T2.3: Computation of matrix elements for in medium quarkonium evolution

Viljami Leino

Technische Universität München

Theoretical Aspects of Hadron Spectroscopy and Phenomenology 17.12.2020

General Description

Deal with quarkonium propagation and suppression in the medium formed in heavy-ion collisions. The quarkonium low-energy out of equilibrium dynamics is governed by in-medium correlators, which we aim to compute in lattice QCD.

Related recent publications:

- N. Brambilla, M. A. Escobedo, A. Vairo and P. Vander Griend, *Transport coefficients from in medium quarkonium dynamics*, Phys. Rev. D 100 (2019) no.5, 054025 hep-ph/1903.08063.
- G. Aarts, C. Allton, J. Glesaaen, S. Hands, B. Jäger *et al.* Properties of the QCD thermal transition with $N_f = 2 + 1$ flavours of Wilson quark, hep-lat/2007.04188.
- N. Brambilla, V. Leino, P. Petreczky and A. Vairo, Lattice QCD constraints on the heavy quark diffusion coefficient, Phys. Rev. D 102 (2020) no.7, 074503 hep-lat/2007.10078.
- N. Brambilla, M. Á. Escobedo, M. Strickland, A. Vairo, P. Vander Griend, J. H. Weber,

Bottomonium suppression in an open quantum system using the quantum trajectories method,hep-ph/2012.01240.

Introduction: QCD and QGP

- Heavy quarks and their bound states (Quarkonium) are great probes for the Quark Gluon Plasma (QGP)
- QGP generated relativistic heavy ion collisions.

- Want to predict the experimental quantity: nuclear modification factor $R_{\rm AA}$
- The QGP can be described in terms of transport coefficients
- R_{AA} related to heavy quark momentum diffusion coefficient κ (and dispersive counterpart γ)

Diffusion Coefficient

- We don't have R_{AA} and ν₂ directly in our theories, instead different (hydrodynamical) models depend on spatial diffusion coefficient D_x
- Observed ν_2 is larger than expected from kinetic models but in good agreement with hydrodynamic models

- Indicates the medium has fluidlike properties
- R_{AA} tells how heavy quarks see the nuclear medium

κ from perturbation theory

- Clearly $m_{
 m E} \ll T$ is too strict assumption on small T
- Huge perturbative variation

 \Rightarrow needs non-perturbative measurements

- Also huge scale dependence trough $m_{
 m E}=g(\mu){\cal T}$
- Here we have scale from NLO EQCD $\mu \sim 2\pi\, {\it T}$

Heavy Quark in medium

• Heavy quark energy doesn't change much in collision with a thermal quark

$$E_k \sim T$$
, $p \sim \sqrt{MT} \gg T$

- HQ momentum is changed by random kicks from the medium
 - \rightarrow Brownian motion; Follows Langevin dynamics

$$rac{d p_i}{dt} = -rac{\kappa}{2MT} p_i + \xi_i(t) \,, \quad \langle \xi(t) \xi(t')
angle = \kappa \delta(t-t') \,.$$

• Heavy quark momentum diffusion coefficient κ related to many interesting phenomena

Such as: Spatial diffusion coefficient $D_s = 2T^2/\kappa$, Drag coefficient $\eta_D = \kappa/(2MT)$, Heavy quark relaxation time $\tau_Q = \eta_D^{-1}$

Quarkonium in medium

 Quarkonium in strongly interacting medium (environment energy scale πT)

$$M \gg \frac{1}{a_0} \gg \pi T \gg E$$
, $\tau_R \gg \tau_E \sim 1/\pi$

- HQ mass *M*, Bohr radius a_0 , binding energy *E*, correlation time τ_E
- Quarkonium in fireball can be described by Limbland equation

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -i[H,\rho] + \sum_{n,m} h_{nm} \left(L_i^n \rho L_i^{m\dagger} - \frac{1}{2} \{ L_i^{m\dagger} L_i^n, \rho \} \right)$$

- All terms depend on two free parameters κ and γ
- κ turns out to be the heavy quark diffusion coefficient
- γ is correction to the heavy quark-antiquark potential

The singlet self-energy in pNRQCD

- Studying diagram one can find: $\kappa = \frac{1}{6N_c} \int_0^\infty dt \langle \{gE^{a,i}(t,0)gE^{a,j}(0,0)\} \rangle$ $\gamma = \frac{-i}{6N_c} \int_0^\infty dt \langle [gE^{a,i}(t,0)gE^{a,j}(0,0)] \rangle$
- The self-energies provide the in medium induced mass shifts δM_s and widths Γ_s
- For 1S Coulombic quarkonium state:

$$\Gamma(1S) = 3a_0^2\kappa \qquad \delta M(1S) = \frac{3}{2}a_0^2\gamma$$

• Separate way of lattice measurement Brambilla et.al.PRD100 (2019)

Brambilla et.al.PRD96 (2017), Brambilla et.al.PRD97 (2018)

Un-quenched κ Result

$$0.24 \lesssim rac{\kappa}{T^3} \lesssim 4.2$$

- Using data from (Kim et.al.JHEP11 (2018)) and (Aarts et.al.JHEP11 (2011))
- Un-quenched determination of κ from lattice data

Un-quenched γ Results

- Using data from (Kim et.al.JHEP11 (2018))
- First non-perturbative determination of γ

Brambilla et.al. Phys. Rev. D 100 (2019) no.5, 054025 hep-ph/1903.08063

Heavy quark diffusion from lattice

- Traditional approach using current correlators has transport peak
- HQEFT inspired Euclidean correlator free of transport peaks

$$G_{\mathrm{E}}(au) = -\sum_{i=1}^{3}rac{\langle \operatorname{Re}\operatorname{Tr} \left[U(1/T, au) E_i(au,0) U(au,0) E_i(0,0)
ight]
angle}{3 \langle \operatorname{Re}\operatorname{Tr} U(1/T,0)
angle}$$

• To get momentum diffusion coefficient κ , a spectral function $\rho(\omega)$ needs to be reversed:

$$G_{\rm E}(\tau) = \int_0^\infty \frac{{\rm d}\omega}{\pi} \rho(\omega, T) \mathcal{K}(\omega, \tau T), \qquad \mathcal{K}(\omega, \tau T) = \frac{\cosh\left(\frac{\omega}{T}\left(\tau T - \frac{1}{2}\right)\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$
$$\kappa = \lim_{\omega \to 0} \frac{2T\rho(\omega)}{\omega}$$

- Measure using the multilevel algorithm in pure gauge (quenched)
- Compared to earlier studies we measure extremely wide range of temperatures
- Create model $\rho(\omega)$ by matching to perturbation theory at high ${\cal T}$
- Invert the spectral function equation by varying the model ρ

Lattice correlator

• Normalize lattice data with the LO Perturbative result:

$$G_{\mathrm{E}}^{\mathrm{norm}} = \pi^2 T^4 \left[rac{\cos^2(\pi au T)}{\sin^4(\pi au T)} + rac{1}{3 \sin^2(\pi au T)}
ight]$$

• Perform tree-level improvement by matching lattice and continuum perturbation theories

Caron-Huot et.al.JHEP04 (2009), Francis et.al.PoSLattice (2011)

When do thermal effects start

$$R_2(N_t) = \frac{G_{\rm E}(N_t,\beta)}{G_{\rm E}^{\rm norm}(N_t)} \left/ \frac{G_{\rm E}(2N_t,\beta)}{G_{\rm E}^{\rm norm}(2N_t)} \right.$$

- On small physical separation every T shares a scaling (apart from finite size effects)
- Thermal effect nonexistent for au < 0.10, then grow

Continuum limit and finite size effects

- Use 3 largest lattices for continuum limit
- Systematic include tadpole and extrapolations with and without $N_t = 12$ point or a^4 term.
- Finite size effects are in control, we can go without extrapolation.

High Temperature

- NLO spectral function works only at very high temperatures
- Different ansatze have different $\omega \sim {\cal T}$ behavior
- Good matching between perturbation theory and lattice

Lattice results for D_s

- On low temperature close to $\mathcal{T}_{\rm c},$ agreement with other results, including ALICE

Lattice results for κ

- Unprecedented temperature range: $\frac{\kappa^{\rm NLO}}{T^3} = \frac{g^4 C_{\rm F} N_{\rm c}}{18\pi} \left[\ln \frac{2T}{m_{\rm E}} + \xi + C \frac{m_{\rm E}}{T} \right].$
- Can fit temperature dependence C = 3.81(1.33)

Brambilla et al 2020: Accepted to PRD, hep-lat/2007.10078

- Developed a new program for estimating R_{AA}
- Use the temperature dependence of κ from previous slide

- Measurement of unquenched kappa possible indirectly from lattice
- We have measured quenched κ in wide range of temperatures and fitted the temperature dependence
- κ (and $\gamma)$ are major source of uncertainty for \textit{R}_{AA}
- Where to go from now:
 - γ needs to be measured from lattice
 - Can unquenched κ be measured directly on lattice \Rightarrow Gradient flow
 - 1/M corrections to κ can be calculated

Thank You