

Two-pole structures in QCD: Facts, not fantasy!

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

supported by DFG, SFB/TR-110

by CAS, PIFI

by VolkswagenStftung

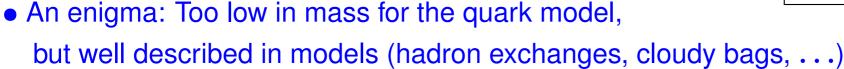
by EU

CONTENTS

- Short introduction to QCD
- ullet The story of the $\Lambda(1405)$
- Two-pole structures in the meson sector
- ullet Amplitude analysis of $B o D\pi\pi$
- Summary & outlook

Details in: UGM, Symmetry 12 (2020) 981 [2005.06909 [hep-ph]]

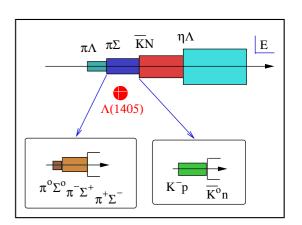
Short Introduction

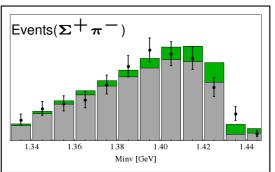

LIMITS of QCD

- light quarks: $\mathcal{L}_{ ext{QCD}} = ar{q}_L \, i D \hspace{-0.1cm}/ q_L + ar{q}_R \, i D \hspace{-0.1cm}/ q_R + \mathcal{O}(m_f/\Lambda_{ ext{QCD}}) \quad [f = u, d, s]$
 - L and R quarks decouple ⇒ chiral symmetry
 - spontaneous chiral symmetry breaking ⇒ pseudo-Goldstone bosons
 - pertinent EFT ⇒ chiral perturbation theory (CHPT)
- ullet heavy quarks: $\mathcal{L}_{ ext{QCD}} = ar{Q}_f \, iv \cdot D \, Q_f + \mathcal{O}(\Lambda_{ ext{QCD}}/m_f) \ \ [f=c,b]$
 - independent of quark spin and flavor
 - ⇒ SU(2) spin and SU(2) flavor symmetries (HQSS and HQFS)
 - pertinent EFT ⇒ heavy quark effective field theory (HQEFT)
- heavy-light systems:
 - heavy quarks act as matter fields coupled to light pions
 - combine CHPT and HQEFT

The story of the $\Lambda(1405)$

BASICS of the $\Lambda(1405)$


- ullet Quark model: uds excitation with $J^P=rac{1}{2}^-,$ a few hundred MeV above the $\Lambda(1116)$ $m=1405.1^{+1.3}_{-1.0}~{
 m MeV}\,,~\Gamma=50.5\pm2.0~{
 m MeV}~$ [PDG 2019]
- Prediction as early as 1959 by Dalitz and Tuan: Resonance between the coupled $\pi\Sigma$ and $\bar KN$ channels Dalitz, Tuan, Phys. Rev. Lett. **2** (1959) 425; J.K. Kim, PRL **14** (1965) 29
- ullet Clearly seen in $K^-p o \Sigma 3\pi$ reactions at 4.2 GeV at CERN Hemingway, Nucl.Phys. B **253** (1985) 742



many authors incl. some in the audience

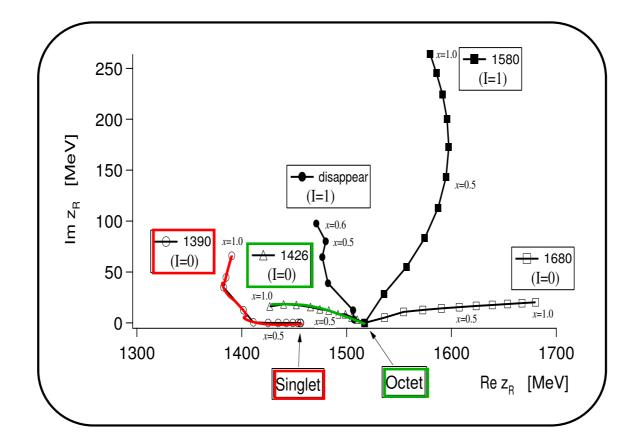
- * models are uncontrolled (theory like experiment **must** have errors!)
- ★ connections to QCD?

CHIRAL SU(3) DYNAMICS: A NEW TWIST

ullet Re-analysis of coupled-channel K^-p scattering and the $\Lambda(1405)$ Oller, UGM Phys. Lett. B **500** (2001) 263

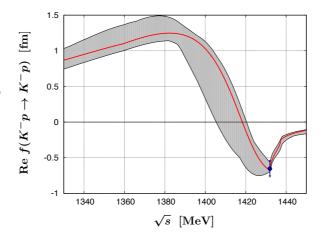
- Technical improvements:
 - Subtracted meson-baryon loop with dim reg
 → standard method
 - Coupled-channel approach to the $\pi\Sigma$ mass distribution
 - Matching formulas to any order in chiral perturbation theory established

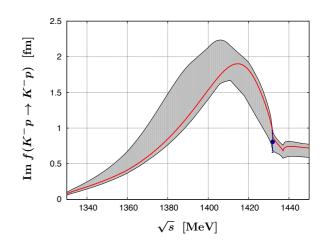
Most significant finding:

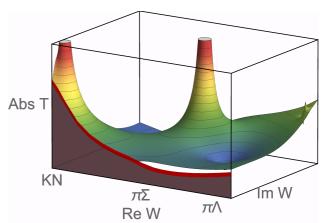

"Note that the $\Lambda(1405)$ resonance is described by **two poles** on sheets II and III with rather different imaginary parts indicating a clear departure from the Breit-Wigner situation..."

[pole 1: (1379.2 -i 27.6) MeV, pole 2: (1433.7 -i 11.0) MeV on RS II]

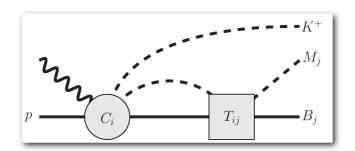
Scrutinized through further calculations & group theory arguments 2 years later
 Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

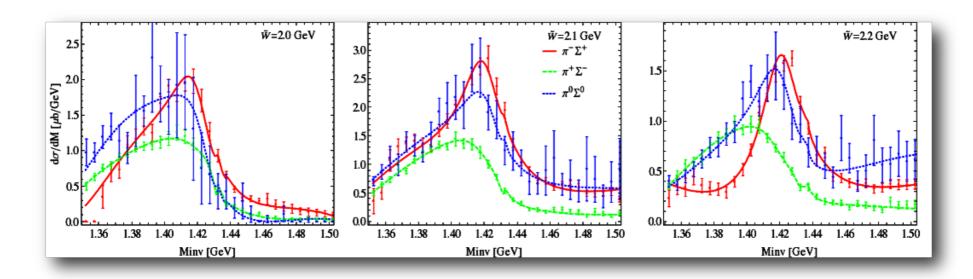

SU(3) SYMMETRY CONSIDERATIONS


- Group theory: $8\otimes 8=\underbrace{1\oplus 8_s\oplus 8_a}_{\text{binding at LO}}\oplus 10\oplus \overline{10}\oplus 27$
- Follow the pole movement from the SU(3) limit to the physical masses:


INCLUDING KAONIC ATOM DATA

- Improved calculation with all NLO terms and constraints from kaonic hydrogen using precise theory for kaonic atoms based on NREFT lkeda, Hyodo, Weise, Nucl. Phys. A 881 (2012) 98 UGM, Raha, Rusetsky, Eur. Phys. J. C 35 (2004) 349
- → Precise proton amplitudes
- → Predictions for neutron amps.
 - M. Bazzi *et al.* [SIDDHARTA Collaboration],
 Phys. Lett. B **704** (2011) 113

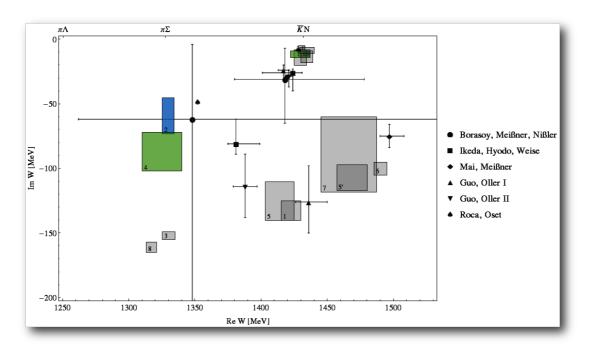

- Similar developments by the Bonn & Murcia groups
 Mai, UGM, Nucl. Phys. A 900 (2013) 51
 Oller, Guo, Phys. Rev. C 87 (2013) 035202



INCLUDING PHOTOPRODUCTION DATA

Mai and UGM, EPJ A 51 (2015) 30

- Simple model for $\gamma p \to K^+\Sigma\pi \to \text{CLAS}$ data CLAS, Phys. Rev. C 87, 035206 (2013) Roca, Oset, Phys. Rev. C 87, 055201 (2013)
- CLAS data prefer solution 4

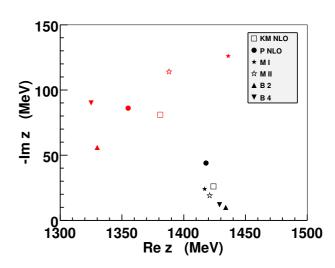


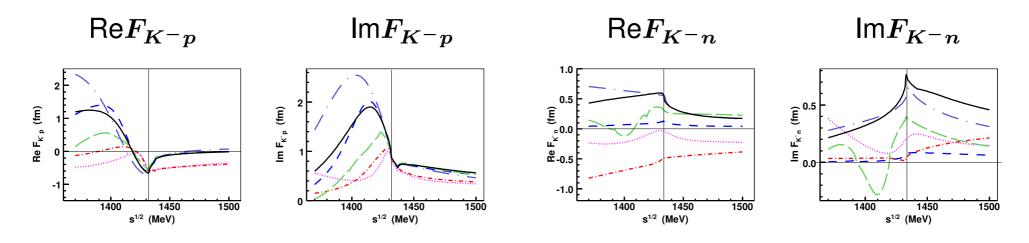
- ullet also good description of $\Sigma^+\pi^-$ distribution from $K^-p o \Sigma^+\pi^-\pi^+\pi^-$ (not fitted)
- solution 2 also acceptable

STATUS of the TWO-POLE SCENARIO

Two poles from scattering plus CLAS data:

 $\rightarrow PDG\ 2016:\ http://pdg.lbl.gov/2015/reviews/rpp2015-rev-lam-1405-pole-struct.pdf$


POLE STRUCTURE OF THE $\Lambda(1405)$ REGION Written November 2015 by Ulf-G. Meißner and Tetsuo Hyodo


→ return to the RPP in the summary!

OPEN ENDS

- The story is not yet told to the end:
 - Consider various NLO approaches
 - ⋆ precise location of the lighter pole
 - * subthreshold amp's not yet well determined

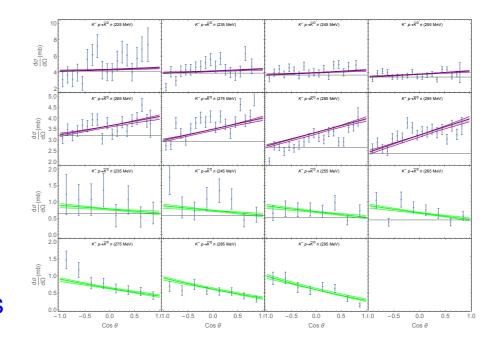
Cieply, Mai, UGM, Smejkal, Nucl. Phys. A 954 (2016) 17

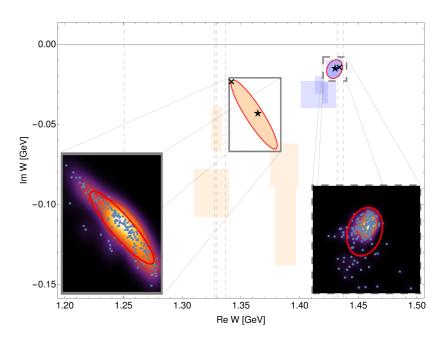
Kyoto-Munich Bonn 2 Bonn 4 Murcia 1 Murcia 2 - · - Prague

Prague: Cieply, Smejkal, Nucl. Phys. A 881 (2012) 115

INCLUDING P-WAVES

- First UCHPT calc. with S- and P-waves
 & fitting to differential XS data
- Various tests of the scattering amp:
- $\hookrightarrow \pi \Sigma$ inv. mass. distribution $\sqrt{}$
- \hookrightarrow CLAS photoproduction data $\sqrt{}$
- → multiple fits w/ constraints on the LECs
- Two-pole scenario again validated

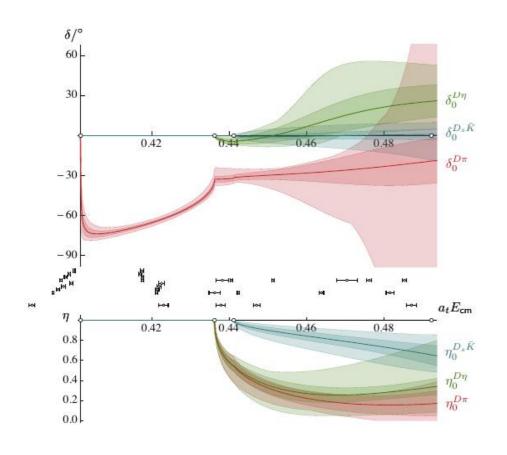

pole I: (1430(5) - i15(4)) MeV

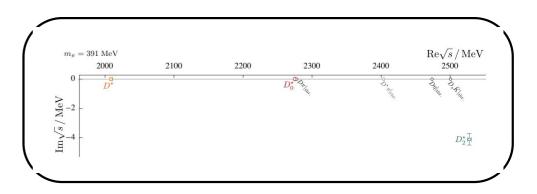

pole II: (1360(13) - i43(14)) MeV

Sadavasian, Mai, Döring, Phys. Lett. B789 (2019) 329

Update of the two-pole plot available

Mai, arXiv:2010.00056 [nucl-th]




Two-pole structures in the meson sector

COUPLED CHANNEL SCATTERING on the LATTICE

Moir, Peardon, Ryan, Thomas, Wilson, JHEP 1610 (2016) 011

- $D\pi$, $D\eta$, $D_s\bar{K}$ scattering with I=1/2:
- ullet 3 volumes, one a_s , one a_t , $M_\pi \simeq 390$ MeV, various K-matrix type extrapolations

- ullet S-wave pole at (2275.9 \pm 0.9) MeV
- ullet close to the $D\pi$ threshold
- ullet consistent w/ $D_0^{\star}(2300)$ of PDG
- BUT: chiral symmetry ignored... :-(

COUPLED CHANNEL DYNAMICS

Kaiser, Weise, Siegel (1995), Oset, Ramos (1998), Oller, UGM (2001), Kolomeitsev, Lutz (2002), Jido et al. (2003), Guo et al. (2006), . . .

• $D\phi$ bound states: Poles of the T-matrix (potential from CHPT and unitarization)

Unitarized CHPT as a non-perturbative tool:

$$T^{-1}(s) = V^{-1}(s) - G(s)$$

- V(s): derived from the SU(3) chiral Lagrangian, 6 LECs up to NLO \rightarrow next slide
- ullet G(s): 2-point scalar loop function, regularized w/ a subtraction constant $a(\mu)$
- T, V, G: all these are matrices, channel indices suppressed

COUPLED CHANNEL DYNAMICS cont'd

Barnes et al. (2003), van Beveren, Rupp (2003), Kolomeitsev, Lutz (2004), Guo et al. (2006), . . .

NLO effective chiral Lagrangian for coupled channel dynamics

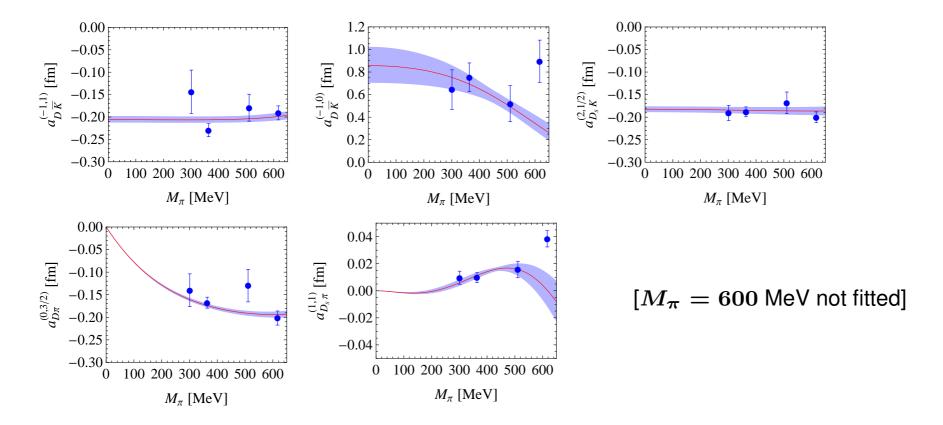
Guo, Hanhart, Krewald, UGM, Phys. Lett. B 666 (2008) 251

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)}$$

$$\mathcal{L}^{(1)} = \mathcal{D}_{\mu}D\mathcal{D}^{\mu}D^{\dagger} - M_{D}^{2}DD^{\dagger} , \quad D = (D^{0}, D^{+}, D_{s}^{+})$$

$$\mathcal{L}^{(2)} = D\left[-h_{0}\langle\chi_{+}\rangle - h_{1}\chi_{+} + h_{2}\langle u_{\mu}u^{\mu}\rangle - h_{3}u_{\mu}u^{\mu}\right]D + \mathcal{D}_{\mu}D\left[h_{4}\langle u^{\mu}u^{\nu}\rangle - h_{5}\{u^{\mu}, u^{\nu}\}\right]\mathcal{D}_{\nu}D$$
 with $u_{\mu} \sim \partial_{\mu}\phi$, $\chi_{+} \sim \mathcal{M}_{\mathrm{quark}}$, ...

• LECs:


- $\hookrightarrow h_0$ absorbed in masses
- $\hookrightarrow h_1 = 0.42$ from the D_s -D splitting
- $\hookrightarrow h_{2,3,4,5}$ from a fit to lattice data $(D\pi o D\pi, Dar{K} o Dar{K},...)$

Liu, Orginos, Guo, Hanhart, UGM, Phys. Rev. D 87 (2013) 014508

FIT to LATTICE DATA

Liu, Orginos, Guo, Hanhart, UGM, PRD 87 (2013) 014508

• Fit to lattice data in 5 "simple" channels: no disconnected diagrams

ullet Prediction: Pole in the (S,I)=(1,0) channel: 2315^{+18}_{-28} MeV

Experiment:

 $M_{D_{s0}^{\star}(2317)} = (2317.8 \pm 0.5)\,\mathrm{MeV}$ PDG2019

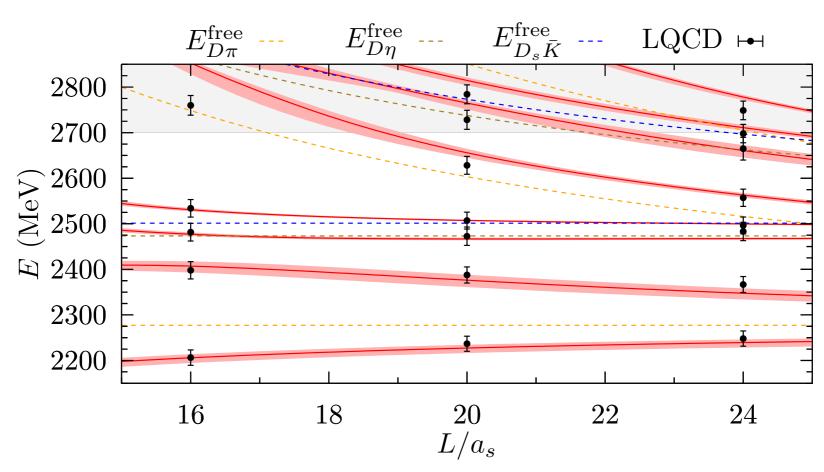
FINITE VOLUME FORMALISM

- ullet Goal: postdict the finite volume (FV) energy levels for I=1/2 and compare with the recent LQCD results from Moir et al. using the already fixed LECs ullet parameter-free insights into the $D_0^\star(2300)$
- ullet In a FV, momenta are quantized: $ec{q}=rac{2\pi}{L}ec{n}\ ,\ \ ec{n}\in\mathbb{Z}^3$
- \Rightarrow Loop function G(s) gets modified: $\int d^3 ec{q} o rac{1}{L^3} \sum_{ec{q}} ec{q} \end{supp}$

$$G(s) = (\pi, \eta, \overline{K})$$

$$ilde{G}(s,L) = G(s) = \lim_{\Lambda o \infty} \left[rac{1}{L^3} \sum_{ec{n}}^{|ec{q}| < \Lambda} I(ec{q}) - \int_0^{\Lambda} rac{q^2 dq}{2\pi^2} I(ec{q})
ight]$$

Döring, UGM, Rusetsky, Oset, Eur. Phys. J. A47 (2011) 139


ullet FV energy levels from the poles of $ilde{T}(s,L)$:

$$\tilde{T}^{-1}(s,L) = V^{-1}(s) - \tilde{G}(s,L)$$

WHAT ABOUT the $D_0^{\star}(2300)$?

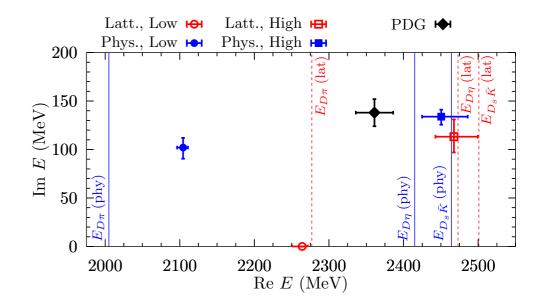
ullet Results for I=1/2 $D\phi$ scattering

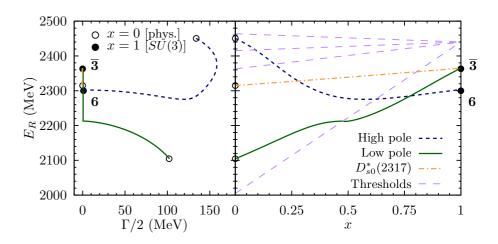
Albaladejo, Fernandez-Soler, Guo, Nieves, Phys. Lett. B 767 (2017) 465

- this is NOT a fit!
- all LECs taken from the earlier study of Liu et al. (discussed before)

WHAT ABOUT the $D_0^{\star}(2300)$?

- ullet reveals a two-pole scenario! [cf. $\Lambda(1405)$]
- understood from group theory


$$ar{3}\otimes 8 = ar{3} \oplus 6 \oplus \overline{15}$$


this was seen earlier in various calc's

Kolomeitsev, Lutz (2004), F. Guo, Shen, Chiang, Ping, Zou (2006), F. Guo, Hanhart, UGM (2009), Z. Guo, UGM, Yao (2009)

- Again: important role of chiral symmetry
- ullet Easy lattice QCD test: sextet pole becomes a bound state for $M_\phi > 575$ MeV in the SU(3) limit Du et al., Phys.Rev. D 98 (2018) 094018

Albaladejo, Fernandez-Soler, Guo, Nieves (2017)

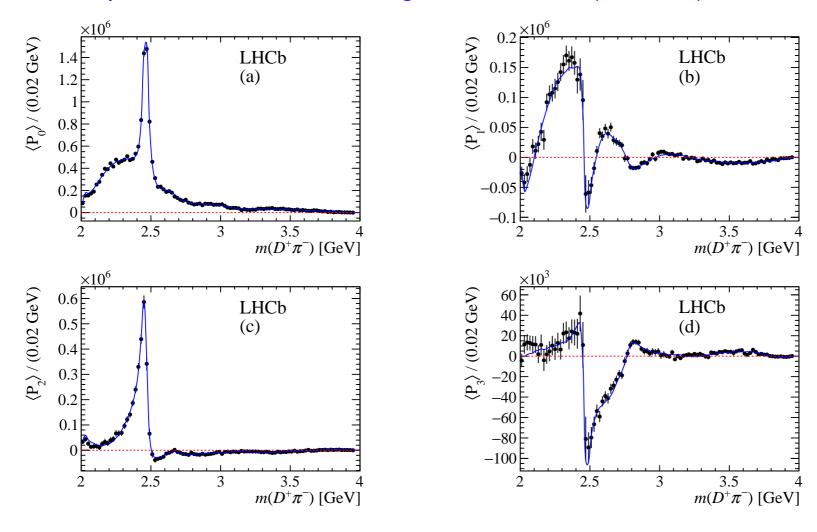
TWO-POLE SCENARIO in the HEAVY-LIGHT SECTOR 22

• Two states in various I=1/2 states in the heavy meson sector $(M,\Gamma/2)$

	Lower [MeV]	Higher [MeV]	PDG [MeV]
D_0^\star	$\left(2105^{+6}_{-8},102^{+10}_{-11} ight)$	$\left(2451^{+36}_{-26},134^{+7}_{-8}\right)$	$(2318\pm 29, 134\pm 20)$
D_1	$\left(2247^{+5}_{-6},107^{+11}_{-10}\right)$	$\left(2555^{+47}_{-30},203^{+8}_{-9}\right)$	$(2427 \pm 40, 192^{+65}_{-55})$
B_0^\star	$\left(5535^{+9}_{-11},113^{+15}_{-17}\right)$	$\left(5852^{+16}_{-19}, 36\pm 5 ight)$	
B_1	$\left(5584^{+9}_{-11},119^{+14}_{-17}\right)$	$\left(5912^{+15}_{-18}, 42^{+5}_{-4}\right)$	

Lattice QCD: $M_{B_{s0}^{\star}} = 5711(13)(19) \ {
m MeV} \ , \ \ M_{B_{s1}} = 5750(17)(19) \ {
m MeV}$ Lang et al., Phys.Lett. B 750 (2015) 17

→ but is there further experimental support for this?


Amplitude Analysis of $B \to D\pi\pi$

DATA for $B o D\pi\pi$

ullet Recent high precision results for $B o D\pi\pi$ from LHCb

Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001

• Spectroscopic information in the angular moments ($D\pi$ FSI):

CHIRAL LAGRANGIAN for B o D TRANSITIONS

Savage, Wise, Phys. Rev. D39 (1989) 3346

- ullet Consider $ar{B} o D$ transition with the emission of two light pseudoscalars (pions)
- Chiral effective Lagrangian:

$$egin{aligned} \mathcal{L}_{ ext{eff}} &= ar{B}ig[c_1\left(u_{\mu}tM + Mtu_{\mu}
ight) + c_2\left(u_{\mu}M + Mu_{\mu}
ight)t \ &+ c_3t\left(u_{\mu}M + Mu_{\mu}
ight) + c_4\left(u_{\mu}\langle Mt
angle + M\langle u_{\mu}t
angleig) \ &+ c_5t\langle Mu_{\mu}
angle + c_6\langle \left(Mu_{\mu} + u_{\mu}M
ight)t
angleig]\partial^{\mu}D^{\dagger} \end{aligned}$$

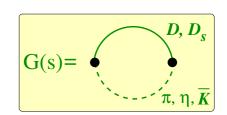
with

$$ar{B} = (B^-, ar{B}^0, ar{B}^0_s) \;, \quad D = (D^0, D^+, D^+_s)$$

 $oldsymbol{M}$ is the matter field for the fast-moving pion

t = uHu is a spurion field for Cabbibo-allowed decays

ightarrow only some combinations of the LECs c_i appear


$$m{H} = egin{pmatrix} 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

THEORY of $B o D\pi\pi$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Phys. Rev. D98 (2018) 094018

- ullet $B^- o D^+ \pi^- \pi^-$ contains coupled-channel $D\pi$ FSI
- consider S,P,D waves: $\mathcal{A}(B^- \to D^+\pi^-\pi^-) = \mathcal{A}_0(s) + \mathcal{A}_1(s) + \mathcal{A}_2(s)$
 - \rightarrow P-wave: $D^{\star}, D^{\star}(2680)$; D-wave: $D_2(2460)$ as by LHCb
 - ightarrow S-wave: use coupled channel $(D\pi,D\eta,D_sar{K})$ amplitudes with all parameters fixed before
 - ightarrow only two parameters in the S-wave (one combination of the LECs c_i and one subtraction constant in the G_{ij})

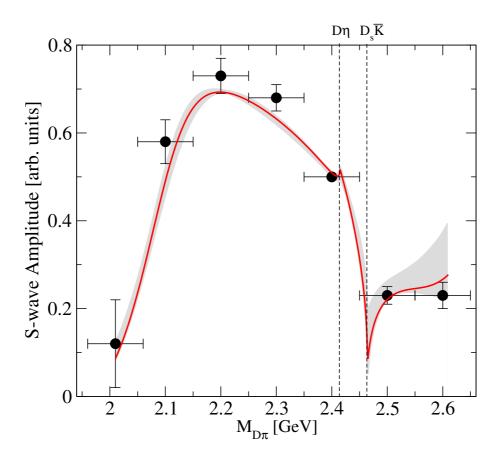
$$egin{aligned} \mathcal{A}_0(s) &\propto E_\pi \left[2 + G_{D\pi}(s) \left(rac{5}{3} T_{11}^{1/2}(s) + rac{1}{3} T_{11}^{3/2}(s)
ight)
ight] \ &+ rac{1}{3} E_\eta G_{D\eta}(s) T_{21}^{1/2}(s) + \sqrt{rac{2}{3}} E_{ar{K}} G_{D_s ar{K}}(s) T_{31}^{1/2}(s) \ &+ C E_\eta G_{D\eta}(s) T_{21}^{1/2}(s) \end{aligned}$$

 π, η, \bar{K}

THEORY of $B o D\pi\pi$ continued

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. D98 (2018) 094018

More appropriate combinations of the angular moments:

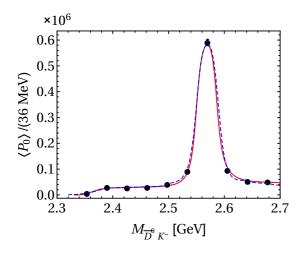

$$\langle P_0
angle \propto |\mathcal{A}_0|^2 + |\mathcal{A}_1|^2 + |\mathcal{A}_2|^2$$
 $\langle P_2
angle \propto \frac{2}{5} |\mathcal{A}_1|^2 + \frac{2}{7} |\mathcal{A}_2|^2 + \frac{2}{\sqrt{5}} |\mathcal{A}_0| |\mathcal{A}_2| \cos(\delta_2 - \delta_0)$
 $\langle P_{13}
angle = \langle P_1
angle - \frac{14}{9} \langle P_3
angle \propto \frac{2}{\sqrt{3}} |\mathcal{A}_0| |\mathcal{A}_1| \cos(\delta_1 - \delta_0)$

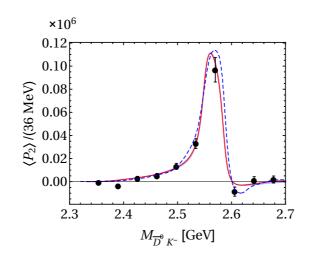
$$\stackrel{*10^6}{\underset{0.5}{\bigcirc}_{0.0}} \stackrel{*10^6}{\underset{0.0}{\bigcirc}_{0.0}} \stackrel{*10^6}{\underset{0.0}{}} \stackrel{*10^6}{\underset{0.0}{}} \stackrel{*10^6}$$

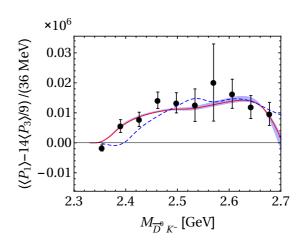
- ullet The **S-wave** $D\pi$ can be very well described using pre-fixed amplitudes
- ullet Fast variation in [2.4,2.5] GeV in $\langle P_{13} \rangle$: cusps at the $D\eta$ and $D_s \bar{K}$ thresholds \hookrightarrow should be tested experimentally

A CLOSER LOOK at the S-WAVE

 LHCb provides anchor points, where the strength and the phase of the S-wave were extracted from the data and connected by cubic spline




Higher mass pole at 2.46 GeV clearly amplifies the cusps predicted in our amplitude


THEORY of $B^0_s o ar D^0 K^- \pi^+$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. D98 (2018) 094018

- ullet LHCb has also data on $B^0_s
 ightarrow ar{D}^0 K^- \pi^+$, but less precise
- ullet Same formalism as before, one different combination of the LECs c_i
- same resonances in the P- and D-wave as LHCb

- ⇒ these data are also well described
- \Rightarrow better data for $\langle P_{13} \rangle$ would be welcome
- ⇒ even more channels, see Du, Guo, UGM, Phys. Rev. D 99 (2019) 114002

SUMMARY & OUTLOOK

- It all started with the two-pole structure of the $\Lambda(1405)$
 - → well established fact!
 - → lighter pole still needs better determination
 - → be aware of models that can not cope with this

- Clear candidates in the meson sector
 - → some excited charm mesons are good candidates for molecules
 - \hookrightarrow esp. $D_0^{\star}(2300), D_{s0}^{\star}(2317), D_{s1}(2460), \dots$

Du et al., 2012.04599 [hep-ph]

- \hookrightarrow testable predictions for various beauty mesons B_0^\star, B_1
- All this is not properly reflected in the PDG tables
 - \hookrightarrow summary tables e.g. only lists one pole for the $\Lambda(1405)$
 - → many states analyzed using BW parametrization :-(
 - → PDG needs a more serious approach to the hadron spectrum!

SUMMARY & OUTLOOK II

• but there is some hope, two excited Λ states listed now (2020 edition):

P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) 083C01

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1380) 1/2⁻

$$J^P = \frac{1}{2}$$
 Status: **

OMITTED FROM SUMMARY TABLE

See the related review on "Pole Structure of the $\Lambda(1405)$ Region."

- a new two-star resonance at 1380 MeV
- still not in the summary table
- above/below the line dubious!

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1405) 1/2⁻

$$I(J^P) = 0(\frac{1}{2})$$
 Status: ***

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P=1/2^-$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P=1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \to K^+ \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) $\to \Sigma^+$ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin J=1/2. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P=1/2^-$.

See the related review(s):

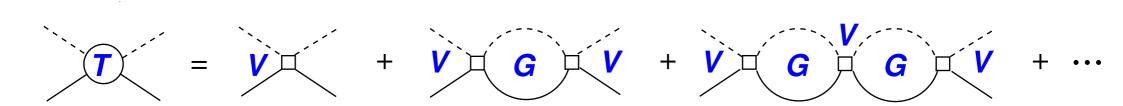
Pole Structure of the $\Lambda(1405)$ Region

⇒ this general phenomenon must be accounted for!

SPARES

CHIRAL DYNAMICS — UPDATE

QCD with three light flavors: A theoretical paradise

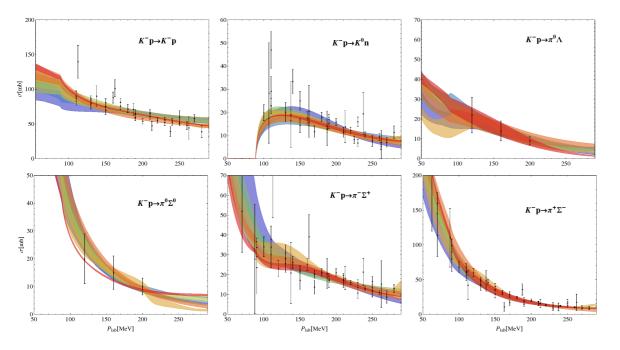

Leutwyler

- ⇒ Exhibits **spontaneuous** and **explicit** chiral symmetry breaking
- ⇒ Can be analyzed **systematically** & **precisely** using EFT = chiral perturbation theory Weinberg (1979) Gasser, Leutwyler (1984,1985)
- ⇒ Many intriguing results, but:
 - often convergence problems in the presence of strange quarks
 - limited by the appearance of resonances and bound states
- Discuss here such cases & methods that overcome these limitations
 w/ particular emphasis on WW's contribution [baryon spectrum & interactions]

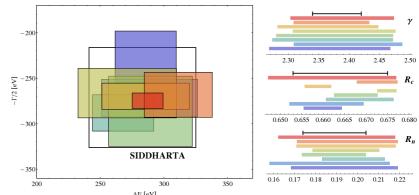
ENTERS CHIRAL DYNAMICS

Great idea:

Combine (leading-order) chiral SU(3) Lagrangian with coupled-channel dynamics
Kaiser, Siegel, Weise, Nucl. Phys. A **594** (1995) 325



- \hookrightarrow Dominance of the Weinberg-Tomozawa term, excellent description of K^-p data and $\pi\Sigma$ mass distribution, also inclusion of NLO terms with constrained fits
- \hookrightarrow The $\Lambda(1405)$ appears as a **dynamically generated state** (MB molecule)
- But: unpleasant regulator dependence (Yukawa-type, momentum cut-off) gauge invariance in photo-reactions?


YET ANOTHER TWIST

- Looking even more closely, yet another surprise:
- \Rightarrow at least 8 solutions of similar quality w/ different pairs of poles for the $\Lambda(1405)$ Mai and UGM, EPJ A **51** (2015) 30

- Kaonic hydrogen
- Threshold ratios

SIDDHARTA: M. Bazzi et al., Phys. Lett. B **704**, 113 (2011)

Scatt. data: Ciborowski et al., J. Phys. G **8**, 13 (1982), Humphrey, Ross, Phys. Rev. **127**, 1305 (1962)

Sakitt et al., Phys. Rev. B **139**, 719 (1965), Watson et al., Phys.Rev. **131**, 2248 (1963)