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Motivation

Strategies to treat strongly interacting systems:

→ Phenomenological models
degrees of freedom: quarks or hadrons;
Advantage: Typically guided by clear physical picture
Disadvantage: Uncontrolled unertainty

→ Effective Field Theory
degrees of freedom: quarks or hadrons;

Perturbative or Non-Perturbative
Advantage: Controlled uncertainty (expansion in Q/Λ)
Disadvantage: Limited range of applicability

→ Dispersion theory
degrees of freedom: hadrons
Advantage: model independent
Disadvantage: Needs proper inputs

→ Lattice QCD
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The Concept of EFTs

S. Weinberg, PhysicaA96(1979)327
Applicable if there is separation of scales

→ Treat light degrees of freedom completely
(at scale Q)

→ Collect heavy degrees of freedom in
local counter terms

→ Expansion parameter: Q/Λ
=⇒ Allows for uncertainty estimate

Tailormade for particular system

Limited range of applicability

Non-pert. systems: Expand potential & resum
S. Weinberg, PLB251(1990)288

freedom;

Λ

heavy
d.o.f.

light
degrees of

scale Q
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Dispersion Theory (hadrons as d.o.f)

see also talks by J.R. Pelaez and B. Mousallam in this session

Starting point: Im-part of form factor Fi

Im(Fi) =
∑

k

t∗ikσkFk → Dispersion Integral(s)

Fi(s) =
1

π

∫

dz
Im(Fi(z))

z − s− iǫ

for single channel → Watson theorem and Omnès function
e.g. for two channels:

t =

(

ηe2iδ−1
2iσπ

geiψ

geiψ ηe2i(ψ−δ)

2iσK

)

and Ωij(s) =
1
π

∞
∫

sth

dz (t)∗ik(z)σk(z)Ωkj(z)
z−s−iǫ

and Fk(s) = Ωki(s)Mi(s)

where the Ωij(s) are universal and

the Mi(s) are reaction dependent functions

=⇒ Can be extended to higher energies by adding resonances
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Example Ω(s): ππ S- and P -waves
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Examples from T1.1 (leaks into T2.1)

→ EFTs with Quarks and Gluons as d.o.f.s
⊲ Precision calc. with NREFTs (N. Brambilla)

⊲ Heavy Quarkonium Production in pNRQCD (H.S. Chung)

⊲ Effective field theory for double heavy baryons (J. Soto)

→ EFTs for (exotic) hadrons

⊲ Isospin violation in ψ → ΛΣ0 + c.c. (A. Mangoni)

⊲ The molecular nature of some exotic hadrons

⊲ talks by M.-L. Du, E. Oset, U.-G. Meißner, V. Baru

⊲ Interplay of Quark- and two hadron states

⊲ Charm mesons in a hot pion bath

⊲ Triangle singularities in heavy ion collisions

→ Dispersion Theory (+EFT)

⊲ Dispersive study of πK and ππ → K̄K (J.R. Pelaez)

⊲ High energy extension of πK amplitudes

⊲ Revisiting the a0 in γγ scattering (B. Mousallam)
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High energy extension of dispersive approach

C.H., PLB715 (2012) 170; Ropertz et al., EPJC78 (2018) 1000, L. von Detten et al., in preparation

We need unitary formalism that

→ Matches smoothly onto dispersive representation;

→ Allows for the inclusion of additional resonances;

→ Allows for the inclusion of additional channels.

Assumption: Additional channels couple via resonances only

T = T0 + Ω̃ [1− VRΣ]−1 VR Ω̃t & F = Ω̃ [1 − VR Σ]−1 M

with t & Ω from above, embedded into enlarged channel space:

(T0)ik = tik (Ω̃ik = Ωik) for i, k 6 2 and 0 (1) otherwise

Σij(s) =
s
π

∞
∫

sth

dz
z

Ω̃∗

ki(z)σk(z)Ω̃kj(z)
z−s−iǫ

VR = resonance potential. Previous form recovered for VR ≡ 0
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High energy extension of dispersive approach

Pole extraction (Padé)
for the higher pole:

Re(
√
sp = (1878± 10) MeV

Im(
√
sp = (222± 6)/2 MeV

using s0 = 1.877 GeV

PDG lists for (M,Γ):

(1945± 22, 201± 90) MeV

We currently work on
extraction for K∗

0(1430).

L. von Detten et al., in preparation

2 resonance poles; Input phase: J.R. Pelaez and A. Rodas, PRD93(2016)074025
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Employing conveniently unitarized 
effective meson-baryon interactions, 
we reveal the existence of a N* 
resonance around 2 GeV, having a YK* 
composite nature

A. Ramos, A. Feijoo, Q. Llorens, 
G. Montaña, Few Body Syst. 61 (2020) 4, 34

The molecular nature of some exotic hadrons 
(Meson-baryon composite states from unitarized effective meson-baryon interactions)

The Molecular Nature of Some Exotic Hadrons Page 3 of 14 34

(a) (b) (c)

Fig. 1 Leading order tree level diagrams contributing to the MB interaction. Baryons and mesons are depicted by solid and
dashed lines, respectively

limit, employing effective Lagrangians of the hidden gauge formalism:

LV PP = ig〈
[
∂µφ,φ

]
Vµ〉 , (2)

LV BB = g
2

4∑

i, j,k,l=1

B̄i jkγ µ
(
V k
µ,l B

i jl + 2V j
µ,l B

ilk
)
, (3)

that describe the vertices coupling the vector meson to pseudoscalars (V PP) and baryons (V BB), respectively,
in the scattering of pseudoscalar mesons off baryons (PB). The coupling constant g is related to de pion decay
constant f and to a representative vector meson mass mv , taken as the ρ meson mass, by g = mv/2 f .

The interaction of vector mesons with baryons (V B) is built in a similar way and involves the three-vector
VVV vertex, which is obtained from:

LVVV = ig〈
[
Vµ, ∂νVµ

]
V ν〉 . (4)

The resulting V B interaction is that of Eq. (1) with the addition of the product of polarization vectors, εi · ε j .
In the above expressions, Φ, V and B represent the pseudoscalar, vector, and baryon tensor fields built up

from u, d, s and c quarks (labelled i = 1, 2, 3, 4, respectively). Despite SU (4) symmetry is incorporated in
the Lagrangians, the use of the physical hadron masses leads to an explicit SU(4) symmetry breaking in the
corresponding kernel. Further, a factor κc ∼ 1/4 is implemented in the non-diagonal transitions mediated by
the exchange of a charm vector meson to account for its higher mass with respect to the light ones. We note
that the transitions in which a light vector meson is exchanged, like the dominant diagonal ones, do not make
explicit use of SU (4) symmetry since they are effectively projected into their SU (3) content.

The s-channel and u-channel diagrams of Figs. 1(b) and (c), usually referred to as Born terms, have been
widely studied in S = −1 sector. Given the chiral nature of the vertices in that sector, these terms contribute
mainly in p-wave and their s-wave contribution is almost negligible at energies around the lowest threshold.
Nevertheless, as pointed out in Ref. [15], they may reach 20% of the leading order (LO) contact term of Eq. 1
at energies 200 MeV above threshold. A clear proof of the relevant role played by the s- and u-channels in
s-wave at higher energies can be seen in Ref. [41]. This phenomenology might naively skew one’s criteria to
justify omitting the Born terms from the LO calculations in other sectors. However, one should be cautious and
not only pay attention on the energy range but also on the symmetry-based structures required by the sector in
the vertices of the Born diagrams [42], as will be illustrated in one of the examples discussed in this work.

The sought resonances are dynamically generated as poles of the scattering amplitude Ti j , unitarized by
means of the on-shell Bethe-Salpeter equation in coupled channels, which implements the resummation of
loop diagrams to infinite order:

Ti j = Vi j + VilGlVl j + VilGlVlkGkVkj + · · · = Vi j + VilGlTl j . (5)

In the on-shell factorization approach, the former integral equation becomes an algrebraic one and the meson–
baryon loop function Gl is given by:

GI
l = i

∫
d4q
(2π)4

2Ml

(P − q)2 − M2
l + iε

1

q2 − m2
l + iε

, (6)

where Ml andml are, respectively, the masses of the baryon and meson in the loop. The ultraviolet divergence of
the loop is regularized using the dimensional regularization approach, which introduces a subtraction constant
al(µ) for each intermediate channel l at a given regularization scale µ. Alternatively, one could also employ
a cut-off regularization scheme. For a proper physics interpretation of the results, it is convenient to demand

• very sensitive to coupled-channel
interference effects 

• LO calculation still shows sizable
regulator dependence
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Detailed analysis of the robustness of the molecular 
interpretation of several experimental excited Xc

and Xb states, using a coupled-channel unitarized
model that is based on heavy-quark spin symmetry.

J.Nieves, R.Pavao and L.Tolos,
Eur. Phys. J. C 80 (2020) no.1, 22

Evolution of the masses and widths of the dynamically-
generated Xc andXb states, as we vary the cutoff. The
squares and their associated errorbars show the masses
and widths of the experimental observed states.

Bottom baryon states with J=1/2 and J=3/2 within SU(3) 
3* irreps. The question mark indicates our predictions.
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II Riemann sheet

dressed CQM state
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Sector Λ" 2625
&' = 3/2+

molecular state
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... or do the quark model states decouple?

B. O. Kerbikov et al. ITEP-61-1978; E. van Beveren et al., PLB641(2006)265

I. K. Hammer, CH and A. V. Nefediev, EPJA52(2016)330

→ Start from a large number of compact states

→ Couple to continuum channel

→ Study pole trajectories for increasing coupling

=⇒ For large couplings: • A few collective states,

• decoupled compact states
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Charm mesons in a hot pion bath

We study the properties of the X(3872) in a pionic
medium and find that, if it was a DDbar∗ molecule, it
would develop a subtantial width, of the order of a few
tens of MeV in hot pionic environments at
temperatures 100-150 MeV. 

M. Cleven, V.K. Magas, A. Ramos
Phys.Lett. B799 (2019) 135050M. Cleven et al. / Physics Letters B 799 (2019) 135050 3

Fig. 1. Row (a) represents the Bethe-Salpeter equation for the unitarized interaction
(black box) between the D (dashed line) and the D∗ (solid line) mesons, built from
multiple iterations of the interaction kernel (gray circle). The double dashed line
and the double solid lines represent the D and D∗ propagators, depicted in rows (b)
and (c), respectively, which have been dressed by the influence of the hot pion gas
through the corresponding self-energy insertions. Diagrams (d) and (e) represent
the self-energies of the D and D∗ mesons, respectively, obtained from closing the
pion (dotted) line of the unitarized Dπ or D∗π interaction (gray square) in a hot
medium.

Gii(s) = i
∫

d4q
(2π)4

1

[q2 − m2
1 + iε][(P − q)2 − m2

2 + iε]

= 1
16π2

[
α + log

m2
1

µ2 + m2
2 − m2

1 + s

2s
log

m2
2

m2
1
+ (9)

p√
s

(
log

s − m2
2 +m2

1 + 2p
√

s

−s +m2
2 − m2

1 + 2p
√

s

+ log
s +m2

2 − m2
1 + 2p

√
s

−s − m2
2 +m2

1 + 2p
√

s

)]
,

where the index i refers to the pair of mesons with masses m1 and
m2, p is the on-shell three-momentum of the mesons in the c.m.
frame and P 2 = s. The scale µ is set to 1.5 GeV and the subtraction
constant used here is α = −1.26. We note that our value for α is
slightly different from the value αH = −1.30 quoted in Ref. [25],
which was adjusted to reproduce the position of the X(3872). The
reason is that we are ignoring here the practically negligible effect
of the K K ∗ channel. With the present model and parameters the
X(3872) emerges as a pole of the scattering amplitude a couple of
MeV below the averaged D D∗ threshold. Varying the α parame-
ter by ±10% would move the pole just a few MeV away from the
empirical value. This is studied in detail in Ref. [28].

The properties of the X(3872) resonance in a hot pionic gas
will be derived from a temperature dependent amplitude obtained
by solving Eq. (8) with a two-meson loop function G that incor-
porates the medium effects. This amplitude is depicted diagra-
matically in Fig. 1(a). Within ITF, the meson-meson loop at finite
temperature reads

G MM ′(P 0, %P ; T )

=
∫

d3q
(2π)3

∫
dω

∫
dω′ SM(ω, %q; T )SM ′(ω′, %P − %q; T )

P 0 − ω − ω′ + iε
×

× [1 + f (ω, T )+ f (ω′, T )] , (10)

where f (ω, T ) = [exp(ω/T ) − 1]−1 is the meson Bose distribution
function at temperature T , while SM(ω, %q; T ) denotes the spectral
function of meson M ,

SM(ω, %q; T )= −(1/π)Im(D M(ω, %q; T )) , (11)

which is related to the imaginary part of the meson propagator
given by

D M(ω, %q; T ) = [ω2 − %q 2 − m2
M − %M(ω, %q; T )]−1 , (12)

and depicted by Figs. 1(b) and 1(c) for the D and D∗ mesons, re-
spectively. The quantity %M(ω, %q; T ) is the meson self-energy. As
seen from the diagrams (d) and (e) of Fig. 1, corresponding to the
D and D∗ mesons, respectively, these self-energies are obtained by
closing the pion line in the Mπ → Mπ amplitude (with M = D or
D∗), represented by the gray box, leading to

%M(p0, %p; T ) =
∫

d3q
(2π)3

∫
d&

f (&, T ) − f (ωπ , T )

(p0)2 − (ωπ − &)2 + iε
×

×
(

− 1
π

)
ImT Mπ (&, %p + %q; T ) . (13)

3. Results

The self-consistent determination of the meson self-energies
has been done in Ref. [23] and we show here the results for the
most relevant mesons, D and D∗ . Their zero momentum spectral
functions are shown in Fig. 2 as functions of energy p0 for various
temperatures. As already commented in Ref. [23], the shift of the
spectral function peak, related to the real part of the self-energy,
is negligible, while the width, connected to its imaginary-part, be-
comes substantially larger as temperature increases. We note that
the dependence with temperature of the finite-momentum spec-
tral functions is very similar to that seen for the zero-momentum
case shown in Fig. 2, the only apreciable difference being the loca-
tion of the peak that moves with momentum following roughly a
(M2 + %P 2)1/2 law, with M = MD or MD∗ .

In the following we discuss the effect that the finite temper-
ature spectral functions of the charmed mesons have in the loop
function and, consequently, in the amplitude T D D∗ , which signals
the generation of the X(3872).

The left and right panels of Fig. 3 show the real and imaginary
parts of the D D∗ loop, respectively, as functions of the total energy
P 0 for a total momentum %P = 0 and various temperatures. Below
threshold we find that the finite temperature real part retains its
shape but is slightly shifted compared to the vacuum case, increas-
ingly so with increasing temperature. Above threshold the effect
of the hot pion bath becomes more pronounced. Instead of the
sharp rise after the kink at threshold observed in vacuum, we see
a smoother behavior and a slower rise at finite temperature, result-
ing in differences of about a factor two in size far above threshold.
However, this is beyond the energy region of interest with regard
to the X(3872). For the imaginary part of the loop we see a similar
behavior. The sharp opening of the unitarity cut at zero tempera-
ture is transformed into a smoother curve at finite temperature. It
is interesting to note that there is a substantial strength in a range
of a few tens of MeV below threshold, right where the vacuum
imaginary part vanishes. This is quite significant since it means
that the energy region where the pole of the X(3872) is located is
affected strongly by the surrounding pions. Thus the loosely bound
X(3872) is an excellent candidate to study the effect of the hot
medium compared to more tightly bound states.

The noticeable effect of temperature on the D D∗ loop around
threshold is due to an important modification of the Dπ and D∗π
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Heavy ion collisions blur triangle singularities (@UCMadrid)

Q: given such an experimental peak,

I is there an underlying particle?

I or is it rather a scattering effect such
as a triangle singularity?

I Contribution: we computed (in the
Matsubara formalism) several hadron
triangle diagrams at finite T

I And showed that the triangle integral
is severely affected and blurred
dropping out of the apparent spectrum
in RHIC/ALICE at T=150 MeV
(except perhaps for pions in the loop)

Luciano Abreu and Felipe J. Llanes-Estrada, 2008.12031

F. J. Llanes-Estrada A primer on neutron stars and their particle physics aspects
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Summary

→ The hadron spectrum is still not known completely

→ There is a lot of evidence for states beyond the most simple
realisation of the quark model

→ EFTs are the systematic approach to make progress

⊲ On the quark level (see talk later in this meeting)

⊲ On the hadron level (this talk and later in this meeting)

→ To access the hadron spectrum ’resummation’ necessary

⊲ by solving differential equation

⊲ by solving LS equation

⊲ by employing dispersion theory

→ Further information from lattice QCD

⊲ to fix low energy constants

⊲ provides information on quark mass dependence

=⇒ important synergies!
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