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Material for discussion/references: NREFTs, pNRQCD

SM parameters extractions : alphas and the quark masses

Determination of the QCD coupling from the static energy and the free energy 
#TUMQCD Collaboration•Alexei Bazavov(Michigan State U. and Michigan State U., East Lansing (main)) N. B.  et al. (Jul 26, 2019)   
Published in: Phys.Rev.D 100 (2019) 11, 114511 • e-Print: 1907.11747 

  TUMQCD Collaboration•N. Brambilla(Munich, Tech. U. and TUM-IAS, Munich) et al. (Dec 13, 2017)  
 Published in: Phys.Rev.D 97 (2018) 3, 034503 • e-Print: 1712.04983

Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD 
  Fermilab Lattice and MILC and TUMQCD Collaborations•A. Bazavov(Michigan State U.)  N. B., et al. (Feb 12, 2018) 
 Published in: Phys.Rev.D 98 (2018) 5, 054517 • e-Print: 1802.04248

Relations between Heavy-light Meson and Quark Masses 

. Effective field theories for heavy quarkonium  
Nora Brambilla,  Antonio Pineda, Joan Soto, Antonio Vairo   
Rev.Mod.Phys. 77 (2005) 1423  
e-Print: hep-ph/0410047

Lattice gauge theory computation of the static force 
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Heavy quarks offer a privileged access to the strong 

sector of the Standard Model

Q

v

q

heavy light meson: HQET
only two scales exist                andm ΛQCD

A large scale αs(mQ) ! 1mQ ! ΛQCD

Q̄

Q

v

r

Quarkonium: nonrelativistic 

multiscale system 

m mv ∼ r
−1

mv
2

ΛQCD

v ! 1 → m # mv # mv
2

many scales: a challenge and an opportunity
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The rich structure of separated energy scales makes QQbar  an ideal probe
Quarkonium as a confinement and deconfinement probe

It is precisely the rich structure of separated energy scales that makes quarkonium an
ideal probe of confinement and deconfinement.

• The different quarkonium radii provide different measures of the transition from a
Coulombic to a confined bound state.

V  (r)
(0)

(GeV)

2

1

0

-1

1 2 r(fm)

! ! !

" # #

!

 2$ #c

ΛQCD

Low lying QQ̄ High lying QQ̄

◦ Godfrey Isgur PRD 32(85)189

• Different quarkonia will dissociate in a medium at different temperatures, providing
a thermometer for the plasma.

◦ Matsui Satz PLB 178(86)416

At zero temperature 

quarkonia probe the perturbative (high energy)  and non 
perturbative region (low energy)  as well as the transition 

region in dependence of their radius r

Quarkonium as a confinement and deconfinement probe
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QCD theory of Quarkonium: a very hard problem
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multiscale diagrams have a complicate power 
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In QCD another scale is relevant ΛQCD
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In QCD another scale is relevant ΛQCD

Quarkonium with NR EFT: pNRQCD strongly 
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this the region where to 
 extract precise determinations of alphas 

and the quark masses 
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N. B., Ghiglieri,Petreczky, Vairo 08 
Effective Field Theories

QCD

NRQCD

pNRQCD
pNRQCD

NRQCDHTL

HTL

m

〈1/r〉 ∼ mv

V ∼ mv2

T
mD

◦ Brambilla Pineda Soto Vairo RMP 77(05)1423
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∼

mD

We neglect smaller thermodynamical scales.
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We assume that bound states exist for
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We neglect smaller thermodynamical scales.

if T > 1/r  the potential has thermal effects 
that can be systematically calculated with  

pNRQCD

Weak coupling

In the weak coupling regime:

• v ∼ αs " 1; valid for tightly bound states: Υ(1S), J/ψ, ...

• T # gT ∼ mD .

Effects due to the scale ΛQCD will not be considered.

Notice: 
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QCD  singlet static potential  and singlet  static energy 
The Static Potential
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potential

contributes from 3 loops 

The potential is a Wilson coefficient of the EFT.  
In general, it  undergoes renormalization, develops scale 
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Quarkonium singlet static potential at N^4LO
The static potential at N4LO
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Static singlet potential at N^4LO

Static singlet potential
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Unknown

Smirnov, Smirnov, Steinhauser 08

3loops  reduces to 1loop in the EFT

4loops  reduces to 2loops in the EFT



Quarkonium singlet static potential at N^4LO
The static potential at N4LO

Vs(r, µ) = −CF
αs(1/r)

r

"

1 + a1
αs(1/r)

4π
+ a2

„
αs(1/r)

4π

«2

+

„
16 π2

3
C3

A ln rµ + a3

« „
αs(1/r)

4π

«3

+

„

aL2
4 ln2 rµ +

„

aL
4 +

16

9
π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ + a4

« „
αs(1/r)

4π

«4
#

aL2
4 = −

16π2

3
C3

A β0

aL
4 = 16π2C3

A

»

a1 + 2γEβ0 + nf

„

−
20

27
+

4

9
ln 2

«

+CA

„
149

27
−

22

9
ln 2 +

4

9
π2

«–

◦ Brambilla et al PRD 60(99)091502, PLB 647(07)185

Two problems:
1)Bad convergence of the series due to large beta_0 terms
2) Large logs



Quarkonium singlet static potential at N^4LO
The static potential at N4LO

Vs(r, µ) = −CF
αs(1/r)

r

"

1 + a1
αs(1/r)

4π
+ a2

„
αs(1/r)

4π

«2

+

„
16 π2

3
C3

A ln rµ + a3

« „
αs(1/r)

4π

«3

+

„

aL2
4 ln2 rµ +

„

aL
4 +

16

9
π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ + a4

« „
αs(1/r)

4π

«4
#

aL2
4 = −

16π2

3
C3

A β0

aL
4 = 16π2C3

A

»

a1 + 2γEβ0 + nf

„

−
20

27
+

4

9
ln 2

«

+CA

„
149

27
−

22

9
ln 2 +

4

9
π2

«–

◦ Brambilla et al PRD 60(99)091502, PLB 647(07)185

Two problems:
1)Bad convergence of the series due to large beta_0 terms
2) Large logs

for long it was believed  that such series was not convergent

problem for any phenomenological application



Quarkonium singlet static potential at N^4LO
The static potential at N4LO

Vs(r, µ) = −CF
αs(1/r)

r

"

1 + a1
αs(1/r)

4π
+ a2

„
αs(1/r)

4π

«2

+

„
16 π2

3
C3

A ln rµ + a3

« „
αs(1/r)

4π

«3

+

„

aL2
4 ln2 rµ +

„

aL
4 +

16

9
π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ + a4

« „
αs(1/r)

4π

«4
#

aL2
4 = −

16π2

3
C3

A β0

aL
4 = 16π2C3

A

»

a1 + 2γEβ0 + nf

„

−
20

27
+

4

9
ln 2

«

+CA

„
149

27
−

22

9
ln 2 +

4

9
π2

«–

◦ Brambilla et al PRD 60(99)091502, PLB 647(07)185

Two problems:
1)Bad convergence of the series due to large beta_0 terms
2) Large logs

The eft  cures both:
1) Renormalon subtracted scheme 

2) Renormalization group summation of the logs
up to N^3LL (↵4+n

s lnn ↵s).               N. B Garcia, Soto Vairo 2007, 2009, Pineda, Soto

Beneke 98, Hoang, Lee 99, Pineda 01, N.B. Pineda 
Soto, Vairo 09

for long it was believed  that such series was not convergent

problem for any phenomenological application



0.2 0.3 0.4 0.5 0.6

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

r ! r0

r 0
E 0
"r#"co

ns
t.

QQbar singlet static energy at N^3Ll in comparison with unquenched 
(n_f=2+1) lattice data (red points,blue points)  

Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019



0.2 0.3 0.4 0.5 0.6

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

r ! r0

r 0
E 0
"r#"co

ns
t.

Tree 
level

QQbar singlet static energy at N^3Ll in comparison with unquenched 
(n_f=2+1) lattice data (red points,blue points)  

Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019



0.2 0.3 0.4 0.5 0.6

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

r ! r0

r 0
E 0
"r#"co

ns
t.

Tree 
level

1loop

QQbar singlet static energy at N^3Ll in comparison with unquenched 
(n_f=2+1) lattice data (red points,blue points)  

Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019



0.2 0.3 0.4 0.5 0.6

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

r ! r0

r 0
E 0
"r#"co

ns
t.

Tree 
level

1loop

QQbar singlet static energy at N^3Ll in comparison with unquenched 
(n_f=2+1) lattice data (red points,blue points)  

N^2LL

Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019



0.2 0.3 0.4 0.5 0.6

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

r ! r0

r 0
E 0
"r#"co

ns
t.

Tree 
level

1loop

QQbar singlet static energy at N^3Ll in comparison with unquenched 
(n_f=2+1) lattice data (red points,blue points)  

N^2LL

N^3LL
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019



0.2 0.3 0.4 0.5 0.6

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

r ! r0

r 0
E 0
"r#"co

ns
t.

Tree 
level

1loop

QQbar singlet static energy at N^3Ll in comparison with unquenched 
(n_f=2+1) lattice data (red points,blue points)  

N^2LL

N^3LL
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019

Good  convergence to the lattice data 
Lattice data less  accurate in the unquenched case



0.2 0.3 0.4 0.5 0.6

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

r ! r0

r 0
E 0
"r#"co

ns
t.

Tree 
level

1loop

QQbar singlet static energy at N^3Ll in comparison with unquenched 
(n_f=2+1) lattice data (red points,blue points)  

N^2LL

N^3LL
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019

Good  convergence to the lattice data 
Lattice data less  accurate in the unquenched case

corresponding to
�s(1.5GeV, nf = 3) = 0.336+0.012

�0.008

�s(Mz, nf = 5) = 0.1166+0.0012
�0.0008



11

Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln

✓
1

Nc
hTr

⇥
W (r)W †(0)

⇤
i

◆
. (10)

At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-

Extraction of alphas from the static energy
13

we estimate the uncertainty due to temperature e↵ects
from the di↵erence of the central values of ↵s for any
combination of N⌧ values in each fit interval.

First, we perform fits in the range where temperature
e↵ects are expected to be constant and the scale hierar-
chy 1/r � ↵s/r � T � mD ⇠ gT applies. We report
the result of representative fits with r/a  2 in Tab. V,
which corresponds to rT . 0.17 or 0.13 for N⌧ = 12 or
16, respectively. The central values of ↵s in fits to the
singlet free energy with N⌧ = 12 or 16 bracket the result
for the static energy at zero temperature, with devia-
tions being smaller than any other uncertainties. Hence,
we conclude that we do not resolve nonconstant T > 0
e↵ects as expected. As for the T = 0 analysis, we see
a marginal decrease of the central value of ↵s upon re-
striction to shorter distances. This decrease is about the
same magnitude as in the T = 0 analysis, but is delayed
to significantly shorter distances, which supports our in-
terpretation that it is due to imperfections of the nonper-
turbative improvement procedure. Within the smallest
statistical uncertainties or within the even smaller es-
timates of the lattice discretization uncertainties, all of
these results are consistent with the zero temperature
analysis of the previous section, while the individual es-
timates of perturbative errors are systematically smaller,
compare with Tab. III.

Next, we perform fits in the range where temperature
e↵ects beyond a constant appear to be small due to ac-
cidental cancellations. We assume the same scale hierar-
chy 1/r � ↵s/r � T � mD ⇠ gT , noting that it is at
present not verifiable if the ultra-soft factorization scale
dependence cancels in this case. Namely, we perform
the fits with r/a  3 and report the results in Tab. V as
well7. This corresponds to rT . 0.25 or 0.19 for N⌧ = 12
or 16 respectively. �2/d.o.f. is practically unchanged for
N⌧ = 12, but increases slightly forN⌧ = 16. Remarkably,
the agreement with the previous T = 0 analysis, using up
to r/a  5, does not change significantly as max(r) be-
comes larger. This suggests that the di↵erences between
the results are not caused by e↵ects of the finite tem-
perature, but rather by the more severe influence of the
imperfections of the nonperturbative improvement pro-
cedure in the T = 0 analysis with r/a  2 or r/a  3.
Hence, the estimate of the �T>0 errors for r > 0.05 fm
cannot be separated from the �lat errors due to lattice
discretization uncertainties.

Let us summarize the considerations of the preced-
ing paragraphs. For T > 0 we have to use r/a . 2
to guarantee the cancellation of ultra-soft factorization
scale dependence, although we do not see any indication
that it does not work for somewhat larger distances, i.e.,

7 Using an even larger fit range up to r/a 
p
12 leads to the

same conclusions, i.e., the nonconstant thermal e↵ects are still
numerically irrelevant.
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FIG. 10. Normalized lattice data and weak-coupling result for
the static energy in units of r1. We use a logarithmic scale
for the coordinate axis. The colored or gray bullets show the
nonperturbatively improved (NPI) lattice data for r/a  2
or 2 < r/a 

p
12. The three-loop with leading ultra-soft

resummation with standard scales is shown for the ↵s(MZ)
grid values corresponding to the best fits for the r and rT
intervals as indicated. The vertical lines of the same color
indicate max(r) of the fits.

r/a  3. The weak-coupling picture suggests that cancel-
lation between di↵erent medium e↵ects is responsible for
the small thermal modification of the singlet free energy.
While the medium e↵ects according to the weak-coupling
picture are not unambiguously resolved in the data, the
data seem to be a↵ected by an accidental cancellation
in the temperature window under consideration. Pertur-
bative uncertainties are dramatically reduced at smaller
distances max(r). In Fig. 10 we show our final T = 0
result with the reported �2/d.o.f. for two di↵erent fits
to the singlet free energy data. The data show no non-
trivial thermal e↵ects in the ranges considered and are
consistent with the central value of the T = 0 result.

Given the considerations of the preceding paragraphs,
we take the N⌧ = 12 result for 1  r/a  2 and max(r) =
0.030 fm, namely, ↵s(MZ) = 0.11638 as our final result,

which corresponds to r1⇤
Nf=3

MS
= 0.4900. Furthermore,

it has a largely independent error budget. We note that
the finite temperature result for these distances does not
depend on gauge ensembles corresponding to the larger
sea quark mass, i.e., uses exclusively ensembles withml =
ms/20. The scale uncertainty is the same as in the T =

0 analysis, �scale = ±1.7MeV for ⇤
Nf=3

MS
, and �scale =

±0.00010 for ↵s(MZ , Nf = 5). Therefore, the final result
and full error budget of our finite temperature lattice
calculation are given as

• 	e-Print: 1907.11747 

https://arxiv.org/abs/1907.11747
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln

✓
1

Nc
hTr

⇥
W (r)W †(0)

⇤
i

◆
. (10)

At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-

Extraction of alphas from the static energy
13

we estimate the uncertainty due to temperature e↵ects
from the di↵erence of the central values of ↵s for any
combination of N⌧ values in each fit interval.

First, we perform fits in the range where temperature
e↵ects are expected to be constant and the scale hierar-
chy 1/r � ↵s/r � T � mD ⇠ gT applies. We report
the result of representative fits with r/a  2 in Tab. V,
which corresponds to rT . 0.17 or 0.13 for N⌧ = 12 or
16, respectively. The central values of ↵s in fits to the
singlet free energy with N⌧ = 12 or 16 bracket the result
for the static energy at zero temperature, with devia-
tions being smaller than any other uncertainties. Hence,
we conclude that we do not resolve nonconstant T > 0
e↵ects as expected. As for the T = 0 analysis, we see
a marginal decrease of the central value of ↵s upon re-
striction to shorter distances. This decrease is about the
same magnitude as in the T = 0 analysis, but is delayed
to significantly shorter distances, which supports our in-
terpretation that it is due to imperfections of the nonper-
turbative improvement procedure. Within the smallest
statistical uncertainties or within the even smaller es-
timates of the lattice discretization uncertainties, all of
these results are consistent with the zero temperature
analysis of the previous section, while the individual es-
timates of perturbative errors are systematically smaller,
compare with Tab. III.

Next, we perform fits in the range where temperature
e↵ects beyond a constant appear to be small due to ac-
cidental cancellations. We assume the same scale hierar-
chy 1/r � ↵s/r � T � mD ⇠ gT , noting that it is at
present not verifiable if the ultra-soft factorization scale
dependence cancels in this case. Namely, we perform
the fits with r/a  3 and report the results in Tab. V as
well7. This corresponds to rT . 0.25 or 0.19 for N⌧ = 12
or 16 respectively. �2/d.o.f. is practically unchanged for
N⌧ = 12, but increases slightly forN⌧ = 16. Remarkably,
the agreement with the previous T = 0 analysis, using up
to r/a  5, does not change significantly as max(r) be-
comes larger. This suggests that the di↵erences between
the results are not caused by e↵ects of the finite tem-
perature, but rather by the more severe influence of the
imperfections of the nonperturbative improvement pro-
cedure in the T = 0 analysis with r/a  2 or r/a  3.
Hence, the estimate of the �T>0 errors for r > 0.05 fm
cannot be separated from the �lat errors due to lattice
discretization uncertainties.

Let us summarize the considerations of the preced-
ing paragraphs. For T > 0 we have to use r/a . 2
to guarantee the cancellation of ultra-soft factorization
scale dependence, although we do not see any indication
that it does not work for somewhat larger distances, i.e.,

7 Using an even larger fit range up to r/a 
p
12 leads to the

same conclusions, i.e., the nonconstant thermal e↵ects are still
numerically irrelevant.
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FIG. 10. Normalized lattice data and weak-coupling result for
the static energy in units of r1. We use a logarithmic scale
for the coordinate axis. The colored or gray bullets show the
nonperturbatively improved (NPI) lattice data for r/a  2
or 2 < r/a 

p
12. The three-loop with leading ultra-soft

resummation with standard scales is shown for the ↵s(MZ)
grid values corresponding to the best fits for the r and rT
intervals as indicated. The vertical lines of the same color
indicate max(r) of the fits.

r/a  3. The weak-coupling picture suggests that cancel-
lation between di↵erent medium e↵ects is responsible for
the small thermal modification of the singlet free energy.
While the medium e↵ects according to the weak-coupling
picture are not unambiguously resolved in the data, the
data seem to be a↵ected by an accidental cancellation
in the temperature window under consideration. Pertur-
bative uncertainties are dramatically reduced at smaller
distances max(r). In Fig. 10 we show our final T = 0
result with the reported �2/d.o.f. for two di↵erent fits
to the singlet free energy data. The data show no non-
trivial thermal e↵ects in the ranges considered and are
consistent with the central value of the T = 0 result.

Given the considerations of the preceding paragraphs,
we take the N⌧ = 12 result for 1  r/a  2 and max(r) =
0.030 fm, namely, ↵s(MZ) = 0.11638 as our final result,

which corresponds to r1⇤
Nf=3

MS
= 0.4900. Furthermore,

it has a largely independent error budget. We note that
the finite temperature result for these distances does not
depend on gauge ensembles corresponding to the larger
sea quark mass, i.e., uses exclusively ensembles withml =
ms/20. The scale uncertainty is the same as in the T =

0 analysis, �scale = ±1.7MeV for ⇤
Nf=3

MS
, and �scale =

±0.00010 for ↵s(MZ , Nf = 5). Therefore, the final result
and full error budget of our finite temperature lattice
calculation are given as

Extraction of alphas from the singlet free energy
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Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln

✓
1

Nc
hTr

⇥
W (r)W †(0)

⇤
i

◆
. (10)

At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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halved the uncertainties of Ref. [5]. Nevertheless our fi-
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ror) smaller than the ones in [5], since we have accounted
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Lastly, we compare the three-loop with leading ultra-soft
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cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.
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we estimate the uncertainty due to temperature e↵ects
from the di↵erence of the central values of ↵s for any
combination of N⌧ values in each fit interval.

First, we perform fits in the range where temperature
e↵ects are expected to be constant and the scale hierar-
chy 1/r � ↵s/r � T � mD ⇠ gT applies. We report
the result of representative fits with r/a  2 in Tab. V,
which corresponds to rT . 0.17 or 0.13 for N⌧ = 12 or
16, respectively. The central values of ↵s in fits to the
singlet free energy with N⌧ = 12 or 16 bracket the result
for the static energy at zero temperature, with devia-
tions being smaller than any other uncertainties. Hence,
we conclude that we do not resolve nonconstant T > 0
e↵ects as expected. As for the T = 0 analysis, we see
a marginal decrease of the central value of ↵s upon re-
striction to shorter distances. This decrease is about the
same magnitude as in the T = 0 analysis, but is delayed
to significantly shorter distances, which supports our in-
terpretation that it is due to imperfections of the nonper-
turbative improvement procedure. Within the smallest
statistical uncertainties or within the even smaller es-
timates of the lattice discretization uncertainties, all of
these results are consistent with the zero temperature
analysis of the previous section, while the individual es-
timates of perturbative errors are systematically smaller,
compare with Tab. III.

Next, we perform fits in the range where temperature
e↵ects beyond a constant appear to be small due to ac-
cidental cancellations. We assume the same scale hierar-
chy 1/r � ↵s/r � T � mD ⇠ gT , noting that it is at
present not verifiable if the ultra-soft factorization scale
dependence cancels in this case. Namely, we perform
the fits with r/a  3 and report the results in Tab. V as
well7. This corresponds to rT . 0.25 or 0.19 for N⌧ = 12
or 16 respectively. �2/d.o.f. is practically unchanged for
N⌧ = 12, but increases slightly forN⌧ = 16. Remarkably,
the agreement with the previous T = 0 analysis, using up
to r/a  5, does not change significantly as max(r) be-
comes larger. This suggests that the di↵erences between
the results are not caused by e↵ects of the finite tem-
perature, but rather by the more severe influence of the
imperfections of the nonperturbative improvement pro-
cedure in the T = 0 analysis with r/a  2 or r/a  3.
Hence, the estimate of the �T>0 errors for r > 0.05 fm
cannot be separated from the �lat errors due to lattice
discretization uncertainties.

Let us summarize the considerations of the preced-
ing paragraphs. For T > 0 we have to use r/a . 2
to guarantee the cancellation of ultra-soft factorization
scale dependence, although we do not see any indication
that it does not work for somewhat larger distances, i.e.,

7 Using an even larger fit range up to r/a 
p
12 leads to the

same conclusions, i.e., the nonconstant thermal e↵ects are still
numerically irrelevant.
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FIG. 10. Normalized lattice data and weak-coupling result for
the static energy in units of r1. We use a logarithmic scale
for the coordinate axis. The colored or gray bullets show the
nonperturbatively improved (NPI) lattice data for r/a  2
or 2 < r/a 

p
12. The three-loop with leading ultra-soft

resummation with standard scales is shown for the ↵s(MZ)
grid values corresponding to the best fits for the r and rT
intervals as indicated. The vertical lines of the same color
indicate max(r) of the fits.

r/a  3. The weak-coupling picture suggests that cancel-
lation between di↵erent medium e↵ects is responsible for
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, and �scale =

±0.00010 for ↵s(MZ , Nf = 5). Therefore, the final result
and full error budget of our finite temperature lattice
calculation are given as

Extraction of alphas from the singlet free energy

11

Lastly, we compare the three-loop with leading ultra-soft
resummation and the two-loop results (first three lines of
Eq. (2)). As can be read o↵ from Tabs. II and III, the dif-
ference to the two-loop result never exceeds +0.00025 and
decreases for smaller values of max(r), i.e., it is smaller
than the statistical errors and smaller than the other ef-
fects due variation of soft scale, soft higher order terms,
or variation of the ultra-soft resummation. The �2/d.o.f.
does not change significantly between using the two-loop
or three-loop with leading ultra-soft resummation results.
Hence, we confirm the criterion for having the lattice
data in the perturbative regime. We observe that the
smaller max(r) is, the smaller the variation of the cen-
tral value of ↵s between fits with di↵erent forms of the
weak-coupling results becomes. Tab. III shows clearly
that, for a given min(r/a), the perturbative errors are
dramatically reduced at smaller distances, as expected,
while the statistical error increases as less data are used
to constrain the fits.

Let us summarize the considerations of the preceding
paragraphs. We have to use max(r) . 0.1 fm to perform
the full scale variation and keep the perturbative uncer-
tainties fully under control. We should ideally use signifi-
cantly more than 10 data point to limit the impact of the
imperfectly treated discretization artifacts. Given the
considerations of the preceding paragraphs, we take the
result for 1  r/a  5 and max(r) = 0.073 fm, namely,
↵s(MZ) = 0.11660 as our final result, which corresponds

to r1⇤
Nf=3

MS
= 0.4943. The uncertainty of the scale r1 is

±0.0017 fm, which yields an error of �scale = ±1.7MeV
for ⇤

Nf=3

MS
, and �scale = ±0.00010 for ↵s(MZ , Nf = 5).

Therefore, the final result and full error budget of our
zero temperature lattice calculation are given as

↵s(MZ , Nf = 5) = 0.11660+0.00110
�0.00056, (4)

�↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+95
�13)

soft(28)us,
(5)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 314.0+15.5

�8.0 MeV, (6)

�⇤
Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+13.4

�1.8 )soft(4.0)us MeV.

(7)

We have added the statistical error and the lattice dis-
cretization error of the static energy, the total error of
the r1 scale, and the perturbative error in quadrature.

In order to compare the current analysis to the
previous analysis [5], we use the smaller window
[1/(

p
2r),

p
2/r] for the variation of the soft scale ⌫, and

do not account for the uncertainty arising from the dif-
ference between resumming or not the leading ultra-soft
logarithms to obtain

�
p
2↵s(MZ , Nf = 5) = (41)stat(21)lat(10)r1(+37

�13)
pert,

(8)

�
p
2⇤

Nf=3

MS
= (5.8)stat(3.0)lat(1.7)r1(+5.2

�1.8)
pert MeV. (9)

In this case, the perturbative error is not dominant any-
more. Thus, the presented analysis has approximately
halved the uncertainties of Ref. [5]. Nevertheless our fi-
nal errors are only 10% (upper error) and 30% (lower er-
ror) smaller than the ones in [5], since we have accounted
for the other possible sources of uncertainty listed above.
The central values of Eq. (4) and of the final result in
Ref. [5] coincide.

IV. EXTRACTING ↵s FROM THE SINGLET
FREE ENERGY

In this section, we consider the extraction of the strong
coupling from the singlet free energy at non-zero temper-
ature, as it is expected that at small distances medium
e↵ects are small. We define the singlet free energy in
terms of the correlation function of two thermal Wilson
lines in Coulomb gauge

FS(r, T ) = �T ln

✓
1

Nc
hTr

⇥
W (r)W †(0)

⇤
i

◆
. (10)

At distances much smaller than the inverse temperature
rT ⌧ 1, we can write using pNRQCD [4]

FS(r, T ) = Vs(r, µus) + �FS(r, T, µus), (11)

where µus is the ultra-soft scale. The form of the ther-
mal correction depends on the scale hierarchy. One could
consider the case 1/r � ↵s/r � T � mD ⇠ gT or the
case 1/r � T � mD ⇠ gT � ↵s/r. In the former case
µus ⇠ ↵s/r and �FS(r, T, µus) = �EUS(µus)+�FS(r, T )
with EUS(µus) being the ultra-soft contribution to the
static energy in the vacuum. In the latter case µus ⇠ T
and �Fs(r, T, µus) has been calculated to order g5, i.e.,
see Eqs. (16) – (19) in Ref. [3]. In the latter case the
cancellation of the ultra-soft factorization scale depen-
dence cannot be verified because of the unknown g6 con-
tribution to �Fs(r, T, µus). Since Vs(r, µus) has a term
⇠ ↵3

s ln(µusr)/r, however, the di↵erence between the T =
0 static energy and singlet free energy, E(r) � FS(r, T )
should have a term ⇠ ↵3

s ln(rT )/r. This complicates the
extraction of the strong coupling from the singlet free
energy. The matching between NRQCD and pNRQCD
also induces a term ⇠ g6T in FS(r, T ) for both scale hi-
erarchies [4], which also needs to be considered.
The singlet free energy has been studied on the lat-

tice in Ref. [3] using a wide temperature range and sev-
eral lattice spacings, i.e., several temporal extents N⌧ .
The shortest distance that we can access, due to a sin-
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min( ra ) max( ra ) N⌧ max(rT ) max(r) [fm] d.o.f. uncorr. corr. ↵s �stat �syst �T>0 �pert ↵2L
s

1 2 16 0.125 0.030 17 0.12 0.14 0.11621 0.00098 0.00021 0.00017 – –

1 2 12 0.167 0.030 17 0.18 0.22 0.11638 0.00080 0.00021 0.00017 +0.00043
�0.00016 0.11629

1 2 64 n/a 0.057 6 0.12 0.13 0.11646 0.00057 0.00021 n/a +0.00081
�0.00026 0.11643

1 2 16 0.125 0.057 30 0.19 0.20 0.11640 0.00089 0.00021 0.00006 – –

1 2 12 0.167 0.057 30 0.16 0.18 0.11651 0.00074 0.00021 0.00005 +0.00060
�0.00021 0.11644

1 2 64 n/a 0.078 12 0.15 0.16 0.11657 0.00051 0.00021 n/a +0.00100
�0.00030 0.11658

1 2 16 0.125 0.078 35 0.22 0.24 0.11651 0.00082 0.00021 0.00006 – –

1 2 12 0.167 0.078 37 0.19 0.22 0.11663 0.00063 0.00021 0.00006 +0.00081
�0.00025 0.11661

1 2 64 n/a 0.096 15 0.15 0.16 0.11659 0.00048 0.00021 n/a +0.00112
�0.00031 0.11663

1 2 12 0.167 0.091 41 0.22 0.25 0.11667 0.00063 0.00021 0.00008 +0.00088
�0.00027 0.11667

1 3 16 0.1875 0.030 30 0.34 0.39 0.11658 0.00073 0.00021 0.00003 – –

1 3 12 0.25 0.030 30 0.20 0.28 0.11661 0.00058 0.00021 0.00003 +0.00046
�0.00017 0.11652

1 3 64 n/a 0.055 6 0.14 0.18 0.11641 0.00051 0.00021 n/a +0.00081
�0.00026 0.11638

1 3 16 0.1875 0.058 69 0.42 0.46 0.11672 0.00068 0.00021 0.00031 – –

1 3 12 0.25 0.057 68 0.20 0.26 0.11671 0.00054 0.00021 0.00030 +0.00062
�0.00021 0.11665

1 3 64 n/a 0.073 17 0.22 0.27 0.11660 0.00041 0.00021 n/a +0.00099
�0.00031 0.11661

1 3 16 0.1875 0.077 82 0.56 0.61 0.11682 0.00064 0.00021 0.00022 – –

1 3 12 0.25 0.077 84 0.24 0.30 0.11680 0.00047 0.00021 0.00020 +0.00078
�0.00026 0.11677

1 3 64 n/a 0.096 28 0.28 0.30 0.11665 0.00035 0.00021 n/a +0.00115
�0.00035 0.11670

1 3 16 0.1875 0.098 89 0.66 0.71 0.11686 0.00063 0.00021 0.00021 – –

1 3 12 0.25 0.096 95 0.14 0.17 0.11682 0.00045 0.00021 0.00017 +0.00090
�0.00028 0.11682

1 3 64 n/a 0.134 40 0.39 0.44 0.11668 0.00031 0.00021 n/a +0.00142
�0.00045 0.11680

1 3 12 0.25 0.133 109 0.29 0.32 0.11684 0.00040 0.00021 0.00016 +0.00115
�0.00037 0.11690

TABLE V. Fits with r/a  2, or r/a  3. We list uncorrelated and correlated �2/d.o.f. in columns 7 and 8. In column 13 we
list the perturbative error for the corresponding fit window. The last column displays the outcome for ↵s at two-loop order.
�pert or ↵2L

s for N⌧ = 16 were not computed because the N⌧ = 16 data are not used for the final ↵s result. Note that the
max(rT ) and �T>0 columns are not applicable for the N⌧ = 64 results.

↵s(MZ , Nf = 5) = 0.11638+0.00095
�0.00087, (12)

�↵s(MZ , Nf = 5) =

(80)stat(21)lat(17)T>0(10)r1(+40
�06)

soft(15)us, (13)

or in terms of ⇤
Nf=3

MS
as

⇤
Nf=3

MS
= 310.9+13.5

�12.3 MeV, (14)

�⇤
Nf=3

MS
=

(11.3)stat(3.0)lat(2.4)T>0(1.7)r1(+5.6
�0.8)

soft(2.1)us MeV.
(15)

We have added the statistical error, the lattice discretiza-
tion error of the static energy, the finite temperature er-
ror due to using the singlet free energy, the total error of
the r1 scale, and the perturbative error in quadrature.

V. DISCUSSION

In the sections III and IV, we have presented two ex-
tractions of the strong coupling constant from two dif-
ferent observables, the static energy on zero temperature
lattices, and the singlet free energy on finite temperature
lattices.
Both results, i.e., ↵s(MZ , Nf = 5) = 0.11660+0.00110

�0.00056,

and ↵s(MZ , Nf = 5) = 0.11638+0.00095
�0.00087, are in excellent

agreement. This is despite the facts that they are based
on several statistically independent sets of gauge ensem-
bles corresponding to the QCD vacuum or the quark-
gluon plasma and have been obtained using two di↵erent
sea quark masses. The systematic uncertainties due to
the lattice discretization and due to the lattice scale are
not independent, but do not play a significant role in ei-
ther of the two error budgets. Moreover, the two results
are obtained in di↵erent r ranges, [0.0237 fm, 0.0734 fm],
or [0.0081 fm, 0.0301 fm], which overlap only in a narrow
window. As such, we may even consider the perturbative
uncertainties of the two analyses as practically indepen-
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Abstract: We give the hyperasymptotic expansion of the energy of a static quark-

antiquark pair with a precision that includes the e↵ects of the subleading renormalon. The

terminants associated to the first and second renormalon are incorporated in the analysis

when necessary. In particular, we determine the normalization of the leading renormalon of

the force and, consequently, of the subleading renormalon of the static potential. We obtain

Z
F
3
(nf = 3) = 2ZV

3
(nf = 3) = 0.37(17). The precision we reach in strict perturbation

theory is next-to-next-to-next-to-leading logarithmic resummed order both for the static

potential and for the force. We find that the resummation of large logarithms and the

inclusion of the leading terminants associated to the renormalons are compulsory to get

accurate determinations of ⇤
MS

when fitting to short-distance lattice data of the static

energy. We obtain ⇤
(nf=3)

MS
= 338(12) MeV and ↵(Mz) = 0.1181(9). We have also found

strong consistency checks that the ultrasoft correction to the static energy can be computed

at weak coupling in the energy range we have studied.
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different power counting on the log resumed contribution, 
 that given that the constant at 4 loop is not known may have an impact
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Outlook

• Not all of the presently available perturbative information has been used. More
precise lattice data on finer lattices and with more data points at short distances
could take advantage of it.

• It would be important, in order to reduce possible systematic effects, to perform the
same study on Wilson loops computed on different lattices with different actions.

• A possible systematic effect is due to the finite lattice spacing. A continuum
extrapolation would reduce this effect and allow for a precise determination of the
force between static charges along the same lines developed by Necco and
Sommer (2001) for the quenched case.

• Compute the force directly from the lattice:

F (r) = − lim
T→∞

〈

TrP r̂ · gE(t, r) exp
{

ig
∮

r×T dzµ Aµ

}〉

〈

TrP exp
{

ig
∮

r×T dzµ Aµ

}〉

• Not all of the presently available perturbative information has been used:

N3LL, finite mass effects, ...

because the data are not sensitive to it.

• Also the data do not seem sensitive to short-range nonperturbative effects

(e.g., condensates ∼ r3〈E(0)2〉, or correlators ∼ r2
∫

dt〈E(t)E(0)〉).

• Can data at shorter distances, in 2+1+1 lattices, from different observables

complement or extend our present knowledge of αs from the QCD potential?
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To further improve the extraction of alphas we  (A. Kronfeld, N. Brambilla, R. Delgado, W. 
Leino, P. Petreczky, S. Steinbeisser, A. Vairo with G. von Hippel) 2020  :

—calculate on the lattice (in 2+1+1) the static energy minus twice the energy of a static quark 
and a strange antiquark —> well defined  

continuum limit
—use a\sim 0.025fm 

—calculate the one loop static energy in lattice perturbation theory 

—make a global fit using the information of the leading cutoff effects



αs from the force
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0.24 fm is a fixed separation chosen such that r
⇤
/a is an integer for all three ensembles, i.e.

r/a = 4, 5, 6 for ensemble A, B and C, respectively. With this choice the division by F
0(r⇤)

in F
0(r)/F 0(r⇤) is particularly simple to carry out, when not using the improved separations

defined in Eq. (20). Since we use improved separations throughout this section, we take those
two data points F 0(rI,1) and F

0(rI,2) enclosing r and interpolate with ↵/r
2+� to read o↵ F

0(r).
Note that, because of the multiplicative renormalization discussed in section 2.3, F 0(r)/F 0(r⇤) =
F (r)/F (r⇤), i.e. the computation of F (r)/F (r⇤) does not require the determination of ZE.

In Fig. 1 we show F
0(r)/F 0(r⇤) as a function of r for all three ensembles obtained from gener-

alized Wilson loops as well as from generalized Polyakov loops. For comparison we also show
@rVpara(r)/@rVpara(r⇤), which represents the same physical quantity, this time, however, obtained
from the static potential and not from a direct computation of the static force. There is agree-
ment of F 0(r)/F 0(r⇤) and @rVpara(r)/@rVpara(r⇤), which is a proof of concept for our method of
computing the static force. XXXXX Wilson loop and Polyakov loop results di↵er at the

smallest r ... probably due to long autocorrelations with respect to the topological

charge. Polyakov loop results di↵er at large r/r0
>⇠ 1.0 from the parameterization.

This is probably due to the finite spatial volume. Then we should cut the plot, e.g.

at r/r0 = 1.0. (Btw. our spatial volume is tiny, extent ⇡ 1.2 fm, i.e. we have sizable

finite volume corrections (see work by Carolin Riehl), e.g. no chance to use these

results to determine ⇤.)XXXXX

Figure 1: F
0(r)/F 0(r⇤) = F (r)/F (r⇤) as a function of r for r

⇤ = 0.48 r0 ⇡ 0.24 fm obtained
with generalized Wilson loops (open symbols) and generalized Polyakov loops (closed symbols).
For comparison we also show @rVpara(r)/@rVpara(r⇤). XXXXX x range: 0.0 . . . 1.0. Remove

F
0(r) from the parameterization or replace by @rVpara(r)/@rVpara(r⇤). XXXXX

4.2 The renormalization constant ZE

In Fig. 2 we show �rV (r)/F 0(r) for generalized Wilson loops (left plot) and for generalized
Polyakov loops (right plot), where �rV (rI) = (V (r + a) � V (r � a))/2a. Because of the multi-
plicative renormalization discussed in section 2.3, �rV (r)/F 0(r) should be almost constant with
respect to r, possibly with small deviations from a constant, because of discretization errors,
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Polyakov loops (right plot), where �rV (rI) = (V (r + a) � V (r � a))/2a. Because of the multi-
plicative renormalization discussed in section 2.3, �rV (r)/F 0(r) should be almost constant with
respect to r, possibly with small deviations from a constant, because of discretization errors,
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Exploratory  study, with the force calculated at  
smaller r and unquenched we can  
extract alphas in an independent way  
with different systematics 
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many recent results by  Mateu, Entem, Ortega , Pineda, Peset  et collaborators  



























Outlook
Heavy quark system and especially quarkonium are golden systems to study strong interactions

Nonrelativistic EFTs allow us to treat these systems in the realm of QCD

In this way these systems become suitable for the precise extraction of SM parameters like alphas and the masses 

The alliance of EFTs and lattice make these extractions competitive

They are also complementary and offers  different systematics

These methods and these calculations offer a unique insight in the interplay of different scale in QCD and  in pattern of 
nonperturbative effects
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