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Plan

— Insights into the nature of the Zb(10610) and Zb(10650) 
from !(10860)→!(nS) "+"-   (n=1,2,3)

— Zb(10610) and Zb(10650) from decays:  ⌥(10860) ! ⇡Z(0)
b ! ⇡B(⇤)B̄⇤

<latexit sha1_base64="PP/Us0gkTHZ/rC36ZPgSjujbLv4="></latexit>

⌥(10860) ! ⇡Z(0)
b ! ⇡⇡hb(mP )
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— Predictions for their spin partner states and line shapes
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Zb(10610) and Zb(10650) from Υ(10860) decays at Belle 
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BB̄⇤B⇤B̄⇤

PDG:

Peaks near BB* and B*B*
thresholds in various channels:

BB̄⇤, B⇤B̄⇤
<latexit sha1_base64="afviaohnrwqTEK2nhtD0AMSb5os="></latexit>

⇡±hb(mP ), ⇡±⌥(nS)
<latexit sha1_base64="/9MBmOmTNXx1XvySDgj4/oNPb/U="></latexit>

dominant decays to open flavour channels !

!

!

Introduction Theoretical framework Data analysis for Zb’s Predictions for WbJ ’s Conclusions

Two-pion decays of ⌥(10860)

⌥(10860)

⇡ ⇡

⌥(nS), hb(mP )

n = 1, 2, 3n = 1, 2, 3
m = 1, 2

Br[⌥(10860) ! ⇡⇡hb(mP )] ' Br[⌥(10860) ! ⇡⇡⌥(nS)]

Heavy quark spin flip No spin flip

Huge HQSS violation?!

Belle 2011

3 / 19

Charged modes ⟹
Zb

(') must be made of ≥4 quarks

BB̄⇤B⇤B̄⇤

⟹ a strong hint for a large molecular component in Zb(10610)/Zb(10650)
Bondar et al. PRD 84, 054010 (2011)

MZb = 10607.2± 2.0 MeV, �Zb = 18.4± 2.4 MeV

MZ0
b
= 10652.2± 1.5 MeV, �Z0

b
= 11.5± 2.2 MeV

<latexit sha1_base64="tNQ0uYj+n1GD1k5opYZUTHMaZvM="></latexit>

Bondar et al.   PRL108, 122001(2012)
Garmash et al.PRL116, 212001(2016)
                        PRD91, 072003 (2015) 



Zb(10610) and Zb(10650) from Υ(10860) decays by Belle 
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BB̄⇤B⇤B̄⇤

MZb = 10607.2± 2.0 MeV, �Zb = 18.4± 2.4 MeV

MZ0
b
= 10652.2± 1.5 MeV, �Z0

b
= 11.5± 2.2 MeV
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PDG: Bondar et al.   PRL108, 122001(2012)
Garmash et al.PRL116, 212001(2016)
                        PRD91, 072003 (2015) 

Peaks near BB* and B*B*
thresholds in various channels:

BB̄⇤, B⇤B̄⇤
<latexit sha1_base64="afviaohnrwqTEK2nhtD0AMSb5os="></latexit>

⇡±hb(mP ), ⇡±⌥(nS)
<latexit sha1_base64="/9MBmOmTNXx1XvySDgj4/oNPb/U="></latexit>

!

Charged modes ⟹

BB̄⇤B⇤B̄⇤

! Exp. analysis is made using a sum of Breit-Wigner amplitudes:

— reaction dependent,  no fits of all data simultaneously

How to improve?

— does not account for threshold behavior  
— naive coherent sum violates unitarity

Zb
(') must be made of ≥4 quarks



Fits to experimental  
line shapes Fits to lattice data

Coupled-Channel  
chiral EFT-based approach

 — unitary 
 — analytic 
— systematically 

improvable

Resonance parameters:  
poles and residues

Predictions for HQ  
spin partners Chiral Extrapolations

Nature of states

Roadmap for analysing near-threshold states



Chiral EFT approach at low energies

!   Elastic coupled-channel

☛

☛

typical soft scale Q is quite large because of coupled-channels

Weinberg power counting:  Weinberg (1991)

!   Similar to nuclear EFT ⇒ deuteron as proton-neutron bound state, … 
 review: Epelbaum, Hammer, Meißner

0
 ~  range of validity

Long range: OPE

+
           2 S-S wave LECs at O(Q0)

1 S-D wave LEC at O(Q2)

ptyp =
p
m � ' 500 MeV,

<latexit sha1_base64="xVKnwMP/CE0uO6C6ZuUTwrpN4kU="></latexit>

� = Ethr
B⇤B⇤ � Ethr

BB⇤ = m⇤ �m ⇡ 45 MeV
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V e↵
LO
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potential to a given order in Q/$h

=

Q

Imaginary part 
from inelastic channels

●  Amplitudes:  non-perturbative solutions of coupled-channel integral equations

HQSS:



!

! Input:  experimental distributions for 

⌥(10860) ! ⇡Z(0)
b ! ⇡↵ ↵ = BB̄⇤, B⇤B̄⇤, hb(1P )⇡, hb(2P )⇡

and branching fractions for ↵ = BB̄⇤, B⇤B̄⇤, hb(1P )⇡, hb(2P )⇡, ⌥(1S)⇡, ⌥(2S)⇡, ⌥(3S)⇡

ϒ(mS)"" distributions not yet included:  involve strong ""  FSI  (come to this later!)

Formalism for line shapes  ⌥(10860) ! ⇡Z(0)
b ! ⇡↵

⌥(3S) ! ⌥(1S)⇡⇡, ⌥(4S) ! ⌥(1S, 2S)⇡⇡— Recent calculations for 
 Chen et al. (2016-2017)

Uel = ++ B̄⇤
B̄⇤ B̄⇤

B̄⇤

B̄⇤ B̄⇤

B
B(⇤)

⌥(5S)

⇡⇡ ⇡
B(⇤) B(⇤)

Uinel = +
B̄⇤ B̄⇤

B̄⇤⇡B

⇡ ⇡

hb(mP ) hb(mP )

⇡⌥(5S)

Production amplitudes for the events dominated by the Zb’s poles:

☛ Inelastic source  ⌥(5S) ! hb(nP )⇡⇡ requires flip in the HQ spin ⟹ suppressed by HQSS

 Belle:  Bondar et al. (2012), Garmash et al. (2016)



Results:  pionless theory at LO

—consistent with the parameterisation
by   Guo et al. PRD 93, 074031 (2016)

— HQSS is preserved in the potentials

BB̄⇤
B⇤B̄⇤

hb(1P )⇡ hb(2P )⇡

BB̄⇤ thr. B⇤B̄⇤ thr. B⇤B̄⇤ thr.
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PRD 98, 074023 (2018)
our work: 



Inclusion of OPE : regulator dependence

we use sharp cutoff $ ∈ [0.8 GeV, 1.3 GeV] 15
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FIG. 7. The fitted line shapes for Scheme C (upper panel) and Scheme G (lower panel) in the elastic BB̄⇤ and inelastic
⇡hb(2P ) channels with sharp cut-o↵s 800 MeV (black long-dashed), 1000 MeV (blue dashed) and 1200 MeV (green dot-dashed),
respectively. The experimental data are from Refs. [1, 11].

the e↵ective inelastic channel is on, one arrives at a pair
of poles for each state: one for Im k

in

> 0 and one for
Im k

in

< 0 — the corresponding solutions are labeled by
“+” and “�”, respectively. For the Zb, the two resulting
poles on RS-II

+

and RS-II� are symmetric with respect
to the imaginary axis in the omega plane which results
in complex-conjugate solutions for the energies (see Table
IV). Unlike the Zb, the poles for the Z 0

b on RS-III� and
RS-IV

+

are slightly asymmetric due to coupled-channel
e↵ects. In any case, it is apparent that the poles obtained
in the full calculation, including inelastic channels, reside
in the vicinity of those found without inelastic channels,
that implies that the role played by the inelastic channels
is sub-leading in line with a molecular interpretation of
the Zb states.

The corresponding energies evaluated relative to the
relevant elastic threshold,

EZb = Mpole

Zb
�mB�mB⇤ , EZ0

b
= Mpole

Z0
b

�2mB⇤ , (44)

are listed in Table IV and are visualised in Figs. 8 and 9

(the errors in the poles position corresponds to a 1� de-
viation for the whole parameter list). Note that the sign
convention is such that positive energies refer to above-
thresholds poles — see definition (44).
The two poles for Fit A representing the results based

on S-wave contact interactions (shown as an up- (red)
and down-pointing (green) triangles in Figs. 8 and 9) are
essentially consistent with those obtained in Ref. [28] —
see Fig. 8 of the quoted paper. As one can see from Ta-
ble IV and from Figs. 8 and 9, the inclusion of the OEE
and especially the OPE and O(p2) contact interactions
in Fit G changes the poles position to some extent but
all the poles reside in the vicinity of the corresponding
thresholds. This result is consistent with the expectation
that the line shapes are controlled predominantly by the
poles position. Indeed, although the parameters of fits
A and one of our best fits (fit G) are very di↵erent (see
Tables II and III), fit G provides a better but still com-
parable description of the data as fit A, as one can see
from the line shapes shown in Fig. 5 and from the values
of �2/d.o.f. quoted in Table II. Thus, both fits describe
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FIG. 7. The fitted line shapes for Scheme C (upper panel) and Scheme G (lower panel) in the elastic BB̄⇤ and inelastic
⇡hb(2P ) channels with sharp cut-o↵s 800 MeV (black long-dashed), 1000 MeV (blue dashed) and 1200 MeV (green dot-dashed),
respectively. The experimental data are from Refs. [1, 11].

the e↵ective inelastic channel is on, one arrives at a pair
of poles for each state: one for Im k

in

> 0 and one for
Im k

in

< 0 — the corresponding solutions are labeled by
“+” and “�”, respectively. For the Zb, the two resulting
poles on RS-II

+

and RS-II� are symmetric with respect
to the imaginary axis in the omega plane which results
in complex-conjugate solutions for the energies (see Table
IV). Unlike the Zb, the poles for the Z 0

b on RS-III� and
RS-IV

+

are slightly asymmetric due to coupled-channel
e↵ects. In any case, it is apparent that the poles obtained
in the full calculation, including inelastic channels, reside
in the vicinity of those found without inelastic channels,
that implies that the role played by the inelastic channels
is sub-leading in line with a molecular interpretation of
the Zb states.

The corresponding energies evaluated relative to the
relevant elastic threshold,

EZb = Mpole

Zb
�mB�mB⇤ , EZ0

b
= Mpole

Z0
b

�2mB⇤ , (44)

are listed in Table IV and are visualised in Figs. 8 and 9

(the errors in the poles position corresponds to a 1� de-
viation for the whole parameter list). Note that the sign
convention is such that positive energies refer to above-
thresholds poles — see definition (44).
The two poles for Fit A representing the results based

on S-wave contact interactions (shown as an up- (red)
and down-pointing (green) triangles in Figs. 8 and 9) are
essentially consistent with those obtained in Ref. [28] —
see Fig. 8 of the quoted paper. As one can see from Ta-
ble IV and from Figs. 8 and 9, the inclusion of the OEE
and especially the OPE and O(p2) contact interactions
in Fit G changes the poles position to some extent but
all the poles reside in the vicinity of the corresponding
thresholds. This result is consistent with the expectation
that the line shapes are controlled predominantly by the
poles position. Indeed, although the parameters of fits
A and one of our best fits (fit G) are very di↵erent (see
Tables II and III), fit G provides a better but still com-
parable description of the data as fit A, as one can see
from the line shapes shown in Fig. 5 and from the values
of �2/d.o.f. quoted in Table II. Thus, both fits describe

without the SD contact term with the SD contact term

!  Cutoff independence require S-wave-to-D-wave contact term   to appear together with OPE
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%2=1.29"less:  LO CT’s

"ful 1: LO CT’s + OPE %2=0.95

Results:    LO contact terms (CT’s) + OPE

Residual effect from OPE results in a quantitative improvement of the fit

 !  S-wave-to-D-wave tensor forces 
from OPE are important

!  S-wave central OPE is weak   

PRD 98, 074023 (2018)

our work:  JHEP 1706, 158 (2017) 

our work: 
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— All LECs are extracted from the best fit 
including 1& errors

— Visible effect from OPE

— Natural suppression of higher-order terms

— Data are consistent with HQSS 
respecting interactions

B⇤B̄⇤ thr.
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— All LECs are extracted from the best fit 
including 1& errors

— Visible effect from OPE

— Natural suppression of higher-order terms

— Data are consistent with HQSS 
respecting interactions

B⇤B̄⇤ thr.

— Data: no pronounced coupled-channel 
structure around B*B* threshold.

Zb(10650) ! BB̄⇤
<latexit sha1_base64="rBn/wOjTN7Sc9/gwxYtzZMIzi8U="></latexit>

is suppressed
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Applications:  spin partners of Zb(10610)/Zb(10650)

WbJ : J = 0, 1, 2, PC = ++
<latexit sha1_base64="RJ+SXZQl59LnPNOZhIY6Ap14Vxk="></latexit>

PC = +�
<latexit sha1_base64="cHu1+Y9h1wKwn5sNOThv3HYJCaE=">AAACDXicbVDLSsNAFL2pr1pfUZduBqsgiCWpgm6EYjcuK9gHtKFMJpN26OTBzEQoIT/gxl9x40IRt+7d+TdO0y5q9cCFwzn3zp173JgzqSzr2ygsLa+srhXXSxubW9s75u5eS0aJILRJIh6Jjosl5SykTcUUp51YUBy4nLbdUX3itx+okCwK79U4pk6AByHzGcFKS33zCKFG2svfSQX1snqGrtEpmpfOsr5ZtipWDvSX2DNShhkaffOr50UkCWioCMdSdm0rVk6KhWKE06zUSySNMRnhAe1qGuKASifNV2boWCse8iOhK1QoV+cnUhxIOQ5c3RlgNZSL3kT8z+smyr9yUhbGiaIhmS7yE45UhCbRII8JShQfa4KJYPqviAyxwETpAEs6BHvx5L+kVa3Y55Xq3UW5djOLowgHcAgnYMMl1OAWGtAEAo/wDK/wZjwZL8a78TFtLRizmX34BePzB2yImys=</latexit>

Z(0)
b : J = 1,

<latexit sha1_base64="MhCuKL4zgIN1BPuK4ckQZieFsEU=">AAACBHicbVDLSsNAFJ3UV62vqMtuBotYQUpSBUUQim7EVQX7wDaGyWTSDp08nJkIJWThxl9x40IRt36EO//GaZuFth64cDjnXu69x4kYFdIwvrXc3PzC4lJ+ubCyura+oW9uNUUYc0waOGQhbztIEEYD0pBUMtKOOEG+w0jLGVyM/NYD4YKGwY0cRsTyUS+gHsVIKsnWi7d24qR3SXlvPz2F3fsYufDqDJoQHkBbLxkVYww4S8yMlECGuq1/dd0Qxz4JJGZIiI5pRNJKEJcUM5IWurEgEcID1CMdRQPkE2El4ydSuKsUF3ohVxVIOFZ/TyTIF2LoO6rTR7Ivpr2R+J/XiaV3YiU0iGJJAjxZ5MUMyhCOEoEu5QRLNlQEYU7VrRD3EUdYqtwKKgRz+uVZ0qxWzMNK9fqoVDvP4siDItgBZWCCY1ADl6AOGgCDR/AMXsGb9qS9aO/ax6Q1p2Uz2+APtM8fqrGVgw==</latexit>

⌥(10860) ! �WbJ ! final state
<latexit sha1_base64="HVU4pzrgwaXz6OWw+Xh5NGuPu5g=">AAACHXicbVDLSgNBEJz1bXxFPXoZDIJewq4G9Sh6EU8KxgjZEHons3FwHstMrxiW/IgXf8WLB0U8eBH/xknMwVdBQ01VN9NdSSaFwzD8CMbGJyanpmdmS3PzC4tL5eWVC2dyy3idGWnsZQKOS6F5HQVKfplZDiqRvJFcHw38xg23Thh9jr2MtxR0tUgFA/RSu1yL65kT0ujNKNzfDbdiNHEXlALaaBfJSX/wVom5LVKhQVKHgLzfLlfCajgE/UuiEamQEU7b5be4Y1iuuEYmwblmFGbYKsCiYJL3S3HueAbsGrq86akGxV2rGF7Xpxte6dDUWF8a6VD9PlGAcq6nEt+pAK/cb28g/uc1c0z3W4XQWY5cs6+P0lxSNHQQFe0IyxnKnifArPC7UnYFFhj6QEs+hOj3yX/JxXY12qlun9UqB4ejOGbIGlknmyQie+SAHJNTUieM3JEH8kSeg/vgMXgJXr9ax4LRzCr5geD9ExcCofk=</latexit>

Difficulties in identifying: 
'=1/137  penalty

⌥(10860) ! ⇡⇡Wb0 ! final state
<latexit sha1_base64="j6ZiYwNF0OhZoV+odrxOoV+hzwU=">AAACHnicbVDLSgMxFM34rPVVdekmWIS6KTP11WXRjcsK9gGdUjJppg3NJENyRyxDv8SNv+LGhSKCK/0b08dCWw/3wuGce0nuCWLBDbjut7O0vLK6tp7ZyG5ube/s5vb260YlmrIaVULpZkAME1yyGnAQrBlrRqJAsEYwuB77jXumDVfyDoYxa0ekJ3nIKQErdXLnfi02XChZ8NzyhXvig8J+zG3hRicN3JEV/ChQD2nIJRHYAAE26uTybtGdAC8Sb0byaIZqJ/fpdxVNIiaBCmJMy3NjaKdEA6eCjbJ+YlhM6ID0WMtSSSJm2unkvBE+tkoXh0rbloAn6u+NlETGDKPATkYE+mbeG4v/ea0EwnI75TJOgEk6fShMBLYZjLPCXa4ZBTG0hFDN7V8x7RNNKNhEszYEb/7kRVIvFb3TYun2LF+5msWRQYfoCBWQhy5RBd2gKqohih7RM3pFb86T8+K8Ox/T0SVntnOA/sD5+gFfWaIU</latexit>

very limited phase space

⌥(10860)��! ⇡⇡Wb1, ⇡⇡W 0
b0, ⇡⇡Wb2

<latexit sha1_base64="D7mMWLa723q4TfZQ8vRNPC6m4H0="></latexit>

⌥(11020) ! ⇡⇡WbJ ! final state
<latexit sha1_base64="zApY5gxuZGxo7DEONZa3gHmgP0k=">AAACHXicbVDLSgMxFM3UV62vqks3wSLUTZmpBV0W3YirCvYBnVIyaaYNzSRDckcsQ3/Ejb/ixoUiLtyIf2P6WGjrIYGTc+7l5p4gFtyA6347mZXVtfWN7GZua3tndy+/f9AwKtGU1akSSrcCYpjgktWBg2CtWDMSBYI1g+HVxG/eM224kncwilknIn3JQ04JWKmbr/j12HChZNHz3LJ76oPyY24PbnbT4GY8eUeBekhDLonABgiwcTdfcEvuFHiZeHNSQHPUuvlPv6doEjEJVBBj2p4bQyclGjgVbJzzE8NiQoekz9qWShIx00mn243xiVV6OFTaXgl4qv7uSElkzCgKbGVEYGAWvYn4n9dOILzopFzGCTBJZ4PCRGBQeBIV7nHNKIiRJYRqbv+K6YBoQsEGmrMheIsrL5NGueSdlcq3lUL1ch5HFh2hY1REHjpHVXSNaqiOKHpEz+gVvTlPzovz7nzMSjPOvOcQ/YHz9QMWoKH5</latexit>

very limited phase space
not possible

Bondar et al. (2011),  Voloshin (2011) 



Υ(10860)

Zb(10650)

Zb(10610)

W ′
b0

Wb0

Wb1

Wb2 B∗B̄∗

BB̄∗

BB̄

π

π

γ

γ

γ

γ

Υ(nS), hb(mP )

π

π

π

π π

π

Υ(nS), hb(mP )

χb1, ηb

χb1, ηb

χb0,χb1,χb2

χb1,χb2

M

Applications:  spin partners of Zb(10610)/Zb(10650)

WbJ : J = 0, 1, 2, PC = ++
<latexit sha1_base64="RJ+SXZQl59LnPNOZhIY6Ap14Vxk="></latexit>

PC = +�
<latexit sha1_base64="cHu1+Y9h1wKwn5sNOThv3HYJCaE=">AAACDXicbVDLSsNAFL2pr1pfUZduBqsgiCWpgm6EYjcuK9gHtKFMJpN26OTBzEQoIT/gxl9x40IRt+7d+TdO0y5q9cCFwzn3zp173JgzqSzr2ygsLa+srhXXSxubW9s75u5eS0aJILRJIh6Jjosl5SykTcUUp51YUBy4nLbdUX3itx+okCwK79U4pk6AByHzGcFKS33zCKFG2svfSQX1snqGrtEpmpfOsr5ZtipWDvSX2DNShhkaffOr50UkCWioCMdSdm0rVk6KhWKE06zUSySNMRnhAe1qGuKASifNV2boWCse8iOhK1QoV+cnUhxIOQ5c3RlgNZSL3kT8z+smyr9yUhbGiaIhmS7yE45UhCbRII8JShQfa4KJYPqviAyxwETpAEs6BHvx5L+kVa3Y55Xq3UW5djOLowgHcAgnYMMl1OAWGtAEAo/wDK/wZjwZL8a78TFtLRizmX34BePzB2yImys=</latexit>

Z(0)
b : J = 1,

<latexit sha1_base64="MhCuKL4zgIN1BPuK4ckQZieFsEU=">AAACBHicbVDLSsNAFJ3UV62vqMtuBotYQUpSBUUQim7EVQX7wDaGyWTSDp08nJkIJWThxl9x40IRt36EO//GaZuFth64cDjnXu69x4kYFdIwvrXc3PzC4lJ+ubCyura+oW9uNUUYc0waOGQhbztIEEYD0pBUMtKOOEG+w0jLGVyM/NYD4YKGwY0cRsTyUS+gHsVIKsnWi7d24qR3SXlvPz2F3fsYufDqDJoQHkBbLxkVYww4S8yMlECGuq1/dd0Qxz4JJGZIiI5pRNJKEJcUM5IWurEgEcID1CMdRQPkE2El4ydSuKsUF3ohVxVIOFZ/TyTIF2LoO6rTR7Ivpr2R+J/XiaV3YiU0iGJJAjxZ5MUMyhCOEoEu5QRLNlQEYU7VrRD3EUdYqtwKKgRz+uVZ0qxWzMNK9fqoVDvP4siDItgBZWCCY1ADl6AOGgCDR/AMXsGb9qS9aO/ax6Q1p2Uz2+APtM8fqrGVgw==</latexit>

⌥(10860) ! �WbJ ! final state
<latexit sha1_base64="HVU4pzrgwaXz6OWw+Xh5NGuPu5g=">AAACHXicbVDLSgNBEJz1bXxFPXoZDIJewq4G9Sh6EU8KxgjZEHons3FwHstMrxiW/IgXf8WLB0U8eBH/xknMwVdBQ01VN9NdSSaFwzD8CMbGJyanpmdmS3PzC4tL5eWVC2dyy3idGWnsZQKOS6F5HQVKfplZDiqRvJFcHw38xg23Thh9jr2MtxR0tUgFA/RSu1yL65kT0ujNKNzfDbdiNHEXlALaaBfJSX/wVom5LVKhQVKHgLzfLlfCajgE/UuiEamQEU7b5be4Y1iuuEYmwblmFGbYKsCiYJL3S3HueAbsGrq86akGxV2rGF7Xpxte6dDUWF8a6VD9PlGAcq6nEt+pAK/cb28g/uc1c0z3W4XQWY5cs6+P0lxSNHQQFe0IyxnKnifArPC7UnYFFhj6QEs+hOj3yX/JxXY12qlun9UqB4ejOGbIGlknmyQie+SAHJNTUieM3JEH8kSeg/vgMXgJXr9ax4LRzCr5geD9ExcCofk=</latexit>

Difficulties in identifying: 
'=1/137  penalty

⌥(10860) ! ⇡⇡Wb0 ! final state
<latexit sha1_base64="j6ZiYwNF0OhZoV+odrxOoV+hzwU=">AAACHnicbVDLSgMxFM34rPVVdekmWIS6KTP11WXRjcsK9gGdUjJppg3NJENyRyxDv8SNv+LGhSKCK/0b08dCWw/3wuGce0nuCWLBDbjut7O0vLK6tp7ZyG5ube/s5vb260YlmrIaVULpZkAME1yyGnAQrBlrRqJAsEYwuB77jXumDVfyDoYxa0ekJ3nIKQErdXLnfi02XChZ8NzyhXvig8J+zG3hRicN3JEV/ChQD2nIJRHYAAE26uTybtGdAC8Sb0byaIZqJ/fpdxVNIiaBCmJMy3NjaKdEA6eCjbJ+YlhM6ID0WMtSSSJm2unkvBE+tkoXh0rbloAn6u+NlETGDKPATkYE+mbeG4v/ea0EwnI75TJOgEk6fShMBLYZjLPCXa4ZBTG0hFDN7V8x7RNNKNhEszYEb/7kRVIvFb3TYun2LF+5msWRQYfoCBWQhy5RBd2gKqohih7RM3pFb86T8+K8Ox/T0SVntnOA/sD5+gFfWaIU</latexit>

very limited phase space

⌥(10860)��! ⇡⇡Wb1, ⇡⇡W 0
b0, ⇡⇡Wb2

<latexit sha1_base64="D7mMWLa723q4TfZQ8vRNPC6m4H0="></latexit>

⌥(11020) ! ⇡⇡WbJ ! final state
<latexit sha1_base64="zApY5gxuZGxo7DEONZa3gHmgP0k=">AAACHXicbVDLSgMxFM3UV62vqks3wSLUTZmpBV0W3YirCvYBnVIyaaYNzSRDckcsQ3/Ejb/ixoUiLtyIf2P6WGjrIYGTc+7l5p4gFtyA6347mZXVtfWN7GZua3tndy+/f9AwKtGU1akSSrcCYpjgktWBg2CtWDMSBYI1g+HVxG/eM224kncwilknIn3JQ04JWKmbr/j12HChZNHz3LJ76oPyY24PbnbT4GY8eUeBekhDLonABgiwcTdfcEvuFHiZeHNSQHPUuvlPv6doEjEJVBBj2p4bQyclGjgVbJzzE8NiQoekz9qWShIx00mn243xiVV6OFTaXgl4qv7uSElkzCgKbGVEYGAWvYn4n9dOILzopFzGCTBJZ4PCRGBQeBIV7nHNKIiRJYRqbv+K6YBoQsEGmrMheIsrL5NGueSdlcq3lUL1ch5HFh2hY1REHjpHVXSNaqiOKHpEz+gVvTlPzovz7nzMSjPOvOcQ/YHz9QMWoKH5</latexit>

very limited phase space
not possible

Good news:  large statistics by BELLE II!

Bondar et al. (2011),  Voloshin (2011) 
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Introduction Theoretical framework Data analysis for Zb’s Predictions for WbJ ’s Conclusions

Pole positions (mirror poles not shown)

JPC State Threshold EB w.r.t. threshold, [MeV] Residue at pole

1+� Zb BB̄⇤ (�2.3± 0.5)� i(1.1± 0.1) (�1.2± 0.2) + i(0.3± 0.2)
1+� Z 0

b B⇤B̄⇤ (1.8± 2.0)� i(13.6± 3.1) (1.5± 0.2)� i(0.6± 0.3)
0++ Wb0 BB̄ (2.3± 4.2)� i(16.0± 2.6) (1.7± 0.6)� i(1.7± 0.5)
0++ W 0

b0 B⇤B̄⇤ (�1.3± 0.4)� i(1.7± 0.5) (�0.9± 0.3)� i(0.3± 0.2)
1++ Wb1 BB̄⇤ (10.2± 2.5)� i(15.3± 3.2) (1.3± 0.2)� i(0.4± 0.2)
2++ Wb2 B⇤B̄⇤ (7.4± 2.8)� i(9.9± 2.2) (0.7± 0.1)� i(0.3± 0.1)

Relevant pole = pole with the shortest path to the physical region

Riemann sheet is fixed by combination of signs of Im(p) for all channels

Relevant pole can be bound state, virtual state, resonance

Virtual state enhances threshold cusp

Resonance distorts line shape above threshold (hump for nearby pole)

Conclusion: All Zb’s and WbJ ’s are resonances

(without pions — virtual states)

18 / 19

Pole positions and residues

!   virtual states  in a scheme with just O(Q0) contact interactions 

PRD 99, 094013 (2019)our work: 

All Zb’s and WbJ’s are: 

Conclusion:  Zb’s and WbJ’s are consistent with molecular scenario 

!   resonances  in a scheme when OPE is included 



Insights into the nature of the Zb and Zb’ 
from !(10860)→!(nS) "+"-   (n=1,2,3)
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!(10860)→!(nS) "+"- :  Goals
hep-ph 2012.05034  VB,  E. Epelbaum, A.A.Filin, C.Hanhart, R.V. Mizuk,  A.Nefediev,  and S. Ropertz

! Dispersive approach to account for the ""-KK final-state interaction (FSI),  
KK  component is especially important for !(1S)

—  A significant nonresonant contribution from the "" system ⇒ Dalitz plot analysis

! Production: contact  (a-b) and coupled-channel via B-meson loops (c-d) formulated above9
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Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (56) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,

q =
1

2m
⌥

�1/2
�
m2

⌥

,m2

⌥

0 , s
�
. (55)

Up to some small corrections, the amplitude (54) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (51). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0

(s)
⌘
,

(56)
where M

no-FSI

is given in Eq. (48) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
ˆ̃I(2)
0

is defined as (cf. Eq. (36))

ˆ̃I(2)
0

(s) =
s2

⇡

ˆ 1

4m2

⇡

ds0

s02
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ReML
s (s

0)

s0 � s� i0

+
i

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ImML
s (s

0)

s0 � s� i0

+ Îanom
0

(s), (57)

where ML
s (s

0) and Îanom
0

(s) are given in Eqs. (47) and
(50), respectively.

The diagrams representing di↵erent contributions to
the amplitude of Eq. (56) are depicted in Fig. 3: the
sum of the diagrams (a) and (b) corresponds to the
term ⌦̂

0

(s)M̂�,⇡⇡
0

(s), the diagram (c) gives the produc-
tion amplitude M

no-FSI

in the t- and u-channel, and the
diagram (d) describes the contribution of the last term

⌦̂
0

(s) ˆ̃I(2)
0

(s).

E. Inclusion of the ⇡⇡ FSI in the D wave

Generalisation of Eq. (56) to the ⇡⇡ FSI in higher par-
tial waves is straightforward,

M(s, t, u) = M
no-FSI

(t, u)
(58)

+
X

l

⌦̂l(s)
⇣
M̂�,⇡⇡

l (s) + ˆ̃I(nl)

l (s)
⌘
,

where the sum runs over all relevant angular momenta l.
More specifically, taking into account the ⇡⇡ interaction
in the D wave, we write for the amplitude

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0

(s)
⌘

+⌦
2

(s)M�,⇡⇡
2

(s)P
2

(z), (59)

where P
2

(z) is the second-order Legendre polynomial (see
also Eq. (23)), the amplitude M�,⇡⇡

2

(s) extracted from
the Lagrangian (52) reads

M�,⇡⇡
2

(s) =
2

3f2

⇡

p
m

⌥

m
⌥

0c
2

q2�2

⇡(s), (60)

and the diagrams which correspond to the amplitude
(60) coincide with those depicted in Fig. 3 (a) and (b),
however with no kaons in the loop. No additional pa-
rameter is involved in the amplitude (60), since c

2

also
enters Eq. (54). The D-wave Omnès function ⌦

2

(s) in
Eq. (60) is calculated using the D-wave ⇡⇡ phase shift
from Ref. [43] and is dominated by the f

2

(1270) reso-
nance contribution. In general, the amplitude in Eq. (59)

should also contain the dispersive integral Ĩ(n2

)

2

(s), which
is however neglected in the current study. This is moti-
vated by the fact that the corresponding D-wave contri-
bution from the chiral polynomial in Eq.(60) plays only a
very minor role in the fits, as discussed in Sec. IV. While
in this study the main focus is put on the development of
the appropriate formalism and testing the general consis-
tency of the coupled-channel EFT approach of Ref. [33]
with the data in the ⌥(10860) ! ⇡⇡⌥(nS) decays, we

! Dalitz plot analysis of Belle data 

! Check consistency with previous results

 Employ U  from a simple but realistic contact scheme

     — High-statistic data by Belle 
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Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (56) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,
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Up to some small corrections, the amplitude (54) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (51). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0
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0
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0
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,

(56)
where M
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is given in Eq. (48) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
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0

is defined as (cf. Eq. (36))
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where ML
s (s

0) and Îanom
0

(s) are given in Eqs. (47) and
(50), respectively.

The diagrams representing di↵erent contributions to
the amplitude of Eq. (56) are depicted in Fig. 3: the
sum of the diagrams (a) and (b) corresponds to the
term ⌦̂

0

(s)M̂�,⇡⇡
0

(s), the diagram (c) gives the produc-
tion amplitude M
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in the t- and u-channel, and the
diagram (d) describes the contribution of the last term
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0
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0

(s).

E. Inclusion of the ⇡⇡ FSI in the D wave

Generalisation of Eq. (56) to the ⇡⇡ FSI in higher par-
tial waves is straightforward,

M(s, t, u) = M
no-FSI

(t, u)
(58)

+
X

l

⌦̂l(s)
⇣
M̂�,⇡⇡

l (s) + ˆ̃I(nl)

l (s)
⌘
,

where the sum runs over all relevant angular momenta l.
More specifically, taking into account the ⇡⇡ interaction
in the D wave, we write for the amplitude

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0

(s)
⌘

+⌦
2

(s)M�,⇡⇡
2

(s)P
2

(z), (59)

where P
2

(z) is the second-order Legendre polynomial (see
also Eq. (23)), the amplitude M�,⇡⇡

2

(s) extracted from
the Lagrangian (52) reads

M�,⇡⇡
2

(s) =
2

3f2

⇡

p
m

⌥

m
⌥

0c
2

q2�2

⇡(s), (60)

and the diagrams which correspond to the amplitude
(60) coincide with those depicted in Fig. 3 (a) and (b),
however with no kaons in the loop. No additional pa-
rameter is involved in the amplitude (60), since c

2

also
enters Eq. (54). The D-wave Omnès function ⌦

2

(s) in
Eq. (60) is calculated using the D-wave ⇡⇡ phase shift
from Ref. [43] and is dominated by the f

2

(1270) reso-
nance contribution. In general, the amplitude in Eq. (59)

should also contain the dispersive integral Ĩ(n2

)

2

(s), which
is however neglected in the current study. This is moti-
vated by the fact that the corresponding D-wave contri-
bution from the chiral polynomial in Eq.(60) plays only a
very minor role in the fits, as discussed in Sec. IV. While
in this study the main focus is put on the development of
the appropriate formalism and testing the general consis-
tency of the coupled-channel EFT approach of Ref. [33]
with the data in the ⌥(10860) ! ⇡⇡⌥(nS) decays, we

                                Kinematics for

5

III. FINAL STATE INTERACTION

A. Kinematics of the reaction

In this subsection we introduce the kinematics of the
decay

⌥(10860)(pi) ! ⌥(nS)(pf )⇡
+(p

1

)⇡�(p
2

)

with n = 1, 2, 3. Following a standard approach to such
reactions, we built the amplitude M(s, t, u) in a crossed
channel,

⌥(pi) +⌥0(pf ) ! ⇡(p
1

) + ⇡(p
2

)

p
1

p
2

pi

pf

, and define the Mandelstam invariants accordingly,

s = (pi + pf )
2, t = (pf + p

1

)2, u = (pf + p
2

)2, (18)

with

p2i = m2

i , p2f = m2

f , p2
1

= p2
2

= m2

⇡, (19)

where m⇡, mi, and mf are the masses of the pion,
⌥(10860) ⌘ ⌥, and ⌥(nS) ⌘ ⌥0, respectively. Thus,

s+ t+ u = m2

i +m2

f + 2m2

⇡. (20)

In order to proceed, we resort to the kinematics in the
centre-of-mass frame of the two pions in the final state,
so that (z ⌘ cos ✓, where ✓ is the angle between the 3-
momenta p

1

and pf ),

t(s, z) =
1

2
(m2

i +m2

f + 2m2

⇡ � s) +
1

2
k(s)z,

(21)

u(s, z) =
1

2
(m2

i +m2

f + 2m2

⇡ � s)� 1

2
k(s)z,

where

k(s) =
1

s

q
�(s,m2

i ,m
2

f )�(s,m
2

⇡,m
2

⇡), (22)

with the function � defined in Eq. (8) above. Conse-
quently, z can be expressed in terms of t and u as

z =
t� u

k(s)
. (23)

Since the production amplitude for the process
⌥(10860) ! ⇡+⇡�⌥(nS) has the form 3

M full = M(s, t, u) "
⌥(10860)

· "⇤
⌥(nS)

,

the double di↵erential production rate can be written as

d2Br

ds dt
= N |M(s, t, u)|2 , (24)

where the overall normalisation constant N will be fitted
to the data.

B. Dispersive approach to the ⇡⇡-KK̄ FSI

In this subsection we introduce the meson-meson inter-
action in the final state. The partial wave decomposition
of the amplitude M(s, t, u) reads

M(s, t, u) =
X

l

Ml(s)Pl(z), (25)

where Pl(z) are the Legendre polynomials and the sum
runs over all relevant angular momenta l. We start from
the amplitude M(s, t, u) projected onto the ⇡⇡ S-wave,

M
0

(s) =
1

2

ˆ
+1

�1

dzM(s, t, u), (26)

which can be split into two pieces,

M
0

= MR
0

+ML
0

, (27)

where the first and second term contain the right- and
left-hand cuts only, respectively. The right-hand cut of
the amplitude MR

0

comes from the FSI while the left-
hand cuts of the amplitude ML

0

are due to the dynamics
related to the Zb states. If the contribution ML

0

is known
and only the ⇡⇡ channel is considered for the FSI, the
full amplitude can be reconstructed dispersively via the
solution of the inhomogeneous Omnès problem as (see
Ref. [42] for a related discussion)

M
0

(s) = ML
0

(s) +
⌦

0

(s)

⇡

ˆ 1

4m2

⇡

ds0
ML

0

(s0) sin �(s0)

|⌦
0

(s0)|(s0 � s� i0)
,

(28)
where ⌦

0

(s) is the S-wave single-channel Omnès func-
tion4 and � is the ⇡⇡ S-wave phase shift (see Appendix A
for details). However, given that the energy in the ⇡⇡ sys-
tem in the reaction ⌥(10860) ! ⇡⇡⌥(1S) extends to 1.4

3 This is correct up to HQSS violating terms and the D-wave op-
erators for the ⌥(nS) which do not appear from the mechanisms
considered here.

4 We use the standard notation ⌦I
l for the Omnès function where l

and I stand for the partial wave and isospin, respectively. How-
ever, since in this work we deal only with isoscalars, the super-
script I = 0 is omitted everywhere.

s = (p1 + p2)
2, t = (pf + p1)

2, u = (pf + p2)
2
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4 We use the standard notation ⌦I
l for the Omnès function where l

and I stand for the partial wave and isospin, respectively. How-
ever, since in this work we deal only with isoscalars, the super-
script I = 0 is omitted everywhere.
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d2Br

ds dt
= N |M(s, t, u)|2 , (24)

where the overall normalisation constant N will be fitted
to the data.

B. Dispersive approach to the ⇡⇡-KK̄ FSI

In this subsection we introduce the meson-meson inter-
action in the final state. The partial wave decomposition
of the amplitude M(s, t, u) reads

M(s, t, u) =
X

l

Ml(s)Pl(z), (25)

where Pl(z) are the Legendre polynomials and the sum
runs over all relevant angular momenta l. We start from
the amplitude M(s, t, u) projected onto the ⇡⇡ S-wave,

M
0
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ˆ
+1

�1

dzM(s, t, u), (26)

which can be split into two pieces,

M
0

= MR
0

+ML
0

, (27)

where the first and second term contain the right- and
left-hand cuts only, respectively. The right-hand cut of
the amplitude MR

0

comes from the FSI while the left-
hand cuts of the amplitude ML

0

are due to the dynamics
related to the Zb states. If the contribution ML

0

is known
and only the ⇡⇡ channel is considered for the FSI, the
full amplitude can be reconstructed dispersively via the
solution of the inhomogeneous Omnès problem as (see
Ref. [42] for a related discussion)
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(28)
where ⌦

0

(s) is the S-wave single-channel Omnès func-
tion4 and � is the ⇡⇡ S-wave phase shift (see Appendix A
for details). However, given that the energy in the ⇡⇡ sys-
tem in the reaction ⌥(10860) ! ⇡⇡⌥(1S) extends to 1.4

3 This is correct up to HQSS violating terms and the D-wave op-
erators for the ⌥(nS) which do not appear from the mechanisms
considered here.

4 We use the standard notation ⌦I
l for the Omnès function where l

and I stand for the partial wave and isospin, respectively. How-
ever, since in this work we deal only with isoscalars, the super-
script I = 0 is omitted everywhere.

Kinematical relations:
z ⌘ cos ✓ =

ˆ~p1 · ˆ~pf
<latexit sha1_base64="o+eRa7RxO1p8cTF3CAZx/IsAqTI="></latexit>
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with the function � defined in Eq. (8) above. Conse-
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the double di↵erential production rate can be written as
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where the overall normalisation constant N will be fitted
to the data.
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In this subsection we introduce the meson-meson inter-
action in the final state. The partial wave decomposition
of the amplitude M(s, t, u) reads

M(s, t, u) =
X
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Ml(s)Pl(z), (25)

where Pl(z) are the Legendre polynomials and the sum
runs over all relevant angular momenta l. We start from
the amplitude M(s, t, u) projected onto the ⇡⇡ S-wave,
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which can be split into two pieces,
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0

= MR
0

+ML
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, (27)

where the first and second term contain the right- and
left-hand cuts only, respectively. The right-hand cut of
the amplitude MR

0

comes from the FSI while the left-
hand cuts of the amplitude ML

0

are due to the dynamics
related to the Zb states. If the contribution ML

0

is known
and only the ⇡⇡ channel is considered for the FSI, the
full amplitude can be reconstructed dispersively via the
solution of the inhomogeneous Omnès problem as (see
Ref. [42] for a related discussion)
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where ⌦

0

(s) is the S-wave single-channel Omnès func-
tion4 and � is the ⇡⇡ S-wave phase shift (see Appendix A
for details). However, given that the energy in the ⇡⇡ sys-
tem in the reaction ⌥(10860) ! ⇡⇡⌥(1S) extends to 1.4

3 This is correct up to HQSS violating terms and the D-wave op-
erators for the ⌥(nS) which do not appear from the mechanisms
considered here.

4 We use the standard notation ⌦I
l for the Omnès function where l

and I stand for the partial wave and isospin, respectively. How-
ever, since in this work we deal only with isoscalars, the super-
script I = 0 is omitted everywhere.
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where the overall normalisation constant N will be fitted
to the data.
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action in the final state. The partial wave decomposition
of the amplitude M(s, t, u) reads

M(s, t, u) =
X
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Ml(s)Pl(z), (25)

where Pl(z) are the Legendre polynomials and the sum
runs over all relevant angular momenta l. We start from
the amplitude M(s, t, u) projected onto the ⇡⇡ S-wave,

M
0

(s) =
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which can be split into two pieces,
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= MR
0
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, (27)

where the first and second term contain the right- and
left-hand cuts only, respectively. The right-hand cut of
the amplitude MR

0

comes from the FSI while the left-
hand cuts of the amplitude ML

0

are due to the dynamics
related to the Zb states. If the contribution ML

0

is known
and only the ⇡⇡ channel is considered for the FSI, the
full amplitude can be reconstructed dispersively via the
solution of the inhomogeneous Omnès problem as (see
Ref. [42] for a related discussion)
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where ⌦
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(s) is the S-wave single-channel Omnès func-
tion4 and � is the ⇡⇡ S-wave phase shift (see Appendix A
for details). However, given that the energy in the ⇡⇡ sys-
tem in the reaction ⌥(10860) ! ⇡⇡⌥(1S) extends to 1.4

3 This is correct up to HQSS violating terms and the D-wave op-
erators for the ⌥(nS) which do not appear from the mechanisms
considered here.

4 We use the standard notation ⌦I
l for the Omnès function where l

and I stand for the partial wave and isospin, respectively. How-
ever, since in this work we deal only with isoscalars, the super-
script I = 0 is omitted everywhere.
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where Pl(z) are the Legendre polynomials and the sum
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M
0

= MR
0

+ML
0

, (27)

where the first and second term contain the right- and
left-hand cuts only, respectively. The right-hand cut of
the amplitude MR
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comes from the FSI while the left-
hand cuts of the amplitude ML

0

are due to the dynamics
related to the Zb states. If the contribution ML
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is known
and only the ⇡⇡ channel is considered for the FSI, the
full amplitude can be reconstructed dispersively via the
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to the data.
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action in the final state. The partial wave decomposition
of the amplitude M(s, t, u) reads

M(s, t, u) =
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where Pl(z) are the Legendre polynomials and the sum
runs over all relevant angular momenta l. We start from
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M
0
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where the first and second term contain the right- and
left-hand cuts only, respectively. The right-hand cut of
the amplitude MR
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comes from the FSI while the left-
hand cuts of the amplitude ML

0

are due to the dynamics
related to the Zb states. If the contribution ML
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is known
and only the ⇡⇡ channel is considered for the FSI, the
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tion4 and � is the ⇡⇡ S-wave phase shift (see Appendix A
for details). However, given that the energy in the ⇡⇡ sys-
tem in the reaction ⌥(10860) ! ⇡⇡⌥(1S) extends to 1.4

3 This is correct up to HQSS violating terms and the D-wave op-
erators for the ⌥(nS) which do not appear from the mechanisms
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l for the Omnès function where l

and I stand for the partial wave and isospin, respectively. How-
ever, since in this work we deal only with isoscalars, the super-
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Production amplitude:

Double differential production rate: N - overall normalization



                            Dispersion relations for ""-KK FSI  
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0 +MR
0
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S-wave projection:

Left-hand cut piece Right-hand cut piece with FSI 
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for details). However, given that the energy in the ⇡⇡ sys-
tem in the reaction ⌥(10860) ! ⇡⇡⌥(1S) extends to 1.4
GeV, that is far beyond the KK̄ threshold, the inclusion
of theKK̄ component becomes necessary. Generalisation
of Eq. (29) to multiple channels is straightforward,

M̂
0

(s) = M̂L
0

(s)
(30)

+
⌦̂

0

(s)

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
.

Here, the multichannel Omnès matrix obeys the matrix
equation

⌦̂
0

(s) =
1

⇡

ˆ 1

4m2
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ds0
T̂ ⇤(s0)�̂(s)⌦̂

0

(s0)

s0 � s� i0
, (31)

where hats indicate multicomponent objects (vectors and
matrices), �̂(s) = diag{�⇡,�K} is a diagonal matrix with

�P (s) =
q
1� sthP /s, and sthP for the threshold in the

corresponding channel (P = ⇡,K). In particular, we

have ML
0

=
�
[ML

0

]⇡⇡, [ML
0

]KK

�T
. Furthermore, the S-

wave meson-meson coupled-channel amplitude T̂ can be
parametrised by the the ⇡⇡ scattering phase shift �(s)
[43–46] as well as the absolute value and phase of the
⇡⇡ ! KK̄ transition [45, 46], g(s) and  (s), respectively,
as

T (s) =
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T (s) =
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To get the two-pion FSI amplitude one has to consider
the component [M̂

0

(s)]⇡⇡ of the vector (30). If the am-
plitude contains contributions from higher partial waves
while the FSI is taken into account only in the S wave,
one can write

M̂(s, t, u) = M̂
no-FSI

(t, u)
(33)

+
⌦̂

0

(s)

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
,

where M̂
no-FSI

= M̂L
0

+ M̂
higher

is the complete tree level
production amplitude in the t- and u-channel, not pro-
jected onto partial waves, while the e↵ect of the FSI is
taken into account by the second term in Eq. (33). In
this study, the ⇡⇡ component of the production ampli-
tude M̂

no-FSI

and its S-wave projection M̂L
0

are adopted

from Ref. [33] — see Sec. III C for a detailed discus-
sion. Meanwhile, the resonance production in the chan-
nel ⌥(10860) ! KK̄⌥(nS) which proceeds through the
B- and Bs-meson loops is not considered since no in-
formation about the SU(3) partners of the Zb states is
available yet.
The dispersive integral in Eq. (33),

Î
0

(s) ⌘ 1

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
, (34)

where the lower index indicates l = 0 for the S wave,
may need to be subtracted n times to improve conver-
gence and to diminish the role played by the large-s re-
gion where the ⇡⇡ scattering phase is not known well
enough. Then, one arrives at

Î
(n)
0

(s) = P̂n�1

(s)
(35)

+
sn

⇡

ˆ 1

4m2

⇡

ds0

s0n
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
,

where P̂n�1

(s) is a polynomial of the order n � 1. If
the amplitude M̂L

0

(s) has both real and imaginary parts,
then the polynomial coe�cients are complex numbers.
Meanwhile, if there are good reasons to believe that the
imaginary part of the amplitude ImML

0

(s) is controlled
by well understood physics (see also a related discussion
in Sec. IIID below), then the imaginary part of the poly-
nomial Pn�1

(s) can be evaluated exploiting sum rules
via

ImP̂n�1

(s) =
n�1X

k=0

sk

⇡

ˆ 1

4m2

⇡

ds0

s0(k+1)

(36)
⇥ ⌦̂�1

0

(s0)T̂ (s0)�̂(s0) ImM̂L
0

(s0),

where it was used that the quantity ⌦̂�1

0

(s0)T̂ (s0)�̂(s0) is
real. This allows one to re-write Eq. (35) in the form

Î
(n)
0

(s) = R̂n�1

(s)

+
sn

⇡

ˆ 1

4m2

⇡

ds0

s0n
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ReM̂L
0

(s0)

s0 � s� i0
(37)

+
i

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ImM̂L
0

(s0)

s0 � s� i0
,

where the polynomial Rn�1

(s) is real by construction,

R̂n�1

(s) = ReP̂n�1

(s), (38)

and so are its coe�cients. As discussed below, ImM̂L
0

(s)
is non-vanishing on a finite interval of s only and, ac-
cordingly, the integral in the last line of Eq. (37) does
not require any subtractions.

multichannel Omnès function:

6

for details). However, given that the energy in the ⇡⇡ sys-
tem in the reaction ⌥(10860) ! ⇡⇡⌥(1S) extends to 1.4
GeV, that is far beyond the KK̄ threshold, the inclusion
of theKK̄ component becomes necessary. Generalisation
of Eq. (29) to multiple channels is straightforward,

M̂
0

(s) = M̂L
0

(s)
(30)

+
⌦̂

0

(s)

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
.

Here, the multichannel Omnès matrix obeys the matrix
equation

⌦̂
0

(s) =
1

⇡

ˆ 1

4m2

⇡

ds0
T̂ ⇤(s0)�̂(s)⌦̂

0

(s0)

s0 � s� i0
, (31)

where hats indicate multicomponent objects (vectors and
matrices), �̂(s) = diag{�⇡,�K} is a diagonal matrix with

�P (s) =
q
1� sthP /s, and sthP for the threshold in the

corresponding channel (P = ⇡,K). In particular, we

have ML
0

=
�
[ML

0

]⇡⇡, [ML
0

]KK

�T
. Furthermore, the S-

wave meson-meson coupled-channel amplitude T̂ can be
parametrised by the the ⇡⇡ scattering phase shift �(s)
[43–46] as well as the absolute value and phase of the
⇡⇡ ! KK̄ transition [45, 46], g(s) and  (s), respectively,
as

T (s) =
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To get the two-pion FSI amplitude one has to consider
the component [M̂

0

(s)]⇡⇡ of the vector (30). If the am-
plitude contains contributions from higher partial waves
while the FSI is taken into account only in the S wave,
one can write

M̂(s, t, u) = M̂
no-FSI

(t, u)
(33)

+
⌦̂

0

(s)

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
,

where M̂
no-FSI

= M̂L
0

+ M̂
higher

is the complete tree level
production amplitude in the t- and u-channel, not pro-
jected onto partial waves, while the e↵ect of the FSI is
taken into account by the second term in Eq. (33). In
this study, the ⇡⇡ component of the production ampli-
tude M̂

no-FSI

and its S-wave projection M̂L
0

are adopted

from Ref. [33] — see Sec. III C for a detailed discus-
sion. Meanwhile, the resonance production in the chan-
nel ⌥(10860) ! KK̄⌥(nS) which proceeds through the
B- and Bs-meson loops is not considered since no in-
formation about the SU(3) partners of the Zb states is
available yet.
The dispersive integral in Eq. (33),

Î
0

(s) ⌘ 1

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
, (34)

where the lower index indicates l = 0 for the S wave,
may need to be subtracted n times to improve conver-
gence and to diminish the role played by the large-s re-
gion where the ⇡⇡ scattering phase is not known well
enough. Then, one arrives at

Î
(n)
0

(s) = P̂n�1

(s)
(35)

+
sn

⇡

ˆ 1

4m2

⇡

ds0

s0n
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)M̂L
0

(s0)

s0 � s� i0
,

where P̂n�1

(s) is a polynomial of the order n � 1. If
the amplitude M̂L

0

(s) has both real and imaginary parts,
then the polynomial coe�cients are complex numbers.
Meanwhile, if there are good reasons to believe that the
imaginary part of the amplitude ImML

0

(s) is controlled
by well understood physics (see also a related discussion
in Sec. IIID below), then the imaginary part of the poly-
nomial Pn�1

(s) can be evaluated exploiting sum rules
via

ImP̂n�1

(s) =
n�1X

k=0

sk

⇡

ˆ 1

4m2

⇡

ds0

s0(k+1)

(36)
⇥ ⌦̂�1

0

(s0)T̂ (s0)�̂(s0) ImM̂L
0

(s0),

where it was used that the quantity ⌦̂�1

0

(s0)T̂ (s0)�̂(s0) is
real. This allows one to re-write Eq. (35) in the form

Î
(n)
0

(s) = R̂n�1

(s)

+
sn

⇡

ˆ 1

4m2

⇡

ds0

s0n
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ReM̂L
0

(s0)

s0 � s� i0
(37)

+
i

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ImM̂L
0

(s0)

s0 � s� i0
,

where the polynomial Rn�1

(s) is real by construction,

R̂n�1

(s) = ReP̂n�1

(s), (38)

and so are its coe�cients. As discussed below, ImM̂L
0

(s)
is non-vanishing on a finite interval of s only and, ac-
cordingly, the integral in the last line of Eq. (37) does
not require any subtractions.

�P (s) =
q

1� sthP /s
<latexit sha1_base64="ROQt6s69tff5NzUCFMRlDACU6hI="></latexit>

P = ⇡,K
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Production via "" mode:

R. Garcia-Martin et al.,PRD83, 074004 (2011), I. Caprini et al., EPJC72, 1860 (2012), P. Buettiker et al., EPJC33, 409 (2004), L.Y.Dai et al., PRD90, 036004 (2014).
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Figure 2. Left-hand cuts in the production amplitude U coming from the BB̄⇤ and B⇤B̄⇤ scattering in the t- (left) and
u-channel (right). T↵j denotes the coupled-channel amplitude for the transitions B(⇤)B̄⇤ ! ⇡⌥(nS).
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⇡.

(40)

Here

Y (s) = s+ 2m2

z �m2

i �m2

f � 2m2

⇡,
(41)

(s) = �⇡(s)
q
�(s,m2

i ,m
2

f ),

and

sa = 2m2

⇡ +m2

f +m2

i � 2m2

z (42)

is the root of the equation Y (s) = 0. Furthermore, the
logarithmic branch points s± (also known as anomalous
thresholds) found as the roots of the equation t(s±, z =
±1) = m2

z read

s± =
(m2

i �m2

f )
2

4m2

z
(43)

�

⇣p
�(m2

i ,m
2

⇡,m
2

z)±
q
�(m2

f ,m
2

⇡,m
2

z)
⌘
2

4m2

z

,

where � is the triangle function from Eq. (8).
In the regime

(mf +m⇡)
2 < m2

z <
1

2
(m2

f +m2

i )�m2

⇡, (44)

s
+

is real and the anomalous threshold generates only
a phase term which is included in the first formula in
Eq. (40) (see also Ref. [41] for a related discussion). How-
ever, for

m2

z < (mf +m⇡)
2 <

1

2
(m2

f +m2

i )�m2

⇡, (45)

the branch point s
+

becomes complex and the dispersive
integral defined in Eq. (36) acquires an additional anoma-
lous contribution calling for an integration along some

complex path (see Appendix B for details). Namely, us-
ing ML

0;anom

= �4⇡i/ for the anomalous discontinuity,

the integral Î(n)
0

(s) from Eq. (36) gets modified as

Î
(n)
0

(s) ! Î
(n)
0

(s) + Îanom
0

(s,mz),

where

Îanom
0

(s,mz) =
sn

2⇡i

ˆ
1

0

dx

⇣n
d⇣

dx

8⇡

(⇣)

⌦̂�1

0

(⇣)T̂ (⇣)�̂(⇣)

⇣ � s� i0
,

(46)
and ⇣ = (1 � x)s

+

+ x 4m2

⇡ is the straight-line path be-
tween the two-pion threshold and the branch point of the
logarithm, s

+

.
A crucial point of the coupled-channel approach devel-

oped in Ref. [33] is that the resonances Zb are not intro-
duced as asymptotic states of the theory but appear as
near-threshold poles of the amplitude fitted to the data.
This implies that, instead of the stable Zb propagator
used in Eq. (39), the inelastic amplitude Ui (i = ⇡⌥(nS)
with n = 1, 2, 3) from Ref [33], generated through the B-
meson loops and evaluated as given in Eq. (14), provides
the input for building M

no-FSI

and ML
0

— see Fig. 2 for
its diagrammatic representation. To proceed, we employ
a dispersive representation for the production amplitude
U (to simplify notations we omit the inelastic index i and
thus consider a particular inelastic final state),

M
no-FSI

(t, u) = U(t) + U(u)

= � 1
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ˆ 1
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◆
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stable

(t, u;µ),

where we used Eq. (39) and introduced the spectral func-

ML(t, u) =
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Figure 2. Left-hand cuts in the production amplitude U coming from the BB̄⇤ and B⇤B̄⇤ scattering in the t- (left) and
u-channel (right). T↵j denotes the coupled-channel amplitude for the transitions B(⇤)B̄⇤ ! ⇡⌥(nS).
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✓
log

Y (s) + (s)

Y (s)� (s)
+ 2⇡i ✓(sa � s)

◆
, m2

z < (mf +m⇡)2 < 1

2

(m2

f +m2

i )�m2

⇡.

(40)

Here

Y (s) = s+ 2m2

z �m2

i �m2

f � 2m2

⇡,
(41)

(s) = �⇡(s)
q
�(s,m2

i ,m
2

f ),

and

sa = 2m2

⇡ +m2

f +m2

i � 2m2

z (42)

is the root of the equation Y (s) = 0. Furthermore, the
logarithmic branch points s± (also known as anomalous
thresholds) found as the roots of the equation t(s±, z =
±1) = m2

z read

s± =
(m2

i �m2

f )
2

4m2

z
(43)

�

⇣p
�(m2

i ,m
2

⇡,m
2

z)±
q
�(m2

f ,m
2

⇡,m
2

z)
⌘
2

4m2

z

,

where � is the triangle function from Eq. (8).
In the regime

(mf +m⇡)
2 < m2

z <
1

2
(m2

f +m2

i )�m2

⇡, (44)

s
+

is real and the anomalous threshold generates only
a phase term which is included in the first formula in
Eq. (40) (see also Ref. [41] for a related discussion). How-
ever, for

m2

z < (mf +m⇡)
2 <

1

2
(m2

f +m2

i )�m2

⇡, (45)

the branch point s
+

becomes complex and the dispersive
integral defined in Eq. (36) acquires an additional anoma-
lous contribution calling for an integration along some

complex path (see Appendix B for details). Namely, us-
ing ML

0;anom

= �4⇡i/ for the anomalous discontinuity,

the integral Î(n)
0

(s) from Eq. (36) gets modified as

Î
(n)
0

(s) ! Î
(n)
0

(s) + Îanom
0

(s,mz),

where

Îanom
0

(s,mz) =
sn

2⇡i

ˆ
1

0

dx

⇣n
d⇣

dx

8⇡

(⇣)

⌦̂�1

0

(⇣)T̂ (⇣)�̂(⇣)

⇣ � s� i0
,

(46)
and ⇣ = (1 � x)s

+

+ x 4m2

⇡ is the straight-line path be-
tween the two-pion threshold and the branch point of the
logarithm, s

+

.
A crucial point of the coupled-channel approach devel-

oped in Ref. [33] is that the resonances Zb are not intro-
duced as asymptotic states of the theory but appear as
near-threshold poles of the amplitude fitted to the data.
This implies that, instead of the stable Zb propagator
used in Eq. (39), the inelastic amplitude Ui (i = ⇡⌥(nS)
with n = 1, 2, 3) from Ref [33], generated through the B-
meson loops and evaluated as given in Eq. (14), provides
the input for building M

no-FSI

and ML
0

— see Fig. 2 for
its diagrammatic representation. To proceed, we employ
a dispersive representation for the production amplitude
U (to simplify notations we omit the inelastic index i and
thus consider a particular inelastic final state),

M
no-FSI

(t, u) = U(t) + U(u)

= � 1

⇡

ˆ 1

µ2

min

dµ2 ImU(µ2)

✓
1

t� µ2

+
1

u� µ2

◆
(47)

=

ˆ 1

µ2

min

dµ2⇢(µ2)M
stable

(t, u;µ),

where we used Eq. (39) and introduced the spectral func-

ML(t, u) =
<latexit sha1_base64="doDSZzkeS73hhxtpfDxyNeSGayc="></latexit>

ML(t, u) = U(t) + U(u) = � 1

⇡

Z 1

(m⇡+m⌥(1S))
2
dµ2 ImU(µ2)

✓
1

t� µ2
+

1

u� µ2

◆

<latexit sha1_base64="KgOD/eMMuFGWTVxID0W3wV1yEcY=">AAADEHicbVLdahQxFJ4Z/+pU7VYvvQkuhRl2W3ZWwYIs1IqgYKFSpy1sdpdMNrMbOkmG5ExxGXKjb+DTeCfe+gY+hO9g9oditx4Ycub7Ts6XfCdZWXADnc5vP7h1+87dexv3w80HDx9tNbYfnxpVacpSqgqlzzNiWMElS4FDwc5LzYjICnaWXbyZ82eXTBuu5CeYlWwgyETynFMCDho1/hwNP0TQruJeGkHcSqMqRmFvF+ea0DqxNS65xVzCqK4jJEbutyVGNU5Lwwslo+QktrEddu3QFeUwQ2MsqmEXtxEWmfpcvxe4bdNoAbrGuGA5RFfNYXdBWNRCV1i1wrDmkynE4U5vKb9A3aIFElzaNUHkiKla6Vh0tCw0QJwPdn6/V46K0ajR7Ox1FoFuJskqaXqrOB5t+5t4rGglmARaEGP6+yUMaqKBU9c5xJVhJaEXZML6LpVEMDOoF2OxaMchY5Qr7T4JaIH+u6MmwpiZyFylIDA169wc/B/XryDfH9RclhUwSZdCeVUgUGg+YzTmmlEonDmcUM3dWRGdEmcwuJdwTYWBUoUblA1D/BoO2YTLt/KSayXnN66df1VBtHsGwOXMOvuSdbNuJqfdveT5Xvfji+bB4crIDe+p98yLvMR76R1477xjL/Wof+LP/C/+1+Bb8D34Efxclgb+as8T71oEv/4CRhL3ag==</latexit>

ML
0 (s)

<latexit sha1_base64="9F9Q0AtiyY1LEAK7B7R7B2mAekw="></latexit>

S-wave

+

ML
0,stable(s;µ) =

1

2

Z
dz

✓
1

t� µ2
+

1

u� µ2

◆
⌘

✓
� 2

�⇡(s)

◆
DiscC0(s)

2⇡i
<latexit sha1_base64="J7fxt778P9tYBTeG5vKZP4pP7Ls="></latexit>

C0(s, µ) ⌘ C0(m
2
i , s,m

2
f , µ

2,m2
⇡,m

2
⇡)

<latexit sha1_base64="smCpInfRWuxLa7S7RRzJSEMAOyQ=">AAACXHicbVBNaxsxEJU3aZvYTesk0EsvIqaQgDFrt9Dklg8KPaZQJwGvu2jlWUdEH1tpZGKW/S35Nbm25176W6J1DG0+BqR5vDfDzLyskMJhHP9pRCurL16+Wltvtl5vvHnb3tw6c8ZbDkNupLEXGXMghYYhCpRwUVhgKpNwnl2d1Pr5DKwTRn/HeQFjxaZa5IIzDFTaPjhJ413XTZTfS+CnFzNaEyoVPwZd11VpHnIQw6/SpBD/8l7a7sS9eBH0KegvQYcs4zTdbLSSieFegUYumXOj/QLHJbMouISqmXgHBeNXbAqjADVT4Mbl4sSKfgjMhObGhqeRLtj/O0qmnJurLFQqhpfusVaTz2kjj/n+uBS68Aia3w/KvaRoaO0XnQgLHOU8AMatCLtSfsks4xhcfTAF0BiZmeuq2UyO8BimQn/RM2GNri8ukWVeMluVCQo9r4J9/cdmPQVng17/Y2/w7VPn8Hhp5Bp5T3bILumTz+SQfCWnZEg4uSG35Bf53fgbrUataOO+NGose7bJg4je3QGxkbUj</latexit>

—standard scalar loop function

     Zb(10610)/Zb(10650)  are 
poles in the coupled-channel 

amplitudes 

☛

is an analytic function of µ  only if anomalous contributions (AC) are included 
from the brach point of the Logarithm

C0(s, µ)
<latexit sha1_base64="q4+6NG8W6dyVK1XLbLLBkAtuWLA="></latexit>

AC emerges if µ2 < µ2
crit ⌘

1

2
(m2

f +m2
i )�m2

⇡
<latexit sha1_base64="vy9vprElGCGVRMz4yPWqW3qYkt0="></latexit>

For !(3S): µcrit = 10.6097GeV
<latexit sha1_base64="oUOBG5CDgJsr6XyEozbOG9x93aQ="></latexit>

very close to Zb(10610) pole

— Take care about anomalous thresholds

!

ImML
0 (s)

<latexit sha1_base64="RiF0JzwJ4BQyWWlYM6EcUz1ohRE="></latexit>

B(⇤)B̄⇤
<latexit sha1_base64="vpvUDtSM0HAvZXJdS3N7ycFKd6Q=">AAACMnicdVDLSgNBEJz1bXwlevQyGAT1EBIV9BgjgkcFo0I2ht5JJw6ZnVlmesWw7Jd41T/wZ/QmXv0INzGCz4KGoqqb7q4gUtJRufzkjY1PTE5Nz8zm5uYXFpfyheVzZ2IrsC6MMvYyAIdKaqyTJIWXkUUIA4UXQe9w4F/coHXS6DPqR9gMoatlRwqgTGrll2pXycbWZuoHYHntaquVL1ZK5SF4+Rf5tIpshJNWwZvz20bEIWoSCpxr7EfUTMCSFArTnB87jED0oIuNjGoI0TWT4eEpX8+UNu8Ym5UmPlS/TiQQOtcPg6wzBLp2P72B+JfXiKmz30ykjmJCLT4WdWLFyfBBCrwtLQpS/YyAsDK7lYtrsCAoy+rbFiRjVGBu01zOP6AadqU+0jfSGj34OCEIYgU2TXySup9+je9/cr5dquyUtk93i9XaKMgZtsrW2AarsD1WZcfshNWZYDG7Y/fswXv0nr0X7/Wjdcwbzaywb/De3gGqEKl7</latexit>

cuts, these states can be on shell:  Leading contribution is from the  
subleading one— from inelastic channels

—
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Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (56) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,

q =
1

2m
⌥

�1/2
�
m2

⌥

,m2

⌥

0 , s
�
. (55)

Up to some small corrections, the amplitude (54) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (51). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0

(s)
⌘
,

(56)
where M

no-FSI

is given in Eq. (48) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
ˆ̃I(2)
0

is defined as (cf. Eq. (36))

ˆ̃I(2)
0

(s) =
s2

⇡

ˆ 1

4m2

⇡

ds0

s02
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ReML
s (s

0)

s0 � s� i0

+
i

⇡

ˆ 1

4m2

⇡

ds0
⌦̂�1

0

(s0)T̂ (s0)�̂(s0)ImML
s (s

0)

s0 � s� i0

+ Îanom
0

(s), (57)

where ML
s (s

0) and Îanom
0

(s) are given in Eqs. (47) and
(50), respectively.

The diagrams representing di↵erent contributions to
the amplitude of Eq. (56) are depicted in Fig. 3: the
sum of the diagrams (a) and (b) corresponds to the
term ⌦̂

0

(s)M̂�,⇡⇡
0

(s), the diagram (c) gives the produc-
tion amplitude M

no-FSI

in the t- and u-channel, and the
diagram (d) describes the contribution of the last term

⌦̂
0

(s) ˆ̃I(2)
0

(s).

E. Inclusion of the ⇡⇡ FSI in the D wave

Generalisation of Eq. (56) to the ⇡⇡ FSI in higher par-
tial waves is straightforward,

M(s, t, u) = M
no-FSI

(t, u)
(58)

+
X

l

⌦̂l(s)
⇣
M̂�,⇡⇡

l (s) + ˆ̃I(nl)

l (s)
⌘
,

where the sum runs over all relevant angular momenta l.
More specifically, taking into account the ⇡⇡ interaction
in the D wave, we write for the amplitude

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0

(s)
⌘

+⌦
2

(s)M�,⇡⇡
2

(s)P
2

(z), (59)

where P
2

(z) is the second-order Legendre polynomial (see
also Eq. (23)), the amplitude M�,⇡⇡

2

(s) extracted from
the Lagrangian (52) reads

M�,⇡⇡
2

(s) =
2

3f2

⇡

p
m

⌥

m
⌥

0c
2

q2�2

⇡(s), (60)

and the diagrams which correspond to the amplitude
(60) coincide with those depicted in Fig. 3 (a) and (b),
however with no kaons in the loop. No additional pa-
rameter is involved in the amplitude (60), since c

2

also
enters Eq. (54). The D-wave Omnès function ⌦

2

(s) in
Eq. (60) is calculated using the D-wave ⇡⇡ phase shift
from Ref. [43] and is dominated by the f

2

(1270) reso-
nance contribution. In general, the amplitude in Eq. (59)

should also contain the dispersive integral Ĩ(n2

)

2

(s), which
is however neglected in the current study. This is moti-
vated by the fact that the corresponding D-wave contri-
bution from the chiral polynomial in Eq.(60) plays only a
very minor role in the fits, as discussed in Sec. IV. While
in this study the main focus is put on the development of
the appropriate formalism and testing the general consis-
tency of the coupled-channel EFT approach of Ref. [33]
with the data in the ⌥(10860) ! ⇡⇡⌥(nS) decays, we

                            Subtractions and matching to chiral contact amplitudes

M̂0(s) = M̂L
0 (s) +

⌦̂0(s)

⇡

Z 1

4m2
⇡

ds0
⌦̂�1

0 (s0)T̂ (s0)�̂(s0)M̂L
0 (s

0)

s0 � s� i0
<latexit sha1_base64="UZE5446kBQGHTcW+0B1Q0aiIOqM="></latexit>

— Dispersive Integral is convergent but details of "" at large s are known badly

⟹ 2 subtractions with real coefficients 

— matching to chiral expansion
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Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (59) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

R
1

(s) = a+ bs, (53)

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants
is mostly redundant at least for production of ⌥(nS) with
n = 2 and 3.

It is important to notice that the polynomial R
1

(s)
parametrises the amplitude for ⌥⌥0⇡⇡ at small values
of s and as such can be matched to chiral perturbation
theory. Specifically, in the limit of switching o↵ the final-
state interactions, �(s) ! 0, g(s) ! 0 in Eq. (32) and
thus setting ⌦

0

(s) ! 1, the subtraction functions must
agree with the chiral amplitudes corresponding to the
direct transitions ⌥ ! ⇡⇡⌥0 [49].

If one introduces spin multiplets for heavy-heavy fields,

J = ⌥ · � + ⌘b,

then the e↵ective Lagrangian for the contact ⌥⌥0⇡⇡ and
⌥⌥0KK̄ coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [39, 49, 50]

L
⌥⌥

0
��

=
c
1

2
hJ†J 0ihuµu

µi+ c
2

2
hJ†J 0ihuµu⌫ivµv⌫ +h.c.,

(54)
where vµ is the 4-velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrised as

uµ = i
�
u†@µu� u@µu

†� ,

u = exp

✓
i�p
2f

◆
, (55)

� =

0

BB@

1p
2

⇡0 + 1p
6

⌘
8

⇡+ K+

⇡� � 1p
2

⇡0 + 1p
6

⌘
8

K0

K� K̄0 � 2p
6

⌘
8

1

CCA ,

where f is the pseudo-Goldstone boson decay constant,
f⇡ = 92.2 MeV and fK = 113.0 MeV. If one makes an
expansion in the (soft) pion momenta q⇡, both operators
quoted in Eq. (55) scale as O(q2⇡) .

Considering an S-wave contribution for the tree-level

amplitudes, M̂�
0

(s) =
⇣
M�,⇡⇡

0

(s), 2p
3

M�,KK
0

(s)
⌘T

, one

finds (P = ⇡,K)

M�,PP
0

(s) = � 2

f2

P

p
m

⌥

m
⌥

0

⇢
c
1

�
s� 2m2

P

�

(56)

+
c
2

2


s+ q2

✓
1� �2

P (s)

3

◆��
,

where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,

q =
1

2m
⌥

�1/2
�
m2

⌥

,m2

⌥

0 , s
�
. (57)

Up to some small corrections, the amplitude (57) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (54). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0

(s)
⌘
,

(58)
where M

no-FSI

is given in Eq. (51) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
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⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

R
1

(s) = a+ bs, (53)

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants
is mostly redundant at least for production of ⌥(nS) with
n = 2 and 3.

It is important to notice that the polynomial R
1

(s)
parametrises the amplitude for ⌥⌥0⇡⇡ at small values
of s and as such can be matched to chiral perturbation
theory. Specifically, in the limit of switching o↵ the final-
state interactions, �(s) ! 0, g(s) ! 0 in Eq. (32) and
thus setting ⌦

0

(s) ! 1, the subtraction functions must
agree with the chiral amplitudes corresponding to the
direct transitions ⌥ ! ⇡⇡⌥0 [49].

If one introduces spin multiplets for heavy-heavy fields,

J = ⌥ · � + ⌘b,

then the e↵ective Lagrangian for the contact ⌥⌥0⇡⇡ and
⌥⌥0KK̄ coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [39, 49, 50]

L
⌥⌥

0
��

=
c
1

2
hJ†J 0ihuµu

µi+ c
2

2
hJ†J 0ihuµu⌫ivµv⌫ +h.c.,

(54)
where vµ is the 4-velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrised as

uµ = i
�
u†@µu� u@µu

†� ,

u = exp

✓
i�p
2f

◆
, (55)

� =

0

BB@

1p
2

⇡0 + 1p
6

⌘
8

⇡+ K+

⇡� � 1p
2

⇡0 + 1p
6

⌘
8

K0

K� K̄0 � 2p
6

⌘
8

1

CCA ,

where f is the pseudo-Goldstone boson decay constant,
f⇡ = 92.2 MeV and fK = 113.0 MeV. If one makes an
expansion in the (soft) pion momenta q⇡, both operators
quoted in Eq. (55) scale as O(q2⇡) .

Considering an S-wave contribution for the tree-level
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where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,

q =
1

2m
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0 , s
�
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Up to some small corrections, the amplitude (57) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (54). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0

(s)
⌘
,

(58)
where M

no-FSI

is given in Eq. (51) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
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Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (59) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

R
1

(s) = a+ bs, (53)

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants
is mostly redundant at least for production of ⌥(nS) with
n = 2 and 3.

It is important to notice that the polynomial R
1

(s)
parametrises the amplitude for ⌥⌥0⇡⇡ at small values
of s and as such can be matched to chiral perturbation
theory. Specifically, in the limit of switching o↵ the final-
state interactions, �(s) ! 0, g(s) ! 0 in Eq. (32) and
thus setting ⌦

0

(s) ! 1, the subtraction functions must
agree with the chiral amplitudes corresponding to the
direct transitions ⌥ ! ⇡⇡⌥0 [49].

If one introduces spin multiplets for heavy-heavy fields,

J = ⌥ · � + ⌘b,

then the e↵ective Lagrangian for the contact ⌥⌥0⇡⇡ and
⌥⌥0KK̄ coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [39, 49, 50]

L
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2
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µi+ c
2

2
hJ†J 0ihuµu⌫ivµv⌫ +h.c.,

(54)
where vµ is the 4-velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrised as

uµ = i
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u = exp
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where f is the pseudo-Goldstone boson decay constant,
f⇡ = 92.2 MeV and fK = 113.0 MeV. If one makes an
expansion in the (soft) pion momenta q⇡, both operators
quoted in Eq. (55) scale as O(q2⇡) .

Considering an S-wave contribution for the tree-level
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where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,

q =
1

2m
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�1/2
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,m2
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0 , s
�
. (57)

Up to some small corrections, the amplitude (57) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (54). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
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(58)
where M

no-FSI

is given in Eq. (51) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral

9

⌥ ⌥0

⇡ ⇡

⌥ ⌥0

⇡
⇡

⇡, K
⇡, K

⌥ ⌥0

⇡ ⇡

U
⌥ ⌥0

⇡
⇡

⇡
⇡

U

(a) (b) (c) (d)

Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (59) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

R
1

(s) = a+ bs, (53)

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants
is mostly redundant at least for production of ⌥(nS) with
n = 2 and 3.

It is important to notice that the polynomial R
1

(s)
parametrises the amplitude for ⌥⌥0⇡⇡ at small values
of s and as such can be matched to chiral perturbation
theory. Specifically, in the limit of switching o↵ the final-
state interactions, �(s) ! 0, g(s) ! 0 in Eq. (32) and
thus setting ⌦

0

(s) ! 1, the subtraction functions must
agree with the chiral amplitudes corresponding to the
direct transitions ⌥ ! ⇡⇡⌥0 [49].

If one introduces spin multiplets for heavy-heavy fields,

J = ⌥ · � + ⌘b,

then the e↵ective Lagrangian for the contact ⌥⌥0⇡⇡ and
⌥⌥0KK̄ coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [39, 49, 50]
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(54)
where vµ is the 4-velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrised as
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where f is the pseudo-Goldstone boson decay constant,
f⇡ = 92.2 MeV and fK = 113.0 MeV. If one makes an
expansion in the (soft) pion momenta q⇡, both operators
quoted in Eq. (55) scale as O(q2⇡) .

Considering an S-wave contribution for the tree-level
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where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,

q =
1
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Up to some small corrections, the amplitude (57) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (54). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0

(s)
⇣
M̂�,⇡⇡

0

(s) + ˆ̃I(2)
0
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(58)
where M

no-FSI

is given in Eq. (51) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
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Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (59) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

R
1

(s) = a+ bs, (53)

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants
is mostly redundant at least for production of ⌥(nS) with
n = 2 and 3.

It is important to notice that the polynomial R
1

(s)
parametrises the amplitude for ⌥⌥0⇡⇡ at small values
of s and as such can be matched to chiral perturbation
theory. Specifically, in the limit of switching o↵ the final-
state interactions, �(s) ! 0, g(s) ! 0 in Eq. (32) and
thus setting ⌦

0

(s) ! 1, the subtraction functions must
agree with the chiral amplitudes corresponding to the
direct transitions ⌥ ! ⇡⇡⌥0 [49].

If one introduces spin multiplets for heavy-heavy fields,

J = ⌥ · � + ⌘b,

then the e↵ective Lagrangian for the contact ⌥⌥0⇡⇡ and
⌥⌥0KK̄ coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [39, 49, 50]
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where vµ is the 4-velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrised as
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where f is the pseudo-Goldstone boson decay constant,
f⇡ = 92.2 MeV and fK = 113.0 MeV. If one makes an
expansion in the (soft) pion momenta q⇡, both operators
quoted in Eq. (55) scale as O(q2⇡) .

Considering an S-wave contribution for the tree-level
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where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,
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Up to some small corrections, the amplitude (57) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (54). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form

M(s, t, u) = M
no-FSI

(t, u) + ⌦̂
0
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(58)
where M

no-FSI

is given in Eq. (51) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
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Figure 3. Diagrams contributing to the full amplitude M(s, t, u) from Eq. (59) for the decay ⌥ ! ⇡⇡⌥0 (⌥ ⌘ ⌥(10860),
⌥0 ⌘ ⌥(nS) with n = 1, 2, 3): (a) the contact diagram; (b) the contact diagram with the ⇡⇡ and KK̄ FSI; (c) signal production
amplitude M

no-FSI

in the t- and u-channel, which contains left-hand cuts from the Zb’s generated in a coupled-channel approach
of Ref. [33]; (d) same as in (c) but with the ⇡⇡ FSI.

are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

R
1

(s) = a+ bs, (53)

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants
is mostly redundant at least for production of ⌥(nS) with
n = 2 and 3.

It is important to notice that the polynomial R
1

(s)
parametrises the amplitude for ⌥⌥0⇡⇡ at small values
of s and as such can be matched to chiral perturbation
theory. Specifically, in the limit of switching o↵ the final-
state interactions, �(s) ! 0, g(s) ! 0 in Eq. (32) and
thus setting ⌦

0

(s) ! 1, the subtraction functions must
agree with the chiral amplitudes corresponding to the
direct transitions ⌥ ! ⇡⇡⌥0 [49].

If one introduces spin multiplets for heavy-heavy fields,

J = ⌥ · � + ⌘b,

then the e↵ective Lagrangian for the contact ⌥⌥0⇡⇡ and
⌥⌥0KK̄ coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [39, 49, 50]
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where vµ is the 4-velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrised as
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where f is the pseudo-Goldstone boson decay constant,
f⇡ = 92.2 MeV and fK = 113.0 MeV. If one makes an
expansion in the (soft) pion momenta q⇡, both operators
quoted in Eq. (55) scale as O(q2⇡) .

Considering an S-wave contribution for the tree-level
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where q is the 3-momentum of the final ⌥0 in the rest
frame of the initial ⌥, that is,
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Up to some small corrections, the amplitude (57) behaves
as a linear polynomial in s. Thus the chiral amplitude
at low energies depends on the two low-energy constants
(LECs) c

1

and c
2

which can be treated as fitting param-
eters instead of a and b from Eq. (54). This amplitude
corresponds to the contact diagram depicted in Fig. 3(a).

Then, the amplitude M(s, t, u) from Eq. (24), which
now includes the e↵ects from the ⇡⇡ and KK̄ FSI in the
S-wave, takes the form
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where M
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is given in Eq. (51) and the ⇡⇡ component
{11} of the matrix multiplication is implied. The integral
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                            Final results for M(s,t,u)
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2

mental data in the channels

⌥(10860) ! ⇡Z
(0)
b ! ⇡B(⇤)B̄⇤,

(1)
⌥(10860) ! ⇡Z

(0)
b ! ⇡⇡hb(mP ), m = 1, 2.

The information on the branching fractions in the tran-

sitions ⌥(10860) ! ⇡Z
(0)
b ! ⇡⇡⌥(nS) (n = 1, 2, 3) was

also used, but no analysis of the line shapes in these
channels was performed for the reasons explained below.
A fairly good description of the data was achieved in
di↵erent fitting schemes described in detail in Ref. [33].
As expected, the experimental data on the Zb’s are fully
consistent with HQSS, since symmetry violating terms
in the e↵ective hadronic potential are argued to play a
minor role [33]. In Ref. [34], the approach was extended
to predict in a parameter-free way the properties of the
spin partner states of the Zb’s, the WbJ ’s (J = 0, 1, 2).

The one-pion exchange (OPE) in the bottomoniumlike
systems under consideration was a special concern of the
quoted works [33, 34], and it was concluded to play an
important role for the Zb’s and WbJ ’s. Indeed, the poles
of the Zb’s and WbJ ’s that were originally classified as
virtual states in the pionless framework moved above the
nearby elastic thresholds to become resonances, as an
e↵ect of the OPE. Meanwhile, the conclusion that all
these states are hadronic molecules, based on a decent
description of the data, follows already from the scheme
with purely contact interactions in the B(⇤)B̄⇤ system
(Scheme A, in the notation of Ref. [33], yields �2/N

dof

⇡
1.23). Note also that this fitting scheme provides results
identical to those obtained with the help of an analytical
parametrisation for the line shapes derived previously in
Refs. [35, 36].

Not all experimental information used in the aforemen-
tioned combined analysis could be considered on equal
footing. Indeed, while the line shapes in the ⇡hb(mP )
and B(⇤)B̄⇤ channels could be fitted directly, as dis-
cussed above, only the total branchings for the ⇡⌥ final
states were used in the fit. The signal in the latter chan-
nels contains a significant nonresonant contribution that
depends on the invariant mass of the two-pion system,
so that the amplitude analysis has to be multidimen-
sional. This analysis is in the spotlight of the present
work. In particular, we generalise the approach devel-
oped in Ref. [33] to incorporate coupled-channel e↵ects
from the ⇡⇡-KK̄ interactions in the final state using a
model-independent dispersive approach. Then we per-
form maximum likelihood fits to the Dalitz plots of the
reactions ⌥(10860) ! ⇡⇡⌥(nS) (n = 1, 2, 3). To keep
consistency with the data in the ⇡hb(mP ) and B(⇤)B̄⇤

channels, we directly employ the inelastic production am-
plitudes obtained in Ref. [33] for Scheme A as input for
the present research. Since the focus of the present study
is on the development of the dispersive treatment of the
final state interactions (FSI), we resort to a simple pion-
less formulation, as provided by Scheme A, while e↵ects
from the OPE will be included in future studies. Thus
in this study we focus on the following goals:

(a) A development of a dispersive approach to the
⌥(10860) ! ⇡⇡⌥(nS) transitions and a systematic
account for the e↵ects from the ⇡⇡ FSI including
the coupling to the KK̄ channel. While for the
⌥(2S) and, especially, ⌥(3S) in the final state the
⇡⇡-KK̄ coupling is expected to play a marginal
role, it should be important for the ⌥(1S) channel
near the KK̄ threshold. This e↵ect can be included
in a model-independent way using an Omnès ma-
trix constructed from high accuracy determinations
of the ⇡⇡ and KK̄ scattering amplitudes as well as
from the Bs decay data [37, 38].

(b) Our focus is on the inclusion of the FSI while keep-
ing the full complexity of the Zb dynamics, so we
consider two production mechanisms for the tran-
sitions ⌥(10860) ! ⇡⇡⌥(nS), namely (i) through
the contact operators with two real parameters and
(ii) through B-meson production assuming point-
like vertices with the subsequent B-meson inter-
actions in the final state, that is, via the process
⌥(10860) ! B(⇤)B̄⇤⇡ ! ⇡⇡⌥(nS). Both mech-
anisms are supplemented with the ⇡⇡ FSI. Note
that in Ref. [39] also a possible impact of the box-
diagram mechanism was studied, which is not in-
cluded here. The underlying rationale is that in the
⌥(10860) decays the Zb states can go on-shell and
should by far dominate the e↵ects from the B(⇤)B⇤

intermediate states. The corresponding imaginary
parts in the production amplitudes are taken into
account explicitly in this work. As a consequence,
only two real subtraction constants defined in the
mechanism (i) are su�cient to dispersively recon-
struct the amplitude, which is insensitive to the
high-energy integration range. This is unlike to
Ref. [41], where two complex coe�cients were uti-
lized in a related study of the dipion transitions in
the charmonium sector.

(c) The Dalitz plots for the ⌥(10860) ! ⇡⇡⌥(nS)
transitions contain nontrivial information about
the Zb’s — these states can be clearly seen in the
⇡⌥(nS) invariant mass distributions and have im-
print also on the ⇡⇡ spectrum. Thus we analyse
the two-dimensional Dalitz plots to check whether
the results for the Zb’s from our previous analyses
are consistent with them.

The paper is organised as follows. In Sect. II we briefly
introduce the coupled-channel approach suggested and
used in Refs. [33, 34]. In Sect. III a dispersive approach to
the decay amplitude is developed to take into account the
⇡⇡ interaction in the final state. Section IV is devoted to
the data analysis for the reactions ⌥(10860) ! ⇡⇡⌥(nS)
(n = 1, 2, 3). Our conclusions are discussed in Sect. V.
Appendices A and B provide some technical details of the
dispersive approach used in this work, including a discus-
sion of the anomalous contributions to the amplitude.

2

mental data in the channels

⌥(10860) ! ⇡Z
(0)
b ! ⇡B(⇤)B̄⇤,

(1)
⌥(10860) ! ⇡Z

(0)
b ! ⇡⇡hb(mP ), m = 1, 2.

The information on the branching fractions in the tran-

sitions ⌥(10860) ! ⇡Z
(0)
b ! ⇡⇡⌥(nS) (n = 1, 2, 3) was

also used, but no analysis of the line shapes in these
channels was performed for the reasons explained below.
A fairly good description of the data was achieved in
di↵erent fitting schemes described in detail in Ref. [33].
As expected, the experimental data on the Zb’s are fully
consistent with HQSS, since symmetry violating terms
in the e↵ective hadronic potential are argued to play a
minor role [33]. In Ref. [34], the approach was extended
to predict in a parameter-free way the properties of the
spin partner states of the Zb’s, the WbJ ’s (J = 0, 1, 2).

The one-pion exchange (OPE) in the bottomoniumlike
systems under consideration was a special concern of the
quoted works [33, 34], and it was concluded to play an
important role for the Zb’s and WbJ ’s. Indeed, the poles
of the Zb’s and WbJ ’s that were originally classified as
virtual states in the pionless framework moved above the
nearby elastic thresholds to become resonances, as an
e↵ect of the OPE. Meanwhile, the conclusion that all
these states are hadronic molecules, based on a decent
description of the data, follows already from the scheme
with purely contact interactions in the B(⇤)B̄⇤ system
(Scheme A, in the notation of Ref. [33], yields �2/N

dof

⇡
1.23). Note also that this fitting scheme provides results
identical to those obtained with the help of an analytical
parametrisation for the line shapes derived previously in
Refs. [35, 36].

Not all experimental information used in the aforemen-
tioned combined analysis could be considered on equal
footing. Indeed, while the line shapes in the ⇡hb(mP )
and B(⇤)B̄⇤ channels could be fitted directly, as dis-
cussed above, only the total branchings for the ⇡⌥ final
states were used in the fit. The signal in the latter chan-
nels contains a significant nonresonant contribution that
depends on the invariant mass of the two-pion system,
so that the amplitude analysis has to be multidimen-
sional. This analysis is in the spotlight of the present
work. In particular, we generalise the approach devel-
oped in Ref. [33] to incorporate coupled-channel e↵ects
from the ⇡⇡-KK̄ interactions in the final state using a
model-independent dispersive approach. Then we per-
form maximum likelihood fits to the Dalitz plots of the
reactions ⌥(10860) ! ⇡⇡⌥(nS) (n = 1, 2, 3). To keep
consistency with the data in the ⇡hb(mP ) and B(⇤)B̄⇤

channels, we directly employ the inelastic production am-
plitudes obtained in Ref. [33] for Scheme A as input for
the present research. Since the focus of the present study
is on the development of the dispersive treatment of the
final state interactions (FSI), we resort to a simple pion-
less formulation, as provided by Scheme A, while e↵ects
from the OPE will be included in future studies. Thus
in this study we focus on the following goals:

(a) A development of a dispersive approach to the
⌥(10860) ! ⇡⇡⌥(nS) transitions and a systematic
account for the e↵ects from the ⇡⇡ FSI including
the coupling to the KK̄ channel. While for the
⌥(2S) and, especially, ⌥(3S) in the final state the
⇡⇡-KK̄ coupling is expected to play a marginal
role, it should be important for the ⌥(1S) channel
near the KK̄ threshold. This e↵ect can be included
in a model-independent way using an Omnès ma-
trix constructed from high accuracy determinations
of the ⇡⇡ and KK̄ scattering amplitudes as well as
from the Bs decay data [37, 38].

(b) Our focus is on the inclusion of the FSI while keep-
ing the full complexity of the Zb dynamics, so we
consider two production mechanisms for the tran-
sitions ⌥(10860) ! ⇡⇡⌥(nS), namely (i) through
the contact operators with two real parameters and
(ii) through B-meson production assuming point-
like vertices with the subsequent B-meson inter-
actions in the final state, that is, via the process
⌥(10860) ! B(⇤)B̄⇤⇡ ! ⇡⇡⌥(nS). Both mech-
anisms are supplemented with the ⇡⇡ FSI. Note
that in Ref. [39] also a possible impact of the box-
diagram mechanism was studied, which is not in-
cluded here. The underlying rationale is that in the
⌥(10860) decays the Zb states can go on-shell and
should by far dominate the e↵ects from the B(⇤)B⇤

intermediate states. The corresponding imaginary
parts in the production amplitudes are taken into
account explicitly in this work. As a consequence,
only two real subtraction constants defined in the
mechanism (i) are su�cient to dispersively recon-
struct the amplitude, which is insensitive to the
high-energy integration range. This is unlike to
Ref. [41], where two complex coe�cients were uti-
lized in a related study of the dipion transitions in
the charmonium sector.

(c) The Dalitz plots for the ⌥(10860) ! ⇡⇡⌥(nS)
transitions contain nontrivial information about
the Zb’s — these states can be clearly seen in the
⇡⌥(nS) invariant mass distributions and have im-
print also on the ⇡⇡ spectrum. Thus we analyse
the two-dimensional Dalitz plots to check whether
the results for the Zb’s from our previous analyses
are consistent with them.

The paper is organised as follows. In Sect. II we briefly
introduce the coupled-channel approach suggested and
used in Refs. [33, 34]. In Sect. III a dispersive approach to
the decay amplitude is developed to take into account the
⇡⇡ interaction in the final state. Section IV is devoted to
the data analysis for the reactions ⌥(10860) ! ⇡⇡⌥(nS)
(n = 1, 2, 3). Our conclusions are discussed in Sect. V.
Appendices A and B provide some technical details of the
dispersive approach used in this work, including a discus-
sion of the anomalous contributions to the amplitude.

and

! All the parameters from a coupled-channel approach in ML(t,u) fixed from data to the decays 

! Parameters in the fits: overall normalization N  and chiral LECs c1 and c2



☛ ""-KK FSI very important 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Results for M("Υ(nS))2 and M("")2 projections

☛ Very reasonable overall description
☛ Peaks of the Zb’s, consistent with B(⇤)B⇤ and ⇡⇡hb(mP )

<latexit sha1_base64="Kuq8uZG+cb1OTGoVNQjVuQtqj6g="></latexit>

, are not exactly in accord with "!(nS)

Key contribution to:

— right shoulder in M("")2

Υ(1S) and Υ(2S) 

— left shoulder in M("Υ(nS))2  n=1,2   

— dip region ~1 GeV in M("")2   

Υ(3S)

☛ Completely dominated by  
ML(t,u) = U(t)+U(u)

☛ "" FSI is not important



Summary
!

!

Line shapes for spin partners of Zb
(')

  states and their poles are predicted parameter free  
⟹  WbJ   can be searched for at Belle II

Line shapes in c and b-sectors can be systematically analysed within an EFT approach 
consistent with chiral and heavy quark symmetries, analyticity and unitarity 

! We analyse the line shapes ⌥(10860) ! ⇡Z(0)
b ! ⇡↵
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!

—А similar analysis of the LHCb Pc  states from ⇤b ! K Pc ! K J/ p
<latexit sha1_base64="joR2lS9LjDRrhY6uJaMUDMXLbY4="></latexit>

The Dalitz plot analysis of 

Strong evidence that the line shapes relevant for Zb
(')

 

 states can be understood within a molecular scenario!
⟹

⟹ poles and residues of the Zb
(') 

Talk by Meng-Lin Du on Thursday

⌥(10860) ! ⇡Z(0)
b ! ⇡⇡⌥(nS)
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including ""-KK FSI
yields very reasonable results with all parameters from Zb

(') fixed

A combined analysis of all channels within the same frameworkNext step:


