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Heavy quarkonium is very different from heavy-light hadrons

different physics from the
heavy light meson where only

{d two scales exist 7)) and AQCD
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Quarkonium as a confinement and deconfinement probe

El'he rich structure of separated energy scales makes QQbar an ideal probe ]

At zero temperature

o The different quarkonium radii provide different measures of the transition from a
Coulombic to a confined bound state.
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quarkonia probe the perturbative (high energy) and non
perturbative region (low energy) as well as the transition
region in dependence of their radius r
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QCD theory of Quarkonium: a very hard problem
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QCD theory of Quarkonium: a very hard problem
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Quarkonium with Non
relativistic Effective Field
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Quarkonium with Non Color degrees of freedom
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Quarkonium with Non Color degrees of freedom
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Quarkonium with NR EFT: Non Relativistic QCD (NRQCD)
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Quarkonium with NR EFT: potential NonRelativistic QCD
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Quarkonium with NR EFT: pNRQCD weaidy strongly
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additional scales smaller than m can be integrated out combining with other EFTs

Example: quarkonium in thermal medium, T<m, use Hard Thermal EFT (HTL) loop to resum the

scale T
N. B., Ghiglieri,Petreczky, Vairo 08
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Low energy (nhonperturbative) factorized
effects depend on the size of the physical

system
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The EFT factorizes the low energy nonperturbative part. quarkonia states
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plg $ dzH A = i égg % +
NRQCD pNRQCD
i i g o [ t(Vo—V,
Thm ?ln< > = Vs(r, 1) b VA/ dt e~ Vo= Vs) (Tr(r - E(t)r- E(0)))(p) + ...

static energy ultrasoft contribution

The potential is a Wilson coefficient of the EFT.
In general, it undergoes renormalization, develops scale
dependence and satisfies renormalization
group equations, which allow to resum large logarithms.
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Quarkonium singlet static potential at N*4LO
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QQbar singlet static energy at NA3LI in comparison with unquenched
(n_f=2+1) lattice data (red points,blue points)
Bazanoyv, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019
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QQbar singlet static energy at NA3LI in comparison with unquenched
(n_f=2+1) lattice data (red points,blue points)
Bazanoyv, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019
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QQbar singlet static energy at NA3LI in comparison with unquenched
(n_f=2+1) lattice data (red points,blue points)
Bazanoyv, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019
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QQbar singlet static energy at NA3LI in comparison with unquenched
(n_f=2+1) lattice data (red points,blue points)
Bazanoyv, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019
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QQbar singlet static energy at NA3LI in comparison with unguenched
(n_f=2+1) lattice data (red points,blue points)
Bazanoyv, N. B., Garcia, Petreczky, Soto, Vairo , 2012, 2014, with Weber 2019
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QQbar singlet static energy at NA3LI in comparison with unguenched
(n_f=2+1) lattice data (red points,blue points)
Bazanoyv, N. B., Garcia, Pefreczky, Soto, Vairo , 2012, 2014, with Weber 2019
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FIG. 10. Normalized lattice data and weak-coupling result for
the static energy in units of ;. We use a logarithmic scale
for the coordinate axis. The colored or gray bullets show the
nonperturbatively improved (NPI) lattice data for r/a < 2
or 2 < r/a < v/12. The three-loop with leading ultra-soft
resummation with standard scales is shown for the as(Mz)
grid values corresponding to the best fits for the r and rT
intervals as indicated. The vertical lines of the same color
indicate max(r) of the fits.
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at a low energy scale (lattice cannot explore too short distances)

competitive

complementary to high energy determinations

intrinsic value-> add to our understanding of QCD and heavily constrains the running

Determination of alphas from an hyperasymptotic approximation to the energy of a static quark-antiquark pai
Cesar Ayala(Santa Maria U., Valparaiso), Xabier Lobregat(Barcelona, IFAE), Antonio Pineda(Barcelona, IFAE)

 : 2005.12301

~—

R
AU = 338(12) MeV and a(M.) = 0.1181(9).

different power counting on the log resumed contribution,
that given that the constant at 4 loop Is not known may have an impact


https://inspirehep.net/authors/1273889
https://inspirehep.net/authors/1667621
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Not all of the presently available perturbative information has been used:
NSLL, finite mass effects, ...
because the data are not sensitive to it. More

precise lattice data on finer lattices and with more data points at short distances
could take advantage of it.

Also the data do not seem sensitive to short-range nonperturbative effects
(e.g., condensates ~ r3(E(0)?), or correlators ~ r? /dt(E(t)E(O))).

Can data at , N , from
complement or extend our present knowledge of as from the QCD potential ?

It would be important, in order to reduce possible systematic effects, to perform the
same study on Wilson loops computed on different lattices with different actions.

A possible systematic effect is due to the finite lattice spacing.
-> continuum extrapolation



To further improve the extraction of alphas we (A. Kronfeld, N. Brambilla, R. Delgado, W.
Leino, P. Petreczky, S. Steinbeisser, A. Vairo with G. von Hippel) 2020

—calculate on the lattice (in 2+1+1) the static energy minus twice the energy of a static quark
and a strange antiquark —> well defined
continuum limit

—use a\sim 0.025fm

—calculate the one loop static energy in lattice perturbation theory

—make a global fit using the information of the leading cutoff effects



o, from the force well defined In the continuum l[imit

N. Brambilla, V. Leino, O. Philipsen, C. Reisinger, A. Vairo, M. Wagner 2020
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N. Brambilla, V. Leino, O. Philipsen, C. Reisinger, A. Vairo, M. Wagner 2020

It iIs possible to compute the force directly from the lattice:

<Tr Pr.gE(t,r)exp {z’g $.. pdzt Au}>

F(r)=— lim
=00 <TrPexp {ig b dzH Au}>
oVairo MPLA 31 (2016) 1630039 ( )/ F'(r*) = F( )/F( *) asafunctlon of r for r* = 0.4819 ~ ()24fm obtainec
Wlth generahzed Wllson loops (open Symbols) and generalized Polyakov loops (closed symb
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the quarkonium singlet potential can all be calculated in perturbation theory
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the quarkonium singlet potential can all be calculated in perturbation theory
s 5 _
V =V 1 Vi 4 (VSD + VVD)
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the quarkonium singlet potential can all be calculated in perturbation theory
s = _
V =V 1 Vi 4 (VSD + VVD)

m m? e
Small sys’rems: QQ energies at ma;

E,=2m+ (n | - Vln) + nlﬂ n)

QE

Fn = (n|Hs(p)|n) — i f 3t (| pe KBS —Ho) oy Eyim (1)
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Nonperturbative effects in the form of electric condensates nonlocal in time

In this way one can extract precise determinations of the
heavy quark masses comparing the energy levels of the
lowest charmonia and bottomonia states to the experimental
value and using high order perturbation theory

many recent results by Mateu, Entem, Ortega , Pineda, Peset et collaborators




Extraction of quark masses from heavy-light meson masses

@ HQET description of a HL meson mass in terms of its heavy quark mass

2 9
My =m, + A+ Hx — pe(mn) + O(1/m?)

2myp,

o A: energy of light quarks and gluons inside the system
o = /2my: kinetic energy of the heavy quark inside the system
o pz(mp)/2my: hyperfine energy due to heavy quark’s spin
(can be estimated from B*-B splitting = pz(ms) = 0.35GeV? )
o m; is the pole mass of the heavy quark
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Extraction of quark masses from heavy-light meson masses

@ HQET description of a HL meson mass in terms of its heavy quark mass

2 2
MH = m,, +/-\ | Hx — I-"G(mh)

FO(1/m?)

2my,

o A: energy of light quarks and gluons inside the system
o = /2my: kinetic energy of the heavy quark inside the system
o pz(mp)/2mu: hyperfine energy due to heavy quark’s spin
(can be estimated from B*-B splitting = pz(ms) = 0.35GeV? )
o m; is the pole mass of the heavy quark

(The pole mass can be calculated at each order in PT, but it suffers from
renormalon divergence)

o For the heavy quark mass, we use the minimal renormalon subtracted (MRS)
scheme [PRD97, 034503 (2018)]

o removes the leading infrared renormalon from the pole mass

o has an asymptotic expansion identical to the perturbative pole mass
(does not spoil the HQET power counting)

o is a gauge- and scale-independent scheme;

it does not introduce any factorization scale (unlike, e.g., the RS or kinetic
scheme)



MILC ensembles with (2+1+1)-flavors of dynamical quarks

@ Ensembles with physical mass for the strange quark:

~a (fm) my/ms size L (fm) MxzL Mz (MeV)
0.15 1/5 16% x 48 2.38 3.8 314
0.15 1/10 243 x 48 3.67 4.0 214
0.15 1/27 323 x 48 4.83 3.2 130
0.12 1/5 243 x 64 3.00 4.5 299
0.12 1/10 243 x 64 2.89 3.2 221
0.12 1/10 32° x 64 3.93 4.3 216
0.12 1/10 40° x 64 4.95 5.4 214
0.12 1/27 483 x 64 5.82 3.9 133
0.09 1/5 323 x 96 2.95 4.5 301
0.09 1/10 483 x 96 4.33 4.7 215
0.09 1/27 64° x 96 5.62 3.7 130
0.06 1/5 4185 x 144 204 4.5 304
0.06 1/10 643 x 144  3.79 4.3 224
0.06 1/27 963 x 192  5.44 3.7 135
0.042 1/5 643 x 192 201 4.34 204
0.042 1/27 1443 x 288  6.12 417 134
0.03 1/5 06 x 288  3.25 4.84 204

@ [he fermion action is “highly improved staggered quark™ (HISQ) action
@ Physical-mass ensembles at most lattice spacings



Heavy-light mesons with HISQ action
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Heavy-light mesons with HISQ action
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O O - T~ quarks with masses:
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EFT description of heavy-light meson masses

We employ HQET and heavy-meson staggered ChPT to describe
the dependence of meson masses on both heavy and light quark
masses and incorporate taste-breaking lattice artifacts



@ Include HMrPQASXPT and higher order HQET terms

pa — pg(mn)
2mp MRS

My = Mp MRS +KI\1RS -+ + HMrPQASXPT + higher order HQET

® mpMRs is a function of amy,/am,ss and amP4S’M—S(2 GeV)

@ The higher order terms are typically polynomials in dimensionless, “natural”
expansion parameters:

o Light-quark and gluon discretization: (aA)® with A = 600 MeV
Heavy-quark discretization: (2amy, /7)°

o
o Light valence and sea quark mass effects: Bom, /(47 f7)
9 HQET A/mh,MRs with A = 600 MeV

@ Our fit function has 77 parameters and 384 data points



A snapshot of the fit and data
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@ The combined-correlated fit gives x?/d.ofa~1, p=0.3

@ After extrapolating to continuum, experimental masses of D, and B; with EM effects
subtracted are used to determine the charm- and bottom-quark masses



Results for the strange, charm and bottom quarks

@ [he strange quark masses in a theory with 4 active flavors:
m, ws(2 GeV) = 92.52(40)stac (18)syst (52) s (12) £ ppe MeV

@ For quark mass ratios:
me/me = 11.784(11)star (17)syst(00)a, (08) £, oo

mp/ms = 53.93(7)star(8)syst(1)as (3) £ poc

mp /e = 4.577(5)star (7)syst(0)as (1) £ poe
e For heavy quarks:
e = 1273(4)ste(Dsyse(10)as (1) £ ppe MeV

my =) = 4197(12)star (Dsyst(8)as (1) 5, ppc MeV

where my, = m, yg(m;, ws)-
o Uncertainties: |
‘stat” ) Statistics and EFT fit
‘syst” ) Various systematic uncertainties in inputs: FV, EM, topological charge
freezing, contamination from higher order states...
«;) Uncertainty in the strong coupling constant
a, ws(5 GeV;ny=4) = 0.2128(25) [HPQCD, arXiv:1408.4169]
f=.poc) Uncertainty in the PDG value of f_+ = 130.50(13) MeV, which is used for
scale setting



Results for HQET parameters

@ For HQET parameters we have

KMRS - 552(25)stat(6)syst(16)as (z)fn,PDG MeV
ll’?r — 0'06(16)Stat(14)5)'5t(06)08 (Oo)fw,PDG GeV?

2 (my) = 0.38(01)st0t(01)gyst(00), (00) £, e GeV?

(Note that the prior value of uZ(my) is set to 0.35(7) GeV* [Gambino and
Schwanda, arXiv:1307.4551])



Comparison

Our result is shown as a magenta burst, with the gray band showing how it
compares directly with the other lattice and nonlattice results;
see [arXiv:1802.04248 [hep-lat]] for details.
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Outlook

Heavy quark system and especially qguarkonium are golden systems to study strong interactions
Nonrelativistic EFTs allow us to treat these systems in the realm of QCD
In this way these systems become suitable for the precise extraction of SM parameters like alphas and the masses

The alliance of EFTs and lattice make these extractions competitive

They are also complementary and offers different systematics

These methods and these calculations offer a unique insight in the interplay of different scale in QCD and in pattern of
nonperturbative effects



backup



Minimal renormalon subtracted mass

@ |he pole mass can be calculated at each order in perturbation theory

N
o =78 14+ 3 a1 m) + 0(a} )

n=>0
o 7 is the MS mass at scale p =m
o [ he series diverges because r,, o< (28,)"I'(n +b+1) asn — oc
@ Ihe divergent expression can be interpreted using the Borel transform

Borel Plane
e_z/(QBO Qg )

- -
involves an integral of form dz L

with b = 8, /(263)
@ The idea in the MRS scheme is to divide the integral as

1 e—z/(?Boag)
/ dz —  JmMmrs(p)
0

(1— 2)l+b
o0 e—z/(?Bocx,g) | -
/; dz = z)1+b — omx (—1)"Aqcp

and subtract the ambiguous term dm from the pole mass



@ | he MRS mass is defined as

MMRS = Mh_ pole — OM

=M (1 + Z [rn — Rn] a’;‘“(m')) + Jurs(M) + Amy,

n=>0
m. MS mass at scale p =m
s coefficients relating the MS mass to the perturbative pole mass
— R, subtracting the leading renormalon from the perturb. series

Jurs:  contribution from the leading renormalon (see backup slides)
Amy.: for contribution from the charm quark [arXiv:1407.2128]
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n=>0
m. MS mass at scale p =m
s coefficients relating the MS mass to the perturbative pole mass
— R, subtracting the leading renormalon from the perturb. series

Jurs:  contribution from the leading renormalon (see backup slides)
Amy.: for contribution from the charm quark [arXiv:1407.2128]

@ For a theory with n; = 3 massless quarks, and Ry = 0.535:
rn — Ry = (—0.1106, —0.0340, 0.0966, 0.0162,...)

The smallness of r,, — F,, reduces the truncation error in our work



@ | he MRS mass is defined as

MMRS = MMh pole — om

=T (1 + Z [rn — Rn] a?”'l(m)) + Jmrs (M) + Amy

n=>0
m. MS mass at scale p =m
s coefficients relating the MS mass to the perturbative pole mass
— R, subtracting the leading renormalon from the perturb. series

Jurs:  contribution from the leading renormalon (see backup slides)
Amy.: for contribution from the charm quark [arXiv:1407.2128]

@ For a theory with n; = 3 massless quarks, and Ry = 0.535:
rn — Ry = (—0.1106, —0.0340, 0.0966, 0.0162,...)

The smallness of r,, — F,, reduces the truncation error in our work

With the MRS mass for heavy quarks, we proceed to map bare quark
masses to the MRS mass |



Mapping bare quark masses to the MS and MRS masses

@ Introduce a “reference mass”, and construct the identity (up to lattice
artifacts)
mp  Mp MRS AMp

mh,M_S(”’) mp am,

Mp MRS = ‘772-,~,M—5(#')

1) First factor: a fit parameter (we set am, = amps. and p = 2 GeV)
2) Second factor: running factor governed by the mass anomalous dimension

(the five-loop result is known [JHEP 1410 (2014) 076] )
3) Third factor:

3
Mp MRS = Mp (1 + Z [‘rn — Rn]a,?“ mp) + O(a?)) + Jmrs(mn) + Am(c)

n=>0

3) Last factor: simulation inputs
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(the five-loop result is known [JHEP 1410 (2014) 076] )
3) Third factor:

3
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n=>0

3) Last factor: simulation inputs

@ T'he 2nd and 3rd factors require the strong coupling constant; we use

ors(5GeVi;ny =4) = 0.2128(25) [HPQCD, arXiv:1408.4169]



Mapping bare quark masses to the MS and MRS masses

@ Introduce a “reference mass”, and construct the identity (up to lattice
artifacts)

M MRS = M. =11 My Mp MRS AMp
’ T,MS / mth—S(u) mh amr

1) First factor: a fit parameter (we set am, = amps. and p = 2 GeV)
2) Second factor: running factor governed by the mass anomalous dimension

(the five-loop result is known [JHEP 1410 (2014) 076] )
3) Third factor:

3
Mp MRS = Mp (1 + Z [‘T‘n — Rn]a?+l mp) + O(QE)) + JMmrs(mn) + Am(c)

n=>0

3) Last factor: simulation inputs

@ T'he 2nd and 3rd factors require the strong coupling constant; we use

ors(5GeVi;ny =4) = 0.2128(25) [HPQCD, arXiv:1408.4169]

o Discretization errors should be incorporated as powers of (amy)* and (aA)?



o Juvrs(p) is defined as

Ro  _1/mea 1 L)
JmRrs (1) = 28, M alas (p)]zn!(n—b) (250%(#))

where b = 3, /(282), Ry is the overall normalization of the leading
renormalon in the pole mass, and a,(p) is the coupling constant in the
scheme with

Boarg ()

P lag(h)) = 1 — (B1/Bo)ag(k)

@ For the relations between the RS and MRS schemes:

mgrs(v¢) = mmrs — IMrs(Vy)
Ags(v¢) = Amrs + Jvrs(vy)



