

December 15-17, 2020

Baryon Spectroscopy: Resonance parameter determination

HaSP Task 4.1 summary

Michael Ostrick Institut für Kernphysik, JGU-Mainz

From data to resonances

Michael Ostrick

Light baryon resonances

Resonance poles: N*/Δ*: PDG2018

Experiments/Reactions

Photoproduction: ELSA, JLAB, MAMI, GRAAL, ...

 $\Psi(3698) \rightarrow p\bar{p}\pi^0$

Charmonium **decays:** BESIII ...

Michael Ostrick

JGU

Energy regimes

Recent Regge-Models:

JPAC: Nys et al, Phys.Rev.D 95 (2017) 3, 034014 MAID: Kashevarov et al., Phys.Rev.C 96 (2017) 3, 035207

Regge phenomenology of $\gamma p \ \rightarrow \ \eta p$

GlueX: new beam asymmetries at 8.8 GeV

 $\gamma p \rightarrow \eta' p$ $\gamma p \rightarrow \eta p$ Σ_{η} 2.1% Relative Uncertainty 2.1% Relative Uncertainty 1. 0.9 0.9 This Work This Work GlueX (2017) 0.8 - JPAC Laget 0.8 0.8 JPĂC - EtaMAID - MAID 0.7 Goldstein 0.2 0.6 0.8 0 0.4 1.6 1.8 1.2 1.4 1 0.8 1.2 0.2 0.4 0.6 1.4 0 1 -t (GeV²) -t (GeV²)

S. Adhikari et al, PRC 100 (2019) 052201

1.6

JG U

 $\boldsymbol{\Sigma}_{n}$

New CLAS data for $\gamma p \ \rightarrow \ \eta p$

2.8

1.8

1.6

2.0

2.2

W(GeV)

2.4

2.6

$\gamma N \ \rightarrow \ \eta N$: Resonances and Cusps

Total cross sections in EtaMAID

S₁₁(1650) produces the cusp effect in (γ, η) at K Σ threshold S₁₁(1895) produces the cusp effect in (γ, η) at η ' threshold

--- Born+Regge

$\gamma N \rightarrow \eta N$: Resonances and Cusps

$\gamma N \ \rightarrow \ \eta N$: Resonances and Cusps

Legendre expansion with $L_{max} = 4$

 4^{th} coefficient \rightarrow S-G interference

See: Y. Wunderlich EPJ Web Conf. 241 (2020) 03006

Res.		M _{pole/BW}	Γ _{pole/BW}	$BR(N^* \rightarrow N\eta)$
N (1535) $\frac{1}{2}^{-}$	B nG a-2019	1496 ± 4	125 ± 6	0.41 ± 0.04
(S ₁₁)	J üB o-2017	1495 ± 2	112 ± 1	0.64 ± 0.02
	ηMAID-2018	1522 ± 8	175 ± 25	0.34 ± 0.05
	PDG (pole)	1500 - 1520	110 - 150	0.30 0.55
	PDG (BW)	1515 - 1545	125 - 175	0.30 - 0.33
N (1650) $\frac{1}{2}^{-}$	B nG a-2019	1664 ± 4	98 ± 6	0.33 ± 0.04
(S ₁₁)	J üB o-2017	1674 ± 3	130 ± 9	0.07 ± 0.02
	ηMAID-2018	1626^{+10}_{-5}	133 ± 20	0.19 ± 0.06
	PDG (pole)	1640 - 1670	100 - 170	0 15 0 25
	PDG (BW)	1635 - 1665	100 - 150	0.13 - 0.33
N (1895) $\frac{1}{2}^{-}$	B nG a-2019	1907 ± 10	100^{+40}_{-10}	0.10 ± 0.05
(S ₁₁)	J üB o-2017	not seen	-	-
	ηMAID-2018	1894.4^{+5}_{-15}	71^{+25}_{-13}	0.033 ± 0.015
	PDG (pole)	1890 - 1930	80 - 140	0.15 0.40
	PDG (BW)	1870 - 1920	80 - 200	0.13 - 0.40

(see PRL 25 (2020) 152002)

New data from the **BGO-OD at ELSA**:

T.C. Jude et al., arXiv:2006.12437 (2020)

- High resolution in forward direction
- Cusp around 1.9 GeV
- pronounced at extreme forward angles
- New BnGa-Fit __________
 D₁₃(1895), S₃₁(1900), P₃₁(1910), P₁₃(1900)
- No clear conclusion yet, work in progress:

JüBo updating their recent fits of $\gamma N \ \rightarrow \ KY$

As close to data as possible - single energy PWA

- Truncation necessary
- Not possible without model constraints (non-linear, unknown phases)

See e.g.: Phys.Rev.C 96 (2017) 6, 065202 and Phys.Rev.C 97 (2018) 5, 054611

2 recent approaches:

1)Constrain phases and fit moduli to data (A. Švarc, Y. Wunderlich, .. arXiv:2008.01355)

2)Iterated fits at fixed-t and fixed-W (H.Osmanović, J.Stahov, et al. PRC 97 (2018), 015207 PRC C 100 (2019), 055203)

As close to data as possible - single energy PWA

 $\gamma p \rightarrow \pi^0 p$:

As close to data as possible - single energy PWA

 $\gamma p \rightarrow \pi^0 p$:

[→] PRC C 100, 055203 (2019)

	BnGa	
<u> </u>	MAID	
	JüBo	
	SAID	

Work in progress:

- Isospin separation
- Pole analysis → Laurent plus Pietarinen expansion (L+P) pioneered by Zagreb/Tuzla group (PR C88, 035206 (2013))

Summary

- Resonance poles: precision data and sophisticated theory
- Photoproduction (ELSA, JLAB, MAMI, ...)
 Charmonium decays (BES), Heavy quark baryons (LHCb)
- Future: coupled channels
 - light-quark baryons: mass region $W \ge 2 \text{ GeV}$
 - heavy quark baryons
 - exotic baryons

