gamma \to 3\pi$

- Lattice studies of 3π resonances (ω , h_1) [Hansen, FRL, Sharpe, arXiv:2003.10974]
- 2. (e.g. nucleons, Roper resonance)
- **Solution** Formalism for three-particle decays, such as $K \to 3\pi$, $\gamma \to 3\pi$
- **4**. Beyond three particles!

- Lattice studies of 3π resonances (ω , h_1) [Hansen, FRL, Sharpe, arXiv:2003.10974]
- 2. (e.g. nucleons, Roper resonance)
- **Solution** Formalism for three-particle decays, such as $K \to 3\pi$, $\gamma \to 3\pi$
- **4**. Beyond three particles!

