

Precision calculations in non-perturbative QCD (I): Effective Field Theories (EFT), analyticity and dispersion relations

Christoph Hanhart

Forschungszentrum Jülich

Motivation

Strategies to treat strongly interacting systems:

→ Phenomenological models

degrees of freedom: quarks or hadrons; Advantage: Typically guided by clear physical picture Disadvantage: Uncontrolled unertainty

\rightarrow Effective Field Theory

degrees of freedom: quarks or hadrons; Perturbative or Non-Perturbative Advantage: Controlled uncertainty (expansion in Q/Λ) Disadvantage: Limited range of applicability

\rightarrow Dispersion theory

degrees of freedom: hadrons Advantage: model independent Disadvantage: Needs proper inputs

\rightarrow Lattice QCD

The Concept of EFTs

S. Weinberg, PLB251(1990)288

see also talks by J.R. Pelaez and B. Mousallam in this session Starting point: Im-part of form factor F_i

$$\operatorname{Im}(F_i) = \sum_{k} t_{ik}^* \sigma_k F_k \quad \to \text{Dispersion Integral(s)}$$
$$F_i(s) = \frac{1}{\pi} \int dz \frac{\operatorname{Im}(F_i(z))}{z - s - i\epsilon}$$

for single channel \rightarrow Watson theorem and Omnès function e.g. for two channels:

$$t = \begin{pmatrix} \frac{\eta e^{2i\delta} - 1}{2i\sigma_{\pi}} & g e^{i\psi} \\ g e^{i\psi} & \frac{\eta e^{2i(\psi - \delta)}}{2i\sigma_{K}} \end{pmatrix} \text{ and } \Omega_{ij}(s) = \frac{1}{\pi} \int_{s_{\text{th}}}^{\infty} \mathrm{d}z \, \frac{(t)_{ik}^{*}(z)\sigma_{k}(z)\Omega_{kj}(z)}{z - s - i\epsilon}$$

and

- where the $\Omega_{ij}(s)$ are universal and the $M_i(s)$ are reaction dependent functions
- \implies Can be extended to higher energies by adding resonances

 $F_k(s) = \Omega_{ki}(s)M_i(s)$

Example $\Omega(\mathbf{s})$: $\pi\pi S$ - and P-waves

Precision calculations in non-perturbative QCD (I):Effective Field Theories (EFT), analyticity and dispersion relations - p. 5/15

Examples from T1.1 (leaks into T2.1)

- \rightarrow EFTs with Quarks and Gluons as d.o.f.s
 - Precision calc. with NREFTs (N. Brambilla)
 - Heavy Quarkonium Production in pNRQCD (H.S. Chung)
 - Effective field theory for double heavy baryons (J. Soto)
- \rightarrow EFTs for (exotic) hadrons
 - ▷ Isospin violation in $\psi \to \Lambda \overline{\Sigma}^0 + c.c.$ (A. Mangoni)
 - b The molecular nature of some exotic hadrons
 - ▶ talks by M.-L. Du, E. Oset, U.-G. Meißner, V. Baru
 - Interplay of Quark- and two hadron states
 - ▷ Charm mesons in a hot pion bath
 - > Triangle singularities in heavy ion collisions
- \rightarrow Dispersion Theory (+EFT)
 - ▷ Dispersive study of πK and $\pi \pi \rightarrow \overline{K}K$ (J.R. Pelaez)
 - \triangleright High energy extension of πK amplitudes
 - ▶ Revisiting the a_0 in $\gamma\gamma$ scattering (B. Mousallam)

High energy extension of dispersive approach

C.H., PLB715 (2012) 170; Ropertz et al., EPJC78 (2018) 1000, L. von Detten et al., in preparation We need unitary formalism that

- → Matches smoothly onto dispersive representation;
- \rightarrow Allows for the inclusion of additional resonances;
- \rightarrow Allows for the inclusion of additional channels.

Assumption: Additional channels couple via resonances only

$$T = T_0 + \tilde{\Omega} \left[1 - V_R \Sigma\right]^{-1} V_R \tilde{\Omega}^t \& F = \tilde{\Omega} \left[1 - V_R \Sigma\right]^{-1} M$$

with $t \& \Omega$ from above, embedded into enlarged channel space:

$$(T_0)_{ik} = t_{ik} (\tilde{\Omega}_{ik} = \Omega_{ik}) \text{ for } i, k \leq 2 \text{ and } 0 (1) \text{ otherwise}$$

 $\Sigma_{ij}(s) = \frac{s}{\pi} \int_{s_{\text{th}}}^{\infty} \frac{\mathrm{d}z}{z} \frac{\tilde{\Omega}_{ki}^*(z)\sigma_k(z)\tilde{\Omega}_{kj}(z)}{z-s-i\epsilon}$

 V_R = resonance potential. Previous form recovered for $V_R \equiv 0$

L. von Detten et al., in preparation 2 resonance poles; Input phase: J.R. Pelaez and A. Rodas, PRD93(2016)074025

The molecular nature of some exotic hadrons (Meson-baryon composite states from unitarized effective meson-baryon interactions)

A. Ramos, A. Feijoo, Q. Llorens, G. Montaña, Few Body Syst. 61 (2020) 4, 34

Employing conveniently unitarized effective meson-baryon interactions, we **reveal the existence of a N* resonance around 2 GeV**, having a YK* composite nature

- very sensitive to coupled-channel interference effects
- LO calculation still shows sizable regulator dependence

J.Nieves, R.Pavao and L.Tolos, Eur. Phys. J. C 80 (2020) no.1, 22

Detailed analysis of the robustness of the molecular interpretation of several experimental excited Ξ_c and Ξ_b states, using a coupled-channel unitarized model that is based on heavy-quark spin symmetry.

Evolution of the masses and widths of the dynamicallygenerated Ξ_c and Ξ_b states, as we vary the cutoff. The squares and their associated errorbars show the masses and widths of the experimental observed states.

Institute of Space Sciences

B. O. Kerbikov et al. ITEP-61-1978; E. van Beveren et al., PLB641(2006)265 I. K. Hammer, CH and A. V. Nefediev, EPJA52(2016)330

- → Start from a large number of compact states
- Couple to continuum channel
- → Study pole trajectories for increasing coupling

⇒ For large couplings: • A few collective states,

decoupled compact states

Charm mesons in a hot pion bath

M. Cleven, V.K. Magas, A. Ramos Phys.Lett. B799 (2019) 135050

We study the properties of the X(3872) in a pionic medium and find that, if it was a DDbar* molecule, it would develop a subtantial width, of the order of a few tens of MeV in hot pionic environments at temperatures 100-150 MeV.

Institute of Space Sciences

Heavy ion collisions blur triangle singularities (@UCMadrid)

Q: given such an experimental peak,

- is there an underlying particle?
- or is it rather a scattering effect such as a triangle singularity?
- Contribution: we computed (in the Matsubara formalism) several hadron triangle diagrams at finite T

 And showed that the triangle integral is severely affected and blurred dropping out of the apparent spectrum in RHIC/ALICE at T=150 MeV (except perhaps for pions in the loop)

Luciano Abreu and Felipe J. Llanes-Estrada, 2008.12031

- \rightarrow The hadron spectrum is still not known completely
- → There is a lot of evidence for states beyond the most simple realisation of the quark model
- \rightarrow EFTs are the systematic approach to make progress
 - ▷ On the quark level (see talk later in this meeting)
 - ▷ On the hadron level (this talk and later in this meeting)
- \rightarrow To access the hadron spectrum 'resummation' necessary
 - by solving differential equation
 - by solving LS equation
 - by employing dispersion theory
- \rightarrow Further information from lattice QCD
 - ▷ to fix low energy constants
 - provides information on quark mass dependence

 \implies important synergies!