

(So far) Contribution of UAB to HaSP

Rafel Escribano Universitat Autònoma de Barcelona

HaSP meeting

Theoretical Aspects of Hadron Spectroscopy and Phenomenology

December 15, 2020 Valencia (Spain)

Research Team

Bound states, non-relativistic QM and QFTs

pNRQCD at weak and strong coupling

pNRQED and chiral theories

Antonio Pineda

OPE and renormalons

Hadronic Physics and EFTs

B-decays

Tau-decays

Muon g-2

Pere Masjuan

Research Team

EFTs for heavy hadrons (baryons and exotic) Heavy-quark hybrids

Quarkonium hadronic transitions

Jaume Tarrús

Muon g-2

light meson decays (CP violation, radiative corrections)

D-decays

Pablo Sánchez-Puertas

Hyperasymptotic approximation to the OPE: pole mass, plaquette and static potential

Based on

Ayala, Lobregat, Pineda: 1902.07736; 1909.01370; 1910.04090, 2005.12301 and 2009.01285

Antonio Pineda

Universitat Autònoma de Barcelona & IFAE

Theoretical aspects of Hadron Spectroscopy and Phenomenology, Valencia, Spain; 15-17 December 2020

Assumption: NonPerturbative OPE

Observable
$$(\frac{Q}{\Lambda_{\text{QCD}}}) \sim \sum_{n=0}^{\infty} p_n^{(X)} \alpha_X^{n+1}(Q)$$
 divergent \rightarrow Principal Value regularization

Borel transform

$$\sum_{n=0}^{\infty} p_n^{(X)}(\frac{\mu}{Q}) \alpha_X^{n+1}(\mu) \to B[O](t) = \sum_{n=0}^{\infty} \frac{p_n^{(X)}(\frac{\mu}{Q})}{n!} t^n$$

Inverse Borel transform

$$\int_{0}^{\infty} dt e^{-t/lpha_{\chi}(Q)} B[O](t)$$

PV regularization (scale and Scheme independent)

$$S_{\rm PV}(\alpha(Q)) \equiv \int_{0,{\rm PV}}^{\infty} dt e^{-t/\alpha_X(Q)} B[O](t)$$

Observable
$$(\frac{Q}{\Lambda_{\text{QCD}}}) = S_{\text{PV}}(\alpha(Q)) + K_X^{(\text{PV})} \alpha_X^{\gamma}(Q) \frac{\Lambda_X^d}{Q^d} (1 + \mathcal{O}(\alpha_X(Q))) + \mathcal{O}(\frac{\Lambda_X^{d'}}{Q^{d'}})$$

 S_{PV} can only be computed in an approximated way. S_{PV} will be computed truncating the hyperasymptotic expansion in a systematic way.

Organizing the computation using superasymptotic and hyperasymptotic approximations allows for a parametric control of the error.

Observable
$$(\frac{Q}{\Lambda_{\text{QCD}}}) - \sum_{n=0}^{N} p_n^{(X)}(\frac{\mu}{Q}) \alpha_X^{n+1}(\mu) \sim \mathcal{O}(\alpha_X^{N+2})$$

but with large coefficient!!

Truncate the sum at the minimal term \rightarrow superasymptotic approximation:

$$N = N_P \equiv |d| \frac{2\pi}{\beta_0 \alpha_X(\mu)} (1 - c \alpha_X(\mu)),$$

Observable
$$\left(\frac{Q}{\Lambda_{\text{QCD}}}\right) - \sum_{n=0}^{N_P} p_n^{(X)}\left(\frac{\mu}{Q}\right) \alpha_X^{n+1}(\mu) \sim \mathcal{O}\left(e^{-|d|\frac{2\pi}{\beta_0 \alpha_X(Q)}}\right)$$

Applications

Bottom "pole" mass

 $m_{b,PV}(4.186 \text{GeV}) = 4836(\mu)^{+8}_{-17}(Z_m)^{-11}_{+12}(\alpha)^{+8}_{-9} \text{ MeV}.$

$$\bar{\Lambda}_{\rm PV} = 477(\mu)^{-8}_{+17}(Z_m)^{+11}_{-12}(\alpha)^{-8}_{+9} \,\,{\rm MeV}\,.$$

► Top "pole" mass

 $m_{t,PV}(163GeV) = 173033(th)^{+25}_{-28}(\alpha)^{+119}_{-123} \text{ MeV},$

$$\left[\frac{m_{t,\text{PV}}}{\overline{m}_t} - 1\right] \times 10^5 = 6155 \,(\text{th})^{+15}_{-17} \,(\alpha)^{+73}_{-75} \,.$$

$$\langle G^2 \rangle_{\rm PV} (n_f = 0) = 3.15(18) r_0^{-4}.$$

► Static potential \rightarrow determination of the strong coupling constant: $\Lambda_{\overline{\rm MS}}^{(n_f=3)} = 338(12) \, {
m MeV} \quad \alpha(M_Z) = 0.1181(9).$

Overlooking Lepton Flavor Universal New Physics in $b \rightarrow s\ell\ell$

Are we overlooking LFU?

LFUV observables explained by $\ \mathcal{C}_{i\ell}^{ ext{V}}$

LFD observables explained by $C_{i\ell}^{V} + C_{i}^{U}$

[Algueró et al, 1809.08447]

Constrained 2D Fit (inspired from 4D+3D)

2D:
$$C_{9\mu}^{V} = -C_{10\mu}^{V}, C_{9}^{U} = C_{10}^{U}$$

	Best-fit point	$1 \sigma CI$	$2 \sigma \text{CI}$
$\mathcal{C}_{9\mu}^{\rm V} = -\mathcal{C}_{10\mu}^{\rm V}$	-0.64	[-0.77, -0.51]	[-0.90, -0.39]
$\mathcal{C}_9^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}}$	-0.44	[-0.58, -0.29]	[-0.71, -0.14]

SM excluded at 6.0σ

The two coefficients <u>uncorrelated</u>

LFUV prefers V-A structure while LFU a V+A

$$= \frac{3}{1}$$

 $\operatorname{Corr}_{6} = \left(\begin{array}{cc} 1.00 & -0.01 \\ -0.01 & 1.00 \end{array}\right)$

Updated results

Impact of Morion's results from March 2019

	2018	Best-fit point	1 σ	Pull _{SM}	p-value
Sc. 5	$\begin{array}{c} \mathcal{C}^{\mathrm{V}}_{9\mu} \\ \mathcal{C}^{\mathrm{V}}_{10\mu} \\ \mathcal{C}^{\mathrm{U}}_{9} = \mathcal{C}^{\mathrm{U}}_{10} \end{array}$	-0.16 +1.00 -0.87	$\begin{matrix} [-0.94, +0.46] \\ [+0.18, +1.59] \\ [-1.43, -0.14] \end{matrix}$	5.8	78%
Sc. 6	$\begin{array}{c} \mathcal{C}^{\mathrm{V}}_{9\mu} = -\mathcal{C}^{\mathrm{V}}_{10\mu} \\ \mathcal{C}^{\mathrm{U}}_{9} = \mathcal{C}^{\mathrm{U}}_{10} \end{array}$	-0.64 -0.44	[-0.77, -0.51] [-0.58, -0.29]	6.0	79%
Sc. 7	$\mathcal{C}^{V}_{9\mu}$ \mathcal{C}^{U}_{9}	-1.57 +0.56	[-2.14, -1.06] [+0.01, +1.15]	5.7	72%
Sc. 8	$\begin{array}{c} \mathcal{C}^{\mathrm{V}}_{9\mu} = -\mathcal{C}^{\mathrm{V}}_{10\mu} \\ \mathcal{C}^{\mathrm{U}}_{9} \end{array}$	-0.42 -0.67	[-0.57, -0.27] [-0.90, -0.42]	5.8	74%
	2019	Best-fit point	1 σ	Pull _{SM}	p-value
Sc. 5	$\mathcal{C}_{9\mu}^{V}\ \mathcal{C}_{10\mu}^{V}\ \mathcal{C}_{9}^{U}=\mathcal{C}_{10}^{U}$	-0.34 +0.69 -0.50	$\begin{array}{c} [-0.93, \pm 0.19] \\ [\pm 0.21, \pm 1.12] \\ [-0.92, \pm 0.02] \end{array}$	5.5	72%
Sc. 6	$egin{aligned} \mathcal{C}_{9\mu}^{\mathrm{V}} &= -\mathcal{C}_{10\mu}^{\mathrm{V}} \ \mathcal{C}_{9}^{\mathrm{U}} &= \mathcal{C}_{10}^{\mathrm{U}} \end{aligned}$	-0.52 -0.37	$\begin{bmatrix} -0.64, -0.41 \\ [-0.52, -0.22] \end{bmatrix}$	5.8	71%
Sc. 7	$\mathcal{C}_{9\mu}^{V}$ \mathcal{C}_{9}^{U}	-0.91 -0.08	$\begin{matrix} [-1.25, -0.58] \\ [-0.46, +0.31] \end{matrix}$	5.5	65%
Sc. 8	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$ $\mathcal{C}_{9}^{\mathrm{U}}$	-0.33 -0.72	$\begin{matrix} [-0.45, -0.22] \\ [-0.93, -0.47] \end{matrix}$	5.9	74%

Changed

Sc. 7: If only V-NP preference for LFUV-NP

 $\mathcal{C}_{9\mu}^V + \mathcal{C}_9^U = -0.98$

Unchanged

Sc. 8: Presence of V-LFU favours slightly $L_q \otimes L_\ell$

[arXiv: 1903:09578]

Updated results

Impact of Morion's results from March 2019

[arXiv: 1903:09578]

Assuming loop-level scale of NP and no MFV

$$\Lambda_i^L \sim \frac{v}{s_\omega g} \frac{1}{\sqrt{2|V_{tb}V_{ts}^*|}} \frac{1}{|\mathcal{C}_i^{\rm NP}|^{1/2}}$$

Scenario 6: $\{\mathcal{C}_{9\mu}^{\rm V} = -\mathcal{C}_{10\mu}^{\rm V}, \, \mathcal{C}_{9}^{\rm U} = \mathcal{C}_{10}^{\rm U}\} \qquad \{\mathcal{C}_{9\mu}^{\rm V} = -\mathcal{C}_{10\mu}^{\rm V}, \, \mathcal{C}_{9}^{\rm U}\}$ LFUV-NP $L_q \otimes L_l$ $\Lambda_i^{\rm LFUV} \sim 3.9 \,{
m TeV} \qquad \Lambda_i^{
m LFUV} \sim 4.6 \,{
m TeV}$ LFU-NP $L_q \otimes R_l$ LFU-NP $L_q \otimes V_l$ $\Lambda_i^{\rm LFU} \sim 4.6 \,{\rm TeV}$

Scenario 8:

LFUV-NP $L_q \otimes L_l$ $\Lambda_i^{
m LFU}\sim 3.3\,{
m TeV}$

Updated results

Impact of Morion's results from March 2019

[arXiv: 1903:09578]

Exotic Quarkonium

- N. Brambilla, G. Krein, J. Tarrús, A. Vairo; Phys.Rev. D97 (2018) no.1, 016016
- N. Brambilla, W-K. Lai, J. Segovia, J. Tarrús, A. Vairo; Phys.Rev. D99 (2019) no.1, 014017
- J. Tarrús, G. Krein; Phys.Rev. D98 (2018) no.1, 014029

- Two main properties help us describe this exotic states
 - * $m_Q \gg \Lambda_{\rm QCD}$, non relativistic heavy quarks.
 - * Adiabatic expansion between the heavy quark and gluon/light-quark dynamics.
- Analog system to diatomic molecules.
- We exploit this gaps between the scales of the system at the Lagrangian level to build EFTs to describe this states.

Exotic Quarkonium

N. Brambilla, G. Krein, <u>J. Tarrús</u>, A. Vairo; Phys.Rev. D97 (2018) no.1, 016016 N. Brambilla, W-K. Lai, J. Segovia, J. Tarrús, A. Vairo; Phys.Rev. D99 (2019) no.1, 014017

J. Tarrús, G. Krein; Phys.Rev. D98 (2018) no.1, 014029

Hadronic transitions in Quarkonium

A. Pineda, J. Tarrús; Phys.Rev. D100 (2019) no.5, 054021

- Two step process (multipole expansion).
- Traditional approaches based on an OPE of the octet propagator are not well justified.
- Use that the color-octet state spectrum corresponds to the hybrid quarkonium spectrum.
- Hadronization using the scale or axial anomaly.

- We build an EFT with standard (S) and hybrid (Ψ) quarkonium as well as pions.
- Incorporates m_Q, multipole, chiral and large N_c expansions.

Present and future contributions to HaSP

Pablo Sanchez-Puertas psanchez@ifae.es

Instituto de Fisica d'Altes Enrgies (IFAE) Barcelona Institute of Science and Technology (BIST) Barcelona, Spain ____ $(g-2)_{\mu}$ HLbL physics at IFAE

• The $a_{\mu} = (g - 2)_{\mu}/2$ is a sensitive probe of new physics

$$egin{aligned} & a_{\mu}^{ ext{th}} = 116591810(43) imes 10^{-11} ext{ vs. } a_{\mu}^{ ext{exp}} = 116592089(63) imes 10^{-11} \ & a_{\mu}^{ ext{exp}} - a_{\mu}^{ ext{th}} = 279(76) imes 10^{-11} & (3.7\sigma) \end{aligned}$$

• New experiment at FNAL $\Delta a_{\mu}^{exp} = 16 \times 10^{-11} \Rightarrow$ Needs th error reduction!! Driven by HVP & HLbL ; will discuss HLbL

• Among leading HLbL contributions (WP): $a_{\mu}^{\pi,\eta,\eta'} = 94(4) \times 10^{-11}$ $a_{\mu}^{\pi\pi+S-wave} = -[15.9(2) + 8(1)] \times 10^{-11}$ $a_{\mu}^{axials} = 6(6) \times 10^{-11}$ $a_{\mu}^{SD} = 15(10) \times 10^{-11}$

• Clearly, to meet experimental errors, axials and SD needs be re-examined.

____ Axial-vector meson contributions to a_{μ} in R χ T ____ P. Roig and P. SP, PRD101 (2020) 7, 074019

• Previously $\{2.5(1)[BPP], 22(5)[MV], 6.4(2.0)[J], 7.6(2.7)[PVdH]\} \times 10^{-11}$ demands careful reexamination... so we did!

• $A \rightarrow \gamma^* \gamma^*$: 3 form factors **BUT** uses Schouten Id + EOM ($\varepsilon_A \cdot q_A \rightarrow 0$). Need HLbL Greens' function: usually via Proca propagator \Rightarrow not transverse!!

• **Our proposal** use $R\chi T$: good pheno and suitable to study Greens' functions. High-energy behavior demands 2/3 vector resonances. At LO, antisymmetric FFs; Reconstructing HLbL Green's function we obtain (10⁻¹¹ units)

#V's	a ₁	f_1	f_1'
2	1.13(30)	3.14(6)	0.07(4)
3	0.21(4)	0.58(11)	0.015(8)

Symmetric form factor at NLO in R χ T: $\Delta a_{\mu}^{\mathrm{axial}NLO} = -0.8 \times 10^{-11}$

Final estimate $a_{\mu}^{\text{axial}} = 0.8(^{+3.5}_{-0.8}) \times 10^{-11}$

• Recently: 22(5) Leutgeb Reban (2020); 28 Capiello et al (2020) (SDs)

_ Short-Distance constraints to HLbL

P. Roig, PM and P. SP, arXiv:2005.11761

• a_{μ} sensitive to low energies, but high-energy tails might have an impact, missing something?

• Our work: It is known $\langle VVA \rangle$ has 4 FFs, $\{w_L \text{ (anomaly) } w_T^{(+)}, w_T^{(-)}, \tilde{w}_T^{(-)}\}$ Found new relation among w_T 's and the π^0 TFF guaranteeing the anomaly

$$(q_1^2+q_2^2)w_T^{(+)}(q_1^2,q_2^2,0)-(q_1^2-q_2^2)w_T^{(-)}(q_1^2,q_2^2,0)=2N_c(1-\tilde{F}_{\pi\gamma\gamma}(q_1^2,q_2^2))$$

Anomaly enforces $w_T^{(+/-)}(q_1^2, q_2^2, 0) \sim \text{subtraction (not a constant } \pi^0 \text{ TFF!!})$ Remainder piece: $w_T^{(+/-)}(q_1^2, q_2^2, q_{12}^2) - w_T^{(+/-)}(q_1^2, q_2^2, 0)$ (as if subtracted)

- Back to HLbL, many implications and aplications:
- \Rightarrow Axial contributions: trans.+long. = pheno(pole) + anomaly(model)
- \Rightarrow Can estimate heavy axial FFs parameters
- \Rightarrow Outlook (I): consider $m_q \neq 0$ and role of heavy pseudoscalars
- \Rightarrow Outlook (II): model anomaly part

 $_ D^+
ightarrow K^- \pi^+ \pi^+$ and $D^+
ightarrow K^- \pi^+ \ell^+
u$ decays .

- RE, PM and PSP, in progress
- Building on Boito&Escribano PRD80, (2009): now combined analysis.

 $\langle K^- \pi_1^+ | \, \bar{s} \gamma^\mu (1 - \gamma^5) c \, | D^+ \rangle \sim D^+ \to \pi^+ K^- \ell^+ \nu$

 $\langle K^{-}\pi_{1}^{+} | \bar{s}\gamma^{\mu}(1-\gamma^{5})d | 0 \rangle \sim f_{0,+}^{K\pi}$

- Challenging part: $f_{\pi} p_{\pi_2}^{\mu} \langle K^- \pi_1^+ | \bar{s} \gamma_{\mu} (1 \gamma^5) c | D^+ \rangle$ from $D^+ \to \pi^+ K^- \ell^+ \nu$. Derivative picks a single FF $\mathcal{O}(m_\ell)$ in semileptonic decays, but use of Ward Id
- Taking exp par BES3(2016)+relative phase in BE ok if rescaling P/S-wave by 1.3(1)/2.2(2) factor
- $D_s^+ \rightarrow K^+ K^+ \pi^-$ straightforward: CKM and $f_\pi \rightarrow f_K$: excellent! fact test!
- Outlook: improve exp. S-wave description based on Bernard et al PLB638 (2006)

Theoretical analysis of the doubly radiative decays $\eta(\eta') \rightarrow \pi^0 \gamma \gamma$ and $\eta' \rightarrow \eta \gamma \gamma$ Phys. Rev. D 102, 034026 (2020)

Relevant for testing the chiral expansion, probing scalar dynamics and searching for a hypothetical B-boson

Not possible to reconcile our predictions for both processes New experimental analyses welcome! Theoretical analysis of the doubly radiative decays $\eta(\eta') \rightarrow \pi^0 \gamma \gamma$ and $\eta' \rightarrow \eta \gamma \gamma$

Substantial scalar contribution of σ and f_0

A first experimental analysis very welcome!

TABLE II. Chiral-loop, L σ M, and VMD predictions for the $\eta \to \pi^0 \gamma \gamma$, $\eta' \to \pi^0 \gamma \gamma$, and $\eta' \to \eta \gamma \gamma$ decays with empirical and modelbased VMD couplings. The total decay widths are calculated from the coherent sum of the L σ M and VMD contributions.

Decay	Couplings	Chiral loop	LσM	VMD	Г	BR _{th}	BR _{exp} [14]
$a \rightarrow -0$ (2V)	Empirical	1.87×10^{-3}	5.0×10^{-4}	0.16(1)	0.18(1)	$1.35(8) \times 10^{-4}$	$2.56(22) \times 10^{-4}$
$\eta \to \pi^{\circ} \gamma \gamma \ (ev)$	Model-based	1.87×10^{-3}	5.0×10^{-4}	0.16(1)	0.17(1)	$1.30(1) \times 10^{-4}$	$2.30(22) \times 10^{-1}$
$n' \rightarrow -0(1 - N)$	Empirical	1.1×10^{-4}	1.3×10^{-4}	0.57(3)	0.57(3)	$2.91(21) \times 10^{-3}$	$2.20(7)(22) \times 10^{-3}$
$\eta \rightarrow \pi^{*} \gamma \gamma \text{ (kev)}$	Model-based	1.1×10^{-4}	1.3×10^{-4}	0.70(4)	0.70(4)	$3.57(25) \times 10^{-3}$	$3.20(7)(23) \times 10^{-5}$
	Empirical	1.4×10^{-2}	3.29	21.2(1.2)	23.0(1.2)	$1.17(8) \times 10^{-4}$	$9.25(2.41)(0.72) \times 10^{-5}$
$\eta \rightarrow \eta \gamma \gamma (ev)$	Model-based	1.4×10^{-2}	3.29	19.1(1.0)	20.9(1.0)	$1.07(7) \times 10^{-4}$	$6.23(3.41)(0.72) \times 10^{-5}$

A theoretical analysis of the semileptonic decays $\eta(\eta') \rightarrow \pi^0 l^+ l^-$ and $\eta' \rightarrow \eta l^+ l^-$ 2007.12467 [hep-ph] (tbp EPJC)

Relevant for testing fundamental symmetries

C-conserving processes in the SM (2-photon intermediate state)

C-violating processes via single-photon exchange

Important as a background for BSM searches

Decay	$\Gamma_{ m th}$	BR _{th}	BR _{exp}
$\eta ightarrow \pi^0 e^+ e^-$	$2.8(2)(3) \times 10^{-6} \text{ eV}$	$2.1(1)(2) \times 10^{-9}$	$< 7.5 \times 10^{-6} \text{ (CL=90\%) [10]}$
$\eta ightarrow \pi^0 \mu^+ \mu^-$	$1.6(1)(2) \times 10^{-6} \text{ eV}$	$1.2(1)(1) \times 10^{-9}$	$< 5 \times 10^{-6} \text{ (CL=90\%) [17]}$
$\eta' ightarrow \pi^0 e^+ e^-$	$9.0(0.5)(1.3) \times 10^{-4} \text{ eV}$	$4.6(3)(7) imes 10^{-9}$	$< 1.4 \times 10^{-3} \text{ (CL=90\%) [17]}$
$\eta^{\prime} ightarrow \pi^{0} \mu^{+} \mu^{-}$	$3.5(2)(4) \times 10^{-4} \text{ eV}$	$1.8(1)(2) imes 10^{-9}$	$< 6.0 \times 10^{-5} (CL=90\%) [17]$
$\eta^\prime o \eta^0 e^+ e^-$	$7.6(4)(8) \times 10^{-5} \text{ eV}$	$3.9(3)(4) \times 10^{-10}$	$< 2.4 \times 10^{-3} \text{ (CL=90\%) [17]}$
$\eta^{\prime} ightarrow \eta^{0} \mu^{+} \mu^{-}$	$3.1(2)(3) \times 10^{-5} \text{ eV}$	$1.6(1)(2) \times 10^{-10}$	$< 1.5 \times 10^{-5} \text{ (CL=90\%) [17]}$

TABLE I: Decay widths and branching ratios for the six *C*-conserving decays $\eta^{(\prime)} \rightarrow \pi^0 l^+ l^-$ and $\eta' \rightarrow \eta l^+ l^-$ (l = e or μ). First error is experimental and second is due to numerical integration.

π^0 - η - η' mixing from $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays Phys. Lett. B 807 (2020) 135534

Relevant for testing possible isospin-breaking contributions

$$|\pi^{0}\rangle = |\pi_{3}\rangle + \epsilon |\eta\rangle + \epsilon' |\eta'\rangle$$

Precise and exhaustive set of experimental data

$$g_{\phi\eta\gamma} = g\left\{ \left[\left(\frac{z_{\rm NS}}{3} - \epsilon_{12}\right)c\phi_{23} + \epsilon_{13}s\phi_{23} \right]s\phi_V \\ + \frac{2}{3}z_{\rm S}\frac{\overline{m}}{m_{\rm s}}s\phi_{23}c\phi_V \right\}, \\ g_{\phi\eta'\gamma} = g\left\{ \left[\left(\frac{z_{\rm NS}}{3} - \epsilon_{12}\right)s\phi_{23} - \epsilon_{13}c\phi_{23} \right]s\phi_V \\ - \frac{2}{3}z_{\rm S}\frac{\overline{m}}{m_{\rm s}}c\phi_{23}c\phi_V \right\}, \\ \left[\frac{2}{3}z_{\rm S}\frac{\overline{m}}{m_{\rm s}}c\phi_{23}c\phi_V \right], \\ \left[\frac{2}{3}z_{\rm S}\frac{\overline{m}}{m_{\rm s}}c\phi_Z \right], \\ \left[\frac{2}{3}z$$