Theoretical aspects of Hadron Spectroscopy and Phenomenology

Revisiting the *a*⁰ resonances in photon-photon scattering

Bachir Moussallam

in collaboration with: Junxu Lu (Beihang U., Beijing)

Valencia, Dec. 15-17, 2020

- a₀ resonances seen in recent photon-photon experiment [Belle (2009)] different from previous results ?
 - $a_0(980)$ seen long ago [Astier(1967)] (in K_0K^-),[Ammar(1969)] (in $\pi\eta$)
 - Shape strongly distorted by $K\overline{K}$ threshold
 - Ambiguity in width determination [Flatté (1976)]
 - Lattice QCD [J.Dudek et al., PR D93,094506 (2016)]: a₀(980) pole on <u>4th</u> Riemann sheet ?
 - $a_0(1450)$ indications from multimeson final states $[\bar{p}p \rightarrow \eta \pi \pi, K \overline{K} \pi]$, broad resonance ($\Gamma \simeq 265$ MeV)

Belle claims:

- $-a_0(980)$ has a Breit-Wigner shape
- $a_0(1450)$ narrow resonance: $\Gamma = 65^{+2.1}_{-5.4}$ MeV
- Our approach: photon-photon amplitudes are "simple" FSI problem
 - Apply theoretical techniques (ChPT, dispersive/Omnès)
 - Perform combined fits $\gamma\gamma \rightarrow \pi\eta$, $K\overline{K}$
 - Extract information on strong *T*-matrix elements $[\pi\eta \rightarrow \pi\eta, \pi\eta \rightarrow K\overline{K}, K\overline{K} \rightarrow K\overline{K}]$
 - Resonances : extrapolate to complex energies

ChPT approach to photon-photon:

- First calculation: $\gamma \gamma \rightarrow \pi^0 \pi^0$ [J.Bijnens,F.Cornet, NP B296(1988)557]
 - No tree contribution, loop is finite

$$H_{++}(s,t) = rac{1}{8\pi^2} igg(rac{s-m_\pi^2}{F_\pi^2} \, G_\pi(s) + rac{s}{4F_\pi^2} G_K(s) igg)$$

- Simple structure, loop function:

$$G_P(s) = -1 - rac{m_P^2}{s} igg(\log rac{\sqrt{1 - 4m_P^2/s} + 1}{\sqrt{1 - 4m_P^2/s} - 1} igg)^2$$

– When $\underline{s \rightarrow 0}$: $G_P(s) \sim s/(12m_P^2)$ soft photon theorem

• $\gamma \gamma \rightarrow \pi^0 \eta$ very similar [Ll.Amettler, PL B278,185 (1992)]

$$L_{++}(s,t) = \frac{1}{8\pi^2} \left(\frac{\sqrt{3}(9s - m_{\pi}^2 - 8m_{K}^2 - 3m_{\eta}^2)}{36F_{\pi}^2} G_K(s) + \frac{B_0(m_d - m_u)}{3\sqrt{3}(m_{\eta}^2 - m_{\pi}^2)F_{\pi}^2} (4m_{\pi}^2 - 3s)G_{\pi}(s) \right)$$

- Soft pion theorem: Adler zero $\underline{s_A} = m_{\eta}^2 + O(m_{\pi}^2)$

– Isospin breaking part: relevant for $\eta \to \pi^0 \gamma \gamma$

- One loop is not enough
 - Resummation of higher loops: replace tree-level amplitudes by unitarized amplitudes [J.Oller,E.Oset NP A629(1998)739]
 - More general: dispersion relations/Omnès method
 [M.Gourdin, A.Martin, Nuov.Cim.17(1960)224, D.
 Morgan, M. Pennington, PL B192(1987)207]

Structure of <u>partial waves</u> can be complicated
 [J. Kennedy, T.D. Spearman PR D126,1596 (1961)]

But quite simple for two-photons amplitudes: $l_{0++}(s)$, $k_{0++}(s)$: analytic functions of s

- One left-hand cut: $[-\infty, 0]$
- One right-hand cut $[(m_{\eta} + m_{\pi})^2, \infty]$

- Asymptotic behaviour ?
 Integrate over z = cos(θ) from 0 to 1
 - $\underline{z} \simeq 0$: $t \sim u \sim -s \rightarrow -\infty$ [S.Brodsky,G.Lepage, PR D24,1808 (1981), M.Diehl,P.Kroll,C.Vogt, PL B532,99 (2002)]

$$L_{++}(s,t) \ll L_{+-}(s,t) \sim \frac{\alpha_s(-s)}{s}$$

 $- \underline{z \simeq 1}$:Regge regime

$$L_{++}(s,t) \sim \beta_V(t)(\alpha's)^{\alpha_V+\alpha't}$$

– Conclusion: partial wave $I_{0++}(s) \lesssim \sqrt{s}$

Dispersion relations with one subtraction:

$$\begin{split} l_{0++}(s) &= s \left[\frac{1}{\pi} \int_{-\infty}^{s_{V}} ds' \frac{\operatorname{Im}\left[l_{0++}(s')\right]}{s'(s'-s)} + \frac{1}{\pi} \int_{m_{+}^{2}}^{\infty} ds' \frac{\operatorname{Im}\left[l_{0++}(s')\right]}{s'(s'-s)} \right] \\ k_{0++}^{1}(s) &= k_{0++}^{1,Born}(s) \\ &+ s \left[\frac{1}{\pi} \int_{-\infty}^{s_{K^{*}}} ds' \frac{\operatorname{Im}\left[k_{0++}^{1}(s')\right]}{s'(s'-s)} + \frac{1}{\pi} \int_{m_{+}^{2}}^{\infty} ds' \frac{\operatorname{Im}\left[k_{0++}^{1}(s')\right]}{s'(s'-s)} \right] \\ &- k_{0++}^{1,Born}(s): \gamma\gamma \to K^{+}K^{-} \text{ QED Born amplitude } (I=1) \end{split}$$

- Soft-photon theorem implemented: no free parameter
- Left-cut: light resonance exchanges : ρ , ω , K^* ,... in cross-channels $\gamma \pi \rightarrow \gamma \eta$, $\gamma K \rightarrow \gamma K$

• Two-channel unitarity $(\sqrt{s} \leq 1.4 GeV)$

$$\operatorname{Im} \begin{pmatrix} l_{0++}(s) \\ k_{0++}(s) \end{pmatrix} = \begin{pmatrix} T_{11}^*(s) & T_{12}^*(s) \\ T_{21}^*(s) & T_{22}^*(s) \end{pmatrix} \begin{pmatrix} \sigma_{\pi\eta}(s) & 0 \\ 0 & \sigma_{KK}(s) \end{pmatrix} \begin{pmatrix} l_{0++}(s) \\ k_{0++}(s) \end{pmatrix}$$

- Generate Muskhelishvili-type integral equations [R.Omnès, Nuov.Cim.8, 316 (1958)]
- Amplitudes expressed in terms of Omnès-Muskhelishvili matrix $\Omega(s)$
- Ω -matrix must be determined <u>numerically</u> from *T*-matrix

 Omnès with <u>two</u> subtraction parameters: (parameters absorb <u>high-energy</u> contributions)

$$\begin{pmatrix} l_{0++}(s) \\ k_{0++}^{1}(s) \end{pmatrix} = \begin{pmatrix} 0 \\ k_{0++}^{1,Born}(s) \end{pmatrix} + s \, \boldsymbol{\Omega}(s) \begin{pmatrix} b_{l} + L_{1}(s) + R_{1}(s) \\ b_{k} + L_{2}(s) + R_{2}(s) \end{pmatrix}$$

- $L_1(s)$, $L_2(s)$: left-cut integrals

$$L_{i}(s) = \frac{s - s_{A}}{\pi} \int_{-\infty}^{s_{V}} \frac{ds'}{s'(s' - s_{A})(s' - s)} D_{i1}(s') \operatorname{Im} [I_{0++}^{V}(s')] + \frac{s - s_{A}}{\pi} \int_{-\infty}^{s_{K^{*}}} \frac{ds'}{s'(s' - s_{A})(s' - s)} D_{i2}(s') \operatorname{Im} [k_{0++}^{V}(s')]$$

with $D_{ij}(s) = [\boldsymbol{\Omega}^{-1}]_{ij}$

- $R_1(s)$, $R_2(s)$: integrals of Born amplitude

$$R_{i}(s) = -\frac{s - s_{A}}{\pi} \int_{4m_{K}^{2}}^{\infty} \frac{ds'}{s'(s' - s_{A})(s' - s)} \operatorname{Im} \left[D_{i2}(s')\right] k_{0++}^{1,Born}(s')$$

– Adler zero at $s = s_A$ in l_{0++} :

$$\Omega_{11}(\boldsymbol{s}_{A})\boldsymbol{b}_{l} + \Omega_{12}(\boldsymbol{s}_{A})\boldsymbol{b}_{k} = 0$$

Two-channel *T*-matrix model (J = 0, I = 1)

- [M. Albaladejo, B.M., EPJ C75,488 (2015)]
- K-matrix representation: $\mathbf{T}(s) = (1 \mathbf{K}(s)\boldsymbol{\Phi}(s))^{-1}\mathbf{K}(s)$

- Unitarity: **K**(s) real in
$$s > (m_{\eta} + m_{\pi})^2$$

Im $\mathbf{\Phi}(s) = \begin{pmatrix} \sigma_{\pi\eta}(s) & 0 \\ 0 & \sigma_{KK}(s) \end{pmatrix}$

$$\begin{array}{l} - \ \textbf{K} = \textbf{K}_{(2)} + \textbf{K}_{(4)} + \textbf{K}_{(6)} \\ \textbf{K}_{(2)}, \ \textbf{K}_{(4)} \ \ \textbf{chiral exp.} \ \ \textbf{from matching to} \ \textbf{T}_{(2)} + \textbf{T}_{(4)} \end{array}$$

– matching of $T_{(4)}^{K\overline{K}\to K\overline{K}}(s)$ approximate

• 6 Parameters:
$$[K_{(6)}]_{ij}(s) = \lambda \frac{g_i g_j}{16\pi} \left(\frac{1}{m_8^2 - s} - \frac{1}{m_8^2} \right)$$
and

$$\boldsymbol{\varPhi}(s) = \begin{pmatrix} \alpha_1 + \beta_1 s + 16\pi \bar{J}_{\pi\eta}(s) & 0\\ 0 & \alpha_2 + \beta_2 s + 16\pi \bar{J}_{\mathcal{KK}}(s) \end{pmatrix}$$

model allows for two resonance poles below 1.5 GeV

• 7 parameters in $\gamma\gamma$ amplitudes:

- 1 param. in Omnès S-waves (assuming Adler zero $s_A \simeq m_\eta^2$)
- 6 D-wave parameters (couplings of a_2 , f_2 , m_{a_2} , Γ_{a_2})

Experimental data

- → $d\sigma_{\gamma\gamma \to \pi^0\eta}/dz$: <u>448 data points</u> in range [0.85 1.39] GeV [S. Uehara et al. (Belle), PR D80,032001 (2009)]
- → $d\sigma_{\gamma\gamma \to K_S K_S}/dz$: 240 data points in range [1.105 1.395] GeV [S. Uehara et al.(Belle), PTEP 12,123C01 (2013)]
- → Also considered $\sigma_{\gamma\gamma \to K^+K^-}$: 7 data points [H. Albrecht et al. (ARGUS), Z.Phys. C48,183 (1990)]

<u>NOTE</u>: must combine $\gamma\gamma \rightarrow (K\overline{K})_{I=1}$ with $\gamma\gamma \rightarrow (K\overline{K})_{I=0}$, taken from [R. García-Martín, B.M., EPJ C70,155 (2010)]

Fits to the experimental data

- Good fits are obtained provided <u>all</u> parameters (6+7) are varied
- Two different minimums found by MINUIT Fit I: $\chi^2 = 428$

Fit II:
$$\chi^2 = 439$$

	α_1	$\beta_1({\sf GeV}^{-2})$	α2	$\beta_2(\text{GeV}^{-2})$	$m_8(\text{GeV})$	λ
fit I	4.00(8)	-2.23(4)	-0.545(5)	0.167(6)	1.304(4)	0.47(4)
fit II	0.98(3)	-4.07(1)	-0.495(1)	-0.18(1)	0.900(2)	1.064(1)

 \rightarrow Pole mass m_8 quite different

$M - i\Gamma/2$ (MeV)	Fit I	Fit II
<i>a</i> ₀ (980)	1020.3-i 49.3	1000.7-i 36.6
<i>a</i> ₀ (1450)	1314.4-i 24.5	1420.9-i 174.4

- $a_0(980)$ pole on 2nd Riemann sheet
- a₀(980) mass slightly higher than PDG Differs from [Danilkin et al., PR D96,114018 (2017)] 4th sheet: √s_{pol} = 1120⁺⁷⁰₋₂₀ - i140⁺⁴⁰₋₇₀ (MeV).
- Belle's narrow $a_0(1450)$ recovered in fit I

Why no sharp a₀(1450) peak in Fit I ?

 $d^0_{00}(\theta)-d^2_{00}(\theta)=\sqrt{2}d^2_{20}(\theta)$ No S-wave effect left !

→ Coincidence of fast energy variations seem unphysical

Decay mode: $\eta
ightarrow \pi^0 \gamma \gamma^{-1}$

- Interest in the 90's [J.Ng,D. Peters,PR D46,5034(1992), L. Amettler et al.,PL B276,185 (1992), E.Oset et al.,PR D67,073013(2003)]
 Tensions with experimental data (factor 2)
- Improved in recent measurements [S.Prakhov et al.(AGS),PR C78,015206 (2008), B. Nefkens (MAMI) PR C90,025206 (2014)]
- Deduced from dispersive $\gamma \gamma$ amplitudes $0 \leq s \leq (m_{\eta} - m_{\pi})^2$ but:
 - → Isospin violating contribution: $\gamma \gamma \rightarrow \pi^+ \pi^-$, $\pi^+ \pi^- \rightarrow \pi^0 \eta$ should be included in unitarity
 - \rightarrow Sensitivity to position of Adler zero

Results for $\eta \rightarrow \pi^0 \gamma \gamma$

Our calc. includes π⁺π⁻ → π⁰η from Khuri-Treiman solutions [M.Albaladejo, BM, EPJ C77,508(2017)] π⁺π⁻ produces visible cusp

• Adler zero
$$s_A = m_{\eta}^2 + 3m_{\pi}^2$$
 favoured

- We constructed dispersive/Omnès S-wave amplitudes $\gamma\gamma \rightarrow \pi^0\eta$, $(K\overline{K})_{I=1}$ (+model T-matrix with some flexibility)
- Compared with data $\gamma\gamma \rightarrow \pi\eta$, $K_SK_S(K^+K^-)$
- Possibility of narrow a₀(1450) confirmed (but requires curious cancellation between 0⁺⁺ and 2⁺⁺)
- $a_0(980)$ ordinary second sheet pole:

$$M - i\Gamma/2 = 1000.7^{+12.9}_{-0.7} - i\,36.6^{+12.7}_{-2.3}$$
 (MeV)

- Unlike lattice QCD ? (but $m_{\pi} = 391$ MeV)
- Specific shape of $a_0(980)$ peak requires more statistics