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HEAVY QUARKONIUM PRODUCTION IN PNRQCD

OUTLINE
▸ Quarkonium production in NRQCD and pNRQCD 

▸ Exclusive electromagnetic production and decay 

▸ Inclusive hadroproduction of quarkonia at the LHC 

▸ Summary and outlook
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HEAVY QUARKONIUM PRODUCTION IN PNRQCD

PRODUCTION OF QUARKONIUM
▸ Heavy quarkonia can be described from nonrelativistic EFTs, 

which are based on the hierarchy of scales m ≫ mv ≫ mv2 

▸ NREFTs provide a factorization formalism for quarkonium 
production, where cross sections are given by perturbative 
short-distance coefficients times nonperturbative matrix 
elements. 

▸ Decay rates and exclusive electromagnetic production 
provide precision tests of the NREFT formalism. 

▸ Inclusive production processes are expected to be useful 
probes for various areas of QCD such as the QGP.
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HEAVY QUARKONIUM PRODUCTION IN PNRQCD

NRQCD FACTORIZATION
▸ NRQCD provides a factorization formalism for decay rates and 

production cross sections.  
 
 

▸ Both perturbative short-distance cross sections and 
nonperturbative matrix elements are needed to make predictions. 

▸ The matrix elements have scalings in powers of v. 
▸ Generally, a limited class of color-singlet matrix elements have 

been computed from potential models and quenched lattice 
QCD. 

▸ We aim to compute the matrix elements in potential NRQCD, 
which is obtained by integrating out scales above mv2.
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Perturbatively calculable 
short-distance coefficients

NRQCD matrix elements
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HEAVY QUARKONIUM PRODUCTION IN PNRQCD

QUARKONIUM IN PNRQCD
▸ We work in the strong coupling regime where mv2 ≪ 𝚲QCD , 

which is valid for non-Coulombic quarkonia, such as P-wave 
quarkonia. The degree of freedom is the singlet field                   
S(x1,x2), which describe QQ̅ in a color-singlet state. 
 

▸ Matching to NRQCD is done nonperturbatively in expansion 
in powers of 1/m. 

▸ This provides expressions for matrix elements in terms of 
wavefunctions at the origin and universal gluonic correlators.
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DECAY / ELECTROMAGNETIC 
PRODUCTION IN PNRQCD



DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

NRQCD MATRIX ELEMENTS
▸ Decay and exclusive electromagnetic production matrix elements 

are expectation values on quarkonium states. 

▸ Potential NRQCD provides expressions for these matrix elements 
in terms of wavefunctions at the origin and universal gluonic 
correlators.  

▸ The gluonic correlators arise from matching between NRQCD 
and pNRQCD, and are independent of the heavy quark flavor. 
This reduces the number of nonperturbative quantities. 
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Decay into  
light hadrons
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Electromagnetic  
production and decay :

color/spin matrices and 
covariant derivatives

:



DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

P-WAVE MATRIX ELEMENTS IN PNRQCD
▸ P-wave quarkonium : inclusive decay at leading order in v
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: scale like           , 

𝓔3 is dimensionless, and has logarithmic scale dependence

short-distance coefficients

Color-singlet matrix element

Color-octet matrix element

Radial wavefunction  
at the origin

Dimensionless gluonic correlator

: expectation value 
  on quarkonium state 

Schwinger line



DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

P-WAVE MATRIX ELEMENTS IN PNRQCD
▸ Electromagnetic decay/production including order-v2 

correction
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short-distance coefficients

Color-singlet matrix element at LO in v

Color-singlet matrix element, 
order-v2 correction

Color-octet matrix element, 
order-v2 correction

Binding energy

: expectation value 
  on quarkonium state 



DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

S-WAVE MATRIX ELEMENTS IN PNRQCD
▸ S-wave quarkonium : electromagnetic decay/production 

including order-v2 correction
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short-distance coefficients

Color-singlet matrix element at LO in v

Color-singlet matrix element, 
order-v2 correction

Binding energy

: expectation value 
  on quarkonium state 



DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

NRQCD MATRIX ELEMENTS IN PNRQCD
▸ Quarkonium decay and production rates are determined 

from wavefunctions at the origin and gluonic correlators. 

▸ We compute wavefunctions from potential models, while  
gluonic correlators can in principle be obtained from 
lattice QCD. 

▸ Since lattice determinations have not yet been done, we 
determine 𝓔1, 𝓔2, and 𝓔3 from measured P-wave 
charmonium decay rates and cross sections.
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DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

P-WAVE CHARMONIUM DECAY RATES
▸ Electromagnetic decay rates of 𝜒c0 and 𝜒c2 
 
 

▸ Decay rates of 𝜒cJ into light hadrons
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Potential model A B C D

Γγγ
χc0(1P ) (keV) 2.92± 0.54 2.91± 0.54 2.76± 0.52 2.62± 0.50

Γγγ
χc2(1P ) (keV) 0.58± 0.16 0.58± 0.16 0.58± 0.16 0.59± 0.17

Table 6. Results for the two photon decay widths of the states χc0(1P ) and χc2(1P ), indicated
with Γγγ

χc0(1P ) and Γγγ
χc2(1P ) for short, for each of the potential models of section 4.1.

Potential model A B C D

σ(e+e− → χc0(1P ) + γ) (fb) 2.10± 0.80 2.08± 0.80 1.58± 0.71 1.62± 0.71

σ(e+e− → χc1(1P ) + γ) (fb) 16.2± 6.3 16.2± 6.3 16.4± 6.4 16.6± 6.4

σ(e+e− → χc2(1P ) + γ) (fb) 3.19± 1.97 3.22± 1.98 4.18± 2.29 4.42± 2.39

Table 7. Results for the cross sections σ(e+e− → χcJ (1P )+γ) at
√
s = 10.6GeV for the potential

models described in section 4.1.

The results for the two photon decay widths of the charmonium P -wave states χc0(1P )

and χc2(1P ) for each potential model determination of the wavefunction and binding energy

are listed in table 6. The errors are due to the uncertainties in the correlators E1 and iE2.
The averages of these determinations read

Γ(χc0(1P )→ γγ) = 2.80+0.12
−0.19 ± 0.52 keV , (4.19)

Γ(χc2(1P )→ γγ) = 0.58+0.01
−0.00 ± 0.16 keV , (4.20)

where the first uncertainty comes from the potential model dependence and the second one

is the average of the uncertainties from each potential model.

The determined values of E1 and iE2 allow us to make predictions for the cross sections

σ(e+e− → χcJ(1P ) + γ). In table 7, we list for each potential model the results at
√
s =

10.6GeV. The uncertainties in table 7 are computed from the uncertainties of E1 and iE2,
which already account for the uncertainties originating from the missing corrections of

relative order v2 and α2
s, and from adding in quadrature the uncertainty that comes from

varying αs between αs(
√
s) = 0.171 and αs(

√
s/4) = 0.245. From the averages of the

results in table 7 we obtain

σ(e+e− → χc0(1P ) + γ) = 1.84+0.25
−0.26 ± 0.76 fb , (4.21)

σ(e+e− → χc1(1P ) + γ) = 16.4+0.2
−0.2 ± 6.4 fb , (4.22)

σ(e+e− → χc2(1P ) + γ) = 3.75+0.67
−0.56 ± 2.16 fb , (4.23)

where the first uncertainty is from the model dependence and the second one is the average

of the uncertainties in table 7. The obtained cross sections are consistent, inside errors,

with the results of ref. [25].

It is worthwhile emphasizing that, although the measured two photon decay widths of

the χc0(1P ) and χc2(1P ) states and the cross section σ(e+e− → χc1(1P ) + γ) have been

used as an experimental input, the theoretical results for these quantities, eqs. (4.19), (4.20)
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where the first uncertainty comes from the potential model dependence, and the second

one is the average of the uncertainties in table 9.

From eq. (4.53) and eq. (4.49), we can compute the decay widths of the χcJ(1P ) states

into light hadrons. Rather than computing the decay rates directly using eq. (4.49), we

determine Γ(χcJ(1P )→ LH) for J = 0 and 2 states by combining the ratios Γ(χcJ(1P )→
LH)/ Γ(χcJ(1P ) → γγ) with the two photon decay widths computed in eq. (4.19) and

eq. (4.20). Similarly, we compute Γ(χc1(1P )→ LH) by combining these determinations of

Γ(χc0(1P ) → LH) and Γ(χc2(1P ) → LH) with the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) →
LH) and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). This approach has the advantage that the

ratios do not depend on the choice of potential model, a fact that reduces significantly the

uncertainties. Our results for the ratios Γ(χcJ(1P ) → LH)/ Γ(χcJ(1P ) → γγ) for J = 0

and 2 are

Γ(χc0(1P )→ LH)

Γ(χc0(1P )→ γγ)
= (2.96+0.92

−0.92)× 103, (4.56)

Γ(χc2(1P )→ LH)

Γ(χc2(1P )→ γγ)
= (2.48+0.86

−0.77)× 103, (4.57)

where the uncertainties come from uncalculated corrections of relative order v2 and α2
s ,

which are taken to be 0.3 and α2
s times the central values, respectively. These uncertainties

are added in quadrature. Since the uncertainty in E3 is dominated by uncertainties from

uncalculated higher order corrections to the theoretical expressions of the ratios, we do

not include the uncertainty in E3 to avoid double counting. Using eqs. (4.19)–(4.20) and

eqs. (4.56)–(4.57), we obtain for the inclusive decay widths into light hadrons:

Γ(χc0(1P )→ LH) = 8.3+3.0
−3.1 MeV, (4.58)

Γ(χc2(1P )→ LH) = 1.4+0.6
−0.6 MeV. (4.59)

Comparing these results with the experimental determinations shown in eqs. (4.50)

and (4.52), we see that they are consistent within errors. We also determine Γ(χc1(1P )→
LH) from the results in (4.58)–(4.59) and the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) → LH)

and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). The numerical results for these ratios are

Γ(χc0(1P )→ LH)

Γ(χc1(1P )→ LH)
= 23.7+9.8

−9.8 , (4.60)

Γ(χc1(1P )→ LH)

Γ(χc2(1P )→ LH)
= 0.33+0.16

−0.16 , (4.61)

where the uncertainties come from uncalculated corrections of relative order v2 and αs,

which are taken to be 0.3 and αs times the central values, respectively. These uncertainties

are added in quadrature. If we use eq. (4.58) and eq. (4.60), we obtain Γ(χc1(1P ) →
LH) = 0.35+0.28

−0.16MeV, and if we use eq. (4.59) and eq. (4.61), we obtain Γ(χc1(1P ) →
LH) = 0.48+0.28

−0.28MeV. The average of the two determinations reads

Γ(χc1(1P )→ LH) = 0.42+0.06
−0.06

+0.28
−0.22 MeV, (4.62)
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where the first uncertainty comes from the potential model dependence, and the second

one is the average of the uncertainties in table 9.

From eq. (4.53) and eq. (4.49), we can compute the decay widths of the χcJ(1P ) states

into light hadrons. Rather than computing the decay rates directly using eq. (4.49), we

determine Γ(χcJ(1P )→ LH) for J = 0 and 2 states by combining the ratios Γ(χcJ(1P )→
LH)/ Γ(χcJ(1P ) → γγ) with the two photon decay widths computed in eq. (4.19) and

eq. (4.20). Similarly, we compute Γ(χc1(1P )→ LH) by combining these determinations of

Γ(χc0(1P ) → LH) and Γ(χc2(1P ) → LH) with the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) →
LH) and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). This approach has the advantage that the

ratios do not depend on the choice of potential model, a fact that reduces significantly the

uncertainties. Our results for the ratios Γ(χcJ(1P ) → LH)/ Γ(χcJ(1P ) → γγ) for J = 0

and 2 are

Γ(χc0(1P )→ LH)

Γ(χc0(1P )→ γγ)
= (2.96+0.92

−0.92)× 103, (4.56)

Γ(χc2(1P )→ LH)

Γ(χc2(1P )→ γγ)
= (2.48+0.86

−0.77)× 103, (4.57)

where the uncertainties come from uncalculated corrections of relative order v2 and α2
s ,

which are taken to be 0.3 and α2
s times the central values, respectively. These uncertainties

are added in quadrature. Since the uncertainty in E3 is dominated by uncertainties from

uncalculated higher order corrections to the theoretical expressions of the ratios, we do

not include the uncertainty in E3 to avoid double counting. Using eqs. (4.19)–(4.20) and

eqs. (4.56)–(4.57), we obtain for the inclusive decay widths into light hadrons:

Γ(χc0(1P )→ LH) = 8.3+3.0
−3.1 MeV, (4.58)

Γ(χc2(1P )→ LH) = 1.4+0.6
−0.6 MeV. (4.59)

Comparing these results with the experimental determinations shown in eqs. (4.50)

and (4.52), we see that they are consistent within errors. We also determine Γ(χc1(1P )→
LH) from the results in (4.58)–(4.59) and the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) → LH)

and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). The numerical results for these ratios are

Γ(χc0(1P )→ LH)

Γ(χc1(1P )→ LH)
= 23.7+9.8

−9.8 , (4.60)

Γ(χc1(1P )→ LH)

Γ(χc2(1P )→ LH)
= 0.33+0.16

−0.16 , (4.61)

where the uncertainties come from uncalculated corrections of relative order v2 and αs,

which are taken to be 0.3 and αs times the central values, respectively. These uncertainties

are added in quadrature. If we use eq. (4.58) and eq. (4.60), we obtain Γ(χc1(1P ) →
LH) = 0.35+0.28

−0.16MeV, and if we use eq. (4.59) and eq. (4.61), we obtain Γ(χc1(1P ) →
LH) = 0.48+0.28

−0.28MeV. The average of the two determinations reads

Γ(χc1(1P )→ LH) = 0.42+0.06
−0.06

+0.28
−0.22 MeV, (4.62)
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where the first uncertainty comes from the potential model dependence, and the second

one is the average of the uncertainties in table 9.

From eq. (4.53) and eq. (4.49), we can compute the decay widths of the χcJ(1P ) states

into light hadrons. Rather than computing the decay rates directly using eq. (4.49), we

determine Γ(χcJ(1P )→ LH) for J = 0 and 2 states by combining the ratios Γ(χcJ(1P )→
LH)/ Γ(χcJ(1P ) → γγ) with the two photon decay widths computed in eq. (4.19) and

eq. (4.20). Similarly, we compute Γ(χc1(1P )→ LH) by combining these determinations of

Γ(χc0(1P ) → LH) and Γ(χc2(1P ) → LH) with the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) →
LH) and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). This approach has the advantage that the

ratios do not depend on the choice of potential model, a fact that reduces significantly the

uncertainties. Our results for the ratios Γ(χcJ(1P ) → LH)/ Γ(χcJ(1P ) → γγ) for J = 0

and 2 are

Γ(χc0(1P )→ LH)

Γ(χc0(1P )→ γγ)
= (2.96+0.92

−0.92)× 103, (4.56)

Γ(χc2(1P )→ LH)

Γ(χc2(1P )→ γγ)
= (2.48+0.86

−0.77)× 103, (4.57)

where the uncertainties come from uncalculated corrections of relative order v2 and α2
s ,

which are taken to be 0.3 and α2
s times the central values, respectively. These uncertainties

are added in quadrature. Since the uncertainty in E3 is dominated by uncertainties from

uncalculated higher order corrections to the theoretical expressions of the ratios, we do

not include the uncertainty in E3 to avoid double counting. Using eqs. (4.19)–(4.20) and

eqs. (4.56)–(4.57), we obtain for the inclusive decay widths into light hadrons:

Γ(χc0(1P )→ LH) = 8.3+3.0
−3.1 MeV, (4.58)

Γ(χc2(1P )→ LH) = 1.4+0.6
−0.6 MeV. (4.59)

Comparing these results with the experimental determinations shown in eqs. (4.50)

and (4.52), we see that they are consistent within errors. We also determine Γ(χc1(1P )→
LH) from the results in (4.58)–(4.59) and the ratios Γ(χc0(1P ) → LH)/Γ(χc1(1P ) → LH)

and Γ(χc1(1P )→ LH)/Γ(χc2(1P )→ LH). The numerical results for these ratios are

Γ(χc0(1P )→ LH)

Γ(χc1(1P )→ LH)
= 23.7+9.8

−9.8 , (4.60)

Γ(χc1(1P )→ LH)

Γ(χc2(1P )→ LH)
= 0.33+0.16

−0.16 , (4.61)

where the uncertainties come from uncalculated corrections of relative order v2 and αs,

which are taken to be 0.3 and αs times the central values, respectively. These uncertainties

are added in quadrature. If we use eq. (4.58) and eq. (4.60), we obtain Γ(χc1(1P ) →
LH) = 0.35+0.28

−0.16MeV, and if we use eq. (4.59) and eq. (4.61), we obtain Γ(χc1(1P ) →
LH) = 0.48+0.28

−0.28MeV. The average of the two determinations reads

Γ(χc1(1P )→ LH) = 0.42+0.06
−0.06

+0.28
−0.22 MeV, (4.62)
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Potential model A B C D E

|R(0)
20 (0)|2 (GeV3) 5.668 2.8974 3.234 3.47 4.36

ε(0)20 (GeV) 0.421 0.463 0.258 0.478 0.435

|R(0)
30 (0)|2 (GeV3) 4.271 2.2496 2.474 2.67 3.32

ε(0)30 (GeV) 0.767 0.795 0.597 0.823 0.767

Table 3. For the five potential models described in the text, we list the squared radial wavefunctions
at the origin, |R(0)

n0 (0)|2, and the binding energies, ε(0)n0 , of the bottomonium 2S and 3S states.

that uncalculated corrections of relative order v2 coming from the quantum-mechanical

1/m expansion of the quarkonium Fock state, in particular for the LDME of eq. (3.8),

can be spin and angular momentum dependent as well. These uncalculated corrections

are included in the error budget of the LDME, although the tuning of the potential model

parameters may effectively reduce their size.

With the same five potential models described above we have also determined at leading

order in v the squared radial wavefunctions at the origin and the binding energies of the

2S and 3S bottomonium states. The results are listed in table 3. The values of the

wavefunctions at the origin for the models A, B, and C are taken from refs. [30, 32].

4.2 P -wave charmonium electromagnetic decay and production

In this section, we compute the charmonium decay widths Γ(χcJ(1P )→ γγ) and the cross

sections σ(e+e− → χcJ(1P )+γ) using the NRQCD factorization formulas (B.4) and (B.19),

which are valid up to order v2, and rewriting the LDMEs according to the strongly coupled

pNRQCD factorization formulas (3.8)–(3.10). We determine the gluonic correlators E1 and

iE2 by fitting the available data.

The experimental inputs that we use are the χc0(1P ) and χc2(1P ) two photon decay

widths and the cross section σ(e+e− → χc1(1P ) + γ). The BESIII measurements for the

former give [38]

Γ(χc0(1P )→ γγ)
∣∣
BESIII

= 2.33± 0.20± 0.22 keV , (4.3)

Γ(χc2(1P )→ γγ)
∣∣
BESIII

= 0.63± 0.04± 0.06 keV . (4.4)

For the latter, very recently Belle has observed the process e+e− → χc1(1P ) + γ and

measured at
√
s = 10.6GeV [39]

σ(e+e− → χc1(1P ) + γ)
∣∣
Belle

= 17.3+4.2
−3.9 ± 1.7 fb . (4.5)

From the theoretical side, rather than using the NRQCD factorization formulas for

electromagnetic processes in their original form (see appendix B) we prefer using NRQCD

factorization formulas at the amplitude level. So that the matching, the velocity expansion

and the power counting are done for the amplitudes rather than for the decay widths or

cross sections. In practice, one moves from the original factorization formulas to the ones

– 19 –

J
H
E
P
0
4
(
2
0
2
0
)
0
9
5

Potential model A B C D

⟨O8(1S0)⟩χcJ × 103 (GeV3) 4.59+2.10
−1.45 4.54+2.08

−1.44 2.63+1.20
−0.83 2.39+1.09

−0.76

Table 9. Results for the matrix element ⟨χcJ (1P )|O8(1S0)|χcJ (1P )⟩ at the scale µΛ = 1GeV,
indicated with ⟨O8(1S0)⟩χcJ for short. The wavefunctions at the origin have been computed within
the potential models of section 4.1.

theoretical expressions for the decay rates that we use are valid up to next-to-leading

order in αs, except for Γ(χc1(1P )→ LH), which is known only at leading order in αs. The

decay rates Γ(χcJ(1P )→ LH) have been obtained by subtracting radiative decay rates and

transition rates into other charmonia from the total widths of χcJ(1P ) given in ref. [21].

Among the subtracted rates, only the radiative transition into J/ψ+ γ makes a significant

contribution. The experimental values of Γ(χcJ(1P )→ LH) that we use are

Γ(χc0(1P )→ LH)
∣∣
from PDG

= 10.6± 0.6 MeV, (4.50)

Γ(χc1(1P )→ LH)
∣∣
from PDG

= 0.552± 0.041 MeV, (4.51)

Γ(χc2(1P )→ LH)
∣∣
from PDG

= 1.60± 0.09 MeV. (4.52)

We setmc = M1Pc/2 and µΛ = 1GeV. We use αs(mc) = 0.282 and nf = 3. We take the the-

oretical uncertainties of the ratios Γ(χc0(1P )→ LH)/Γ(χc1(1P )→ LH) and Γ(χc1(1P )→
LH)/Γ(χc2(1P ) → LH) to be 0.3 times the central values for the uncalculated order v2

corrections, and αs times the central values for corrections of higher orders in αs. For the

ratios Γ(χc0(1P ) → LH)/Γ(χc0(1P ) → γγ) and Γ(χc2(1P ) → LH)/Γ(χc2(1P ) → γγ), we

take the theoretical uncertainties to be 0.3 times the central values for ignoring the order

v2 corrections, and α2
s times the central values for corrections of higher orders in αs. At

leading order in v the ratios do not depend on the quarkonium wavefunctions. We obtain,

in the MS scheme,

E3(1 GeV) = 2.05+0.94
−0.65. (4.53)

This result is compatible, within errors, with a previous determination in ref. [13]. Nev-

ertheless, we note that the uncertainties are smaller, despite the determination in [13] did

not include theoretical uncertainties.6 From eq. (4.53), we can compute E3(µΛ) at different

scales by using the one loop renormalization group improved expression [13]:

E3(µΛ) = E3(µ′
Λ) +

24CF

β0
log

αs(µ′
Λ)

αs(µΛ)
, (4.54)

where β0 = 11Nc/3− 4TFnf/3.

From eq. (4.53) and eq. (4.48), we can compute the matrix element ⟨χcJ(1P )| O8(1S0)

|χcJ(1P )⟩. The results at the scale µΛ = 1GeV for each potential model are listed in

table 9. If we average over them, we obtain

⟨χcJ(1P )|O8(
1S0)|χcJ(1P )⟩ = (3.53+1.05

−1.15
+1.62
−1.12)× 10−3 GeV3, (4.55)

6Note that the quantity E(µ) in ref. [13] corresponds to NcE3(µ) in this paper.
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▸ Results are almost independent 
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potential models, first-
principles calculation desirable

▸ Decay rates into light hadrons 

▸ Results are almost independent 
of radial excitation
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Potential model A B C D E

Γγγ
χb0(1P ) (eV) 58.3± 7.8 45.5± 6.1 49.1± 7.0 32.6± 4.7 47.3± 6.9

Γγγ
χb2(1P ) (eV) 11.2± 1.5 8.7± 1.2 9.6± 1.4 6.6± 1.0 9.5± 1.4

Γγγ
χb0(2P ) (eV) 58.6± 7.8 44.0± 5.8 48.6± 6.8 34.1± 4.9 48.7± 7.0

Γγγ
χb2(2P ) (eV) 11.4± 1.5 8.5± 1.2 9.6± 1.4 6.9± 1.0 9.8± 1.4

Γγγ
χb0(3P ) (eV) 57.9± 7.6 42.6± 5.6 47.0± 6.6 34.3± 4.9 48.5± 7.0

Γγγ
χb2(3P ) (eV) 11.4± 1.5 8.4± 1.1 9.4± 1.3 7.0± 1.0 9.9± 1.4

Table 8. Results for the two photon decay widths of the states χb0(nP ) and χb2(nP ), indicated
with Γγγ

χc0(nP ) and Γγγ
χc2(nP ) respectively, for each of the potential models described in section 4.1.

and (4.22), and their agreement with the data, eqs. (4.3)–(4.5), is nevertheless significant.

The reason is that the two correlators E1 and iE2 are the result of a least squares fit of

three data and not of a fine tuning of some of them.

4.3 P -wave bottomonium electromagnetic decay and production

With the values of E1 and iE2 determined in the previous section we can make predictions

for P -wave electromagnetic decay widths and production cross sections of bottomonium

states. Wavefunctions and binding energies are computed according to the potential model

results listed in table 2.

We consider, first, the two photon decay rates of the states χb0(nP ) and χb2(nP ) with

n = 1, 2 and 3. Following the same procedure discussed in section 4.2 for charmonium

states, we replace in our theoretical expressions for the χbJ(nP ) decay widths the bottom

pole mass with the spin average of the nP bottomonium masses. We use the equivalent

of eq. (4.7) and eq. (4.8). The masses of the 1P , 2P and 3P bottomonium states are

taken from ref. [21].5 Moreover, we take α = 1/137 reflecting the fact that the photons in

the final state are on shell, and we take αs = 0.200 at the scale of half the spin averaged

masses. The results for each choice of potential model used to compute wavefunctions and

binding energies are shown in table 8. The uncertainties in table 8 come from the correlated

uncertainties in E1 and iE2, as well as from the uncertainties stemming from uncalculated

corrections of order v2 and α2
s in the bottomonium sector, which we estimate to be 0.1 and

α2
s times the central values, respectively. The uncertainties are added in quadrature.

After averaging over the determinations from the different potential models, we obtain

the following predictions

Γ(χb0(1P )→ γγ) = 46.6+11.7
−14.0 ± 6.5 eV, (4.24)

Γ(χb2(1P )→ γγ) = 9.1+2.1
−2.5 ± 1.3 eV, (4.25)

Γ(χb0(2P )→ γγ) = 46.8+11.8
−12.7 ± 6.5 eV, (4.26)

5Since only the 33P2 and 33P1 states have been observed among the n = 4, L = 1 bottomonium states,

we include only them when computing the spin average of the 3P bottomonium masses and normalize

accordingly.
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Figure 2. Predicted cross sections σ(e+e− → χbJ (1P ) + γ) for J = 0 (red band), J = 1 (blue
band), and J = 2 (grey band with black lines).

Figure 3. Predicted cross sections σ(e+e− → χbJ (2P ) + γ) for J = 0 (red band), J = 1 (blue
band), and J = 2 (grey band with black lines).

Γ(χb2(2P )→ γγ) = 9.3+2.1
−2.3 ± 1.3 eV, (4.27)

Γ(χb0(3P )→ γγ) = 46.1+11.9
−11.8 ± 6.3 eV, (4.28)

Γ(χb2(3P )→ γγ) = 9.2+2.2
−2.2 ± 1.3 eV, (4.29)

where the first uncertainty comes from the potential model dependence, and the second

one is the average of the uncertainties in table 8.

Using the same input as for the two photon decay widths, we can also make predictions

for the cross sections σ(e+e− → χbJ(nP ) + γ). As has been pointed out in this context in

ref. [41] and mentioned at the end of appendix B, the perturbative expression of the elec-

tromagnetic cross section becomes singular when the center of mass energy approaches the

heavy quark-antiquark pair production threshold. In the bottomonium case, this threshold

is around 10GeV. Therefore, in order to make predictions for σ(e+e− → χbJ(nP ) + γ)

using the factorization formulas provided in appendix B, the center of mass energy has to
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where the first uncertainty comes from the deviation of the central value of each determi-

nation from the average, and the second is the average of the uncertainties in each deter-

mination. This result is also consistent with the experimental determination in eq. (4.51)

within errors.

We can also predict the decay widths of the χbJ(nP ) states into light hadrons. To

compute Γ(χbJ(nP ) → LH) we take mb = MnPb/2, with αs(mb) = 0.200, and nf =

4. The short-distance coefficients in eqs. (B.15)–(B.17) contain two scales, mb and µΛ.

Since a value of µΛ that is too small compared to mb may spoil the convergence of the

perturbation series, we resum the leading logarithms of µΛ/MnPb that appear in the short-

distance coefficients. At the current level of accuracy, this is equivalent to computing

E3(µΛ) at the scale µΛ = MnPb using the formula in eq. (4.54) and setting µΛ = MnPb in

the short-distance coefficients (B.15)–(B.17). As we have done for the χcJ(1P ) states, we

compute the decay widths Γ(χbJ(nP )→ LH) from the ratios Γ(χb0(nP )→ LH)/ Γ(χb0(nP )

→ γγ), Γ(χb2(nP ) → LH)/ Γ(χb2(nP ) → γγ), Γ(χb0(nP ) → LH)/Γ(χb1(nP ) → LH)

and Γ(χb1(nP ) → LH)/Γ(χb2(nP ) → LH), and the two photon widths determined in

eqs. (4.24)–(4.29). Our results for the ratios Γ(χb0(nP ) → LH)/Γ(χb0(nP ) → γγ) and

Γ(χb2(nP )→ LH)/Γ(χb2(nP )→ γγ) are

Γ(χb0(1P )→ LH)

Γ(χb0(1P )→ γγ)
= (23.0+2.5

−2.5)× 103, (4.63)

Γ(χb2(1P )→ LH)

Γ(χb2(1P )→ γγ)
= (29.7+4.5

−3.6)× 103, (4.64)

Γ(χb0(2P )→ LH)

Γ(χb0(2P )→ γγ)
= (23.0+2.5

−2.5)× 103, (4.65)

Γ(χb2(2P )→ LH)

Γ(χb2(2P )→ γγ)
= (29.9+4.5

−3.6)× 103, (4.66)

Γ(χb0(3P )→ LH)

Γ(χb0(3P )→ γγ)
= (23.0+2.5

−2.5)× 103, (4.67)

Γ(χb2(3P )→ LH)

Γ(χb2(3P )→ γγ)
= (29.9+4.5

−3.7)× 103, (4.68)

where the uncertainties come from the uncertainty in E3, and from the uncalculated cor-

rections of order v2 and of order α2
s , which are taken to be 0.1 and α2

s times the central

values, respectively. These uncertainties are added in quadrature. Using eqs. (4.24)–(4.29)

and eqs. (4.63)–(4.68), we obtain

Γ(χb0(1P )→ LH) = 1.07+0.33
−0.37 MeV, (4.69)

Γ(χb2(1P )→ LH) = 0.27+0.08
−0.10 MeV, (4.70)

Γ(χb0(2P )→ LH) = 1.08+0.33
−0.35 MeV, (4.71)

Γ(χb2(2P )→ LH) = 0.28+0.09
−0.10 MeV, (4.72)

Γ(χb0(3P )→ LH) = 1.06+0.33
−0.33 MeV, (4.73)

Γ(χb2(3P )→ LH) = 0.28+0.09
−0.10 MeV. (4.74)

Now we determine the decay rate Γ(χb1(nP )→ LH) using the determinations of Γ(χb0(nP )

→ LH) and Γ(χb2(nP ) → LH) in eqs. (4.69)–(4.74) and the ratios Γ(χb0(nP ) → LH)/
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Γ(χb1(nP )→ LH) and Γ(χb1(nP )→ LH)/Γ(χb2(nP )→ LH). Our results for the ratios are

Γ(χb0(nP )→ LH)

Γ(χb1(nP )→ LH)
= 7.9± 2.1 , (4.75)

Γ(χb1(nP )→ LH)

Γ(χb2(nP )→ LH)
= 0.54± 0.13 , (4.76)

for n = 1, 2, and 3, the differences between the results for different n being negligible. The

uncertainties come from the uncertainty in E3, and the uncalculated corrections of relative

order v2 and of relative order αs, which are taken to be 0.1 and αs times the central

values, respectively. These uncertainties are added in quadrature. Using the numerical

results for the decay rates Γ(χb0(nP )→ LH) in eqs. (4.69), (4.71) and (4.73), and the ratio

Γ(χb0(nP )→ LH)/Γ(χb1(nP )→ LH) in eq. (4.75), we obtain the following determination

for Γ(χb1(nP )→ LH):

Γ(χb1(nP )→ LH) = 0.14± 0.06 MeV, (4.77)

where, again, we find negligible differences between the results for n = 1, 2, and 3. If we

compute this decay rate by using the values of Γ(χb2(nP ) → LH) in eqs. (4.70), (4.72)

and (4.74), and the ratio Γ(χb1(nP ) → LH)/Γ(χb2(nP ) → LH) in eq. (4.76), we find the

same result as in eq. (4.77).

The predictions for the widths Γ(χbJ(1P )→ LH) given in eqs. (4.69), (4.77) and (4.70)

are compatible with the total widths of the χbJ(1P ) states recently computed in ref. [43]

from the electric dipole transition widths. For the total width of the χb0(1P ) state, the

Belle collaboration has determined an upper limit, Γχb0(1P ) < 2.4MeV, in ref. [44], which is

also compatible with the result in eq. (4.69). Finally, our predictions for Γ(χbJ(nP )→ LH)

support the hypothesis made in ref. [45] that the total widths of the χbJ(nP ) states are

approximately independent of the radial excitation n. This hypothesis was then used to

compute the feeddown contributions in the inclusive production cross sections of Υ(nS)

from χbJ(3P ) decays at the LHC.

4.5 Υ(2S) and Υ(3S) decay into lepton pairs

The NRQCD factorization formula for the decay width of a vector S-wave quarkonium

state into a lepton pair at relative order v2 is given by eq. (B.1). It depends on two

LDMEs: ⟨VQ(nS)|Oem
1 (3S1)|VQ(nS)⟩, whose factorization in strongly coupled pNRQCD at

relative order (ΛQCD/m)2 is in (3.13), and ⟨VQ(nS)|Pem
1 (3S1)|VQ(nS)⟩, whose factorization

in strongly coupled pNRQCD at leading order is in (3.15).

At relative order (ΛQCD/m)2 the matrix element ⟨VQ(nS)|Oem
1 (3S1)|VQ(nS)⟩ depends,

besides on E1 and E3, also on a correlator involving four chromoelectric fields and a cor-

relator involving two chromomagnetic fields. In this section, also to avoid dealing with

correlators about which practically nothing is known, we will explore the leptonic de-

cays of the bottomonium states Υ(2S) and Υ(3S) assuming that these states satisfy the

kinematical condition mbv ≫ ΛQCD ≫ mbv2. Under this condition the matrix element

⟨Υ(nS)|Oem
1 (3S1)|Υ(nS)⟩ for n = 2, 3 can be written in strongly coupled pNRQCD at
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Potential model A B C D

Γγγ
χc0(1P ) (keV) 2.92± 0.54 2.91± 0.54 2.76± 0.52 2.62± 0.50

Γγγ
χc2(1P ) (keV) 0.58± 0.16 0.58± 0.16 0.58± 0.16 0.59± 0.17

Table 6. Results for the two photon decay widths of the states χc0(1P ) and χc2(1P ), indicated
with Γγγ

χc0(1P ) and Γγγ
χc2(1P ) for short, for each of the potential models of section 4.1.

Potential model A B C D

σ(e+e− → χc0(1P ) + γ) (fb) 2.10± 0.80 2.08± 0.80 1.58± 0.71 1.62± 0.71

σ(e+e− → χc1(1P ) + γ) (fb) 16.2± 6.3 16.2± 6.3 16.4± 6.4 16.6± 6.4

σ(e+e− → χc2(1P ) + γ) (fb) 3.19± 1.97 3.22± 1.98 4.18± 2.29 4.42± 2.39

Table 7. Results for the cross sections σ(e+e− → χcJ (1P )+γ) at
√
s = 10.6GeV for the potential

models described in section 4.1.

The results for the two photon decay widths of the charmonium P -wave states χc0(1P )

and χc2(1P ) for each potential model determination of the wavefunction and binding energy

are listed in table 6. The errors are due to the uncertainties in the correlators E1 and iE2.
The averages of these determinations read

Γ(χc0(1P )→ γγ) = 2.80+0.12
−0.19 ± 0.52 keV , (4.19)

Γ(χc2(1P )→ γγ) = 0.58+0.01
−0.00 ± 0.16 keV , (4.20)

where the first uncertainty comes from the potential model dependence and the second one

is the average of the uncertainties from each potential model.

The determined values of E1 and iE2 allow us to make predictions for the cross sections

σ(e+e− → χcJ(1P ) + γ). In table 7, we list for each potential model the results at
√
s =

10.6GeV. The uncertainties in table 7 are computed from the uncertainties of E1 and iE2,
which already account for the uncertainties originating from the missing corrections of

relative order v2 and α2
s, and from adding in quadrature the uncertainty that comes from

varying αs between αs(
√
s) = 0.171 and αs(

√
s/4) = 0.245. From the averages of the

results in table 7 we obtain

σ(e+e− → χc0(1P ) + γ) = 1.84+0.25
−0.26 ± 0.76 fb , (4.21)

σ(e+e− → χc1(1P ) + γ) = 16.4+0.2
−0.2 ± 6.4 fb , (4.22)

σ(e+e− → χc2(1P ) + γ) = 3.75+0.67
−0.56 ± 2.16 fb , (4.23)

where the first uncertainty is from the model dependence and the second one is the average

of the uncertainties in table 7. The obtained cross sections are consistent, inside errors,

with the results of ref. [25].

It is worthwhile emphasizing that, although the measured two photon decay widths of

the χc0(1P ) and χc2(1P ) states and the cross section σ(e+e− → χc1(1P ) + γ) have been

used as an experimental input, the theoretical results for these quantities, eqs. (4.19), (4.20)

– 23 –

pNRQCD results for charmonium

Experiment

pNRQCD prediction for bottomonium

J
H
E
P
0
4
(
2
0
2
0
)
0
9
5

Potential model A B C D E

|R(0)
20 (0)|2 (GeV3) 5.668 2.8974 3.234 3.47 4.36

ε(0)20 (GeV) 0.421 0.463 0.258 0.478 0.435

|R(0)
30 (0)|2 (GeV3) 4.271 2.2496 2.474 2.67 3.32

ε(0)30 (GeV) 0.767 0.795 0.597 0.823 0.767

Table 3. For the five potential models described in the text, we list the squared radial wavefunctions
at the origin, |R(0)

n0 (0)|2, and the binding energies, ε(0)n0 , of the bottomonium 2S and 3S states.

that uncalculated corrections of relative order v2 coming from the quantum-mechanical

1/m expansion of the quarkonium Fock state, in particular for the LDME of eq. (3.8),

can be spin and angular momentum dependent as well. These uncalculated corrections

are included in the error budget of the LDME, although the tuning of the potential model

parameters may effectively reduce their size.

With the same five potential models described above we have also determined at leading

order in v the squared radial wavefunctions at the origin and the binding energies of the

2S and 3S bottomonium states. The results are listed in table 3. The values of the

wavefunctions at the origin for the models A, B, and C are taken from refs. [30, 32].

4.2 P -wave charmonium electromagnetic decay and production

In this section, we compute the charmonium decay widths Γ(χcJ(1P )→ γγ) and the cross

sections σ(e+e− → χcJ(1P )+γ) using the NRQCD factorization formulas (B.4) and (B.19),

which are valid up to order v2, and rewriting the LDMEs according to the strongly coupled

pNRQCD factorization formulas (3.8)–(3.10). We determine the gluonic correlators E1 and

iE2 by fitting the available data.

The experimental inputs that we use are the χc0(1P ) and χc2(1P ) two photon decay

widths and the cross section σ(e+e− → χc1(1P ) + γ). The BESIII measurements for the

former give [38]

Γ(χc0(1P )→ γγ)
∣∣
BESIII

= 2.33± 0.20± 0.22 keV , (4.3)

Γ(χc2(1P )→ γγ)
∣∣
BESIII

= 0.63± 0.04± 0.06 keV . (4.4)

For the latter, very recently Belle has observed the process e+e− → χc1(1P ) + γ and

measured at
√
s = 10.6GeV [39]

σ(e+e− → χc1(1P ) + γ)
∣∣
Belle

= 17.3+4.2
−3.9 ± 1.7 fb . (4.5)

From the theoretical side, rather than using the NRQCD factorization formulas for

electromagnetic processes in their original form (see appendix B) we prefer using NRQCD

factorization formulas at the amplitude level. So that the matching, the velocity expansion

and the power counting are done for the amplitudes rather than for the decay widths or

cross sections. In practice, one moves from the original factorization formulas to the ones

– 19 –
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Potential model A B C D E

⟨Oem
1 (3S1)⟩Υ(2S) (GeV3) 2.45+0.25

−0.25 1.24+0.13
−0.13 1.46+0.15

−0.15 1.48+0.15
−0.15 1.88+0.19

−0.19

⟨Pem
1 (3S1)⟩Υ(2S) (GeV5) 5.72+0.57

−0.57 3.21+0.32
−0.32 2.00+0.20

−0.20 3.96+0.40
−0.40 4.54+0.45

−0.45

⟨Oem
1 (3S1)⟩Υ(3S) (GeV3) 1.70+0.18

−0.18 0.89+0.09
−0.1 1.03+0.10

−0.11 1.05+0.11
−0.11 1.32+0.14

−0.14

⟨Pem
1 (3S1)⟩Υ(3S) (GeV5) 8.09+0.81

−0.81 4.42+0.44
−0.44 3.63+0.36

−0.36 5.44+0.54
−0.54 6.30+0.63

−0.63

Table 11. Results for the matrix elements ⟨Υ(nS)|Oem
1 (3S1)|Υ(nS)⟩ and ⟨Υ(nS)| Pem

1 (3S1)
|Υ(nS)⟩ at the scale µΛ = MΥ(nS), indicated with ⟨Oem

1 (3S1)⟩Υ(nS) and ⟨Pem
1 (3S1)⟩Υ(nS) for short.

Wavefunctions at the origin and binding energies have been computed within the potential models
of section 4.1.

We take α = 1/131 and compute αs at the scale of the meson mass, which gives

αs(MΥ(2S)) = 0.177 for the 2S state and αs(MΥ(3S)) = 0.176 for the 3S state. Similarly to

what we have done for Γ(χbJ(nP )→ LH), we compute E3(µΛ) at the scale µΛ = MΥ(nS) us-

ing the expression at leading logarithmic accuracy given in eq. (4.54), which, at the current

level of accuracy, is equivalent to resumming the leading logarithms of µΛ/MΥ(nS) in the

short distance coefficients (in this case, the short distance coefficient (B.3)). The obtained

leptonic widths of the bottomonium states Υ(2S) and Υ(3S) for the different potential

model determinations of the wavefunctions at the origin and binding energies are shown in

table 10. The uncertainties are computed combining the uncertainties coming from uncalcu-

lated order v2 corrections, estimated to be 0.1 times the central values, with the uncertain-

ties coming from the neglected corrections of higher orders in αs, estimated to be α2
s of the

central values, and with the uncertainty of E3. The uncertainties are added in quadrature.

The present experimental values of the Υ(2S) and Υ(3S) leptonic decay widths are [21]

Γ(Υ(2S)→ e+e−)
∣∣
PDG

= 0.612± 0.011 keV , (4.80)

Γ(Υ(3S)→ e+e−)
∣∣
PDG

= 0.443± 0.008 keV . (4.81)

Few remarks concerning the determinations in table 10. First, we recall that the central

value of Γ(Υ(3S) → e+e−) in model E coincides with the measurement, because the pa-

rameters of model E have been chosen to precisely reproduce it. Second, even though the

parameters of model D have been determined to reproduce the measured leptonic width

of the Υ(3S), the model does not reproduce the measured rate when eq. (4.79) is used,

because the contribution from E3 was not included in ref. [35]. Taking the averages over

the five determinations in table 10 gives

Γ(Υ(2S)→ e+e−) = 0.63+0.28
−0.17

+0.07
−0.07 keV, (4.82)

Γ(Υ(3S)→ e+e−) = 0.40+0.17
−0.11

+0.04
−0.05 keV, (4.83)

where the first uncertainties are from the potential model dependence, and the second ones

are the averages of the uncertainties in table 10. The theoretical determinations (4.82)

and (4.83) agree well, within uncertainties, with the data (4.80) and (4.81).

From eq. (4.78) we can compute the LDME ⟨Υ(nS)|Oem
1 (3S1)|Υ(nS)⟩ (which is equal to

⟨Υ(nS)|O1(3S1)|Υ(nS)⟩ at relative order v2 and under the assumed kinematical conditions)
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Potential model A B C D E
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−0.19

⟨Pem
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−0.45

⟨Oem
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−0.54 6.30+0.63

−0.63

Table 11. Results for the matrix elements ⟨Υ(nS)|Oem
1 (3S1)|Υ(nS)⟩ and ⟨Υ(nS)| Pem

1 (3S1)
|Υ(nS)⟩ at the scale µΛ = MΥ(nS), indicated with ⟨Oem

1 (3S1)⟩Υ(nS) and ⟨Pem
1 (3S1)⟩Υ(nS) for short.

Wavefunctions at the origin and binding energies have been computed within the potential models
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Γ(Υ(2S)→ e+e−)
∣∣
PDG

= 0.612± 0.011 keV , (4.80)

Γ(Υ(3S)→ e+e−)
∣∣
PDG

= 0.443± 0.008 keV . (4.81)
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−0.17

+0.07
−0.07 keV, (4.82)

Γ(Υ(3S)→ e+e−) = 0.40+0.17
−0.11

+0.04
−0.05 keV, (4.83)

where the first uncertainties are from the potential model dependence, and the second ones

are the averages of the uncertainties in table 10. The theoretical determinations (4.82)

and (4.83) agree well, within uncertainties, with the data (4.80) and (4.81).

From eq. (4.78) we can compute the LDME ⟨Υ(nS)|Oem
1 (3S1)|Υ(nS)⟩ (which is equal to

⟨Υ(nS)|O1(3S1)|Υ(nS)⟩ at relative order v2 and under the assumed kinematical conditions)
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the bottomonium 1S states, we assume that eqs. (5.34), (5.39), and (5.42) are valid up to
corrections of order v2.

The numerical results for the decay constants fΥ(nS) are

fΥ(1S) = 0.621+0.045
−0.000

+0.008
−0.006 ± 0.033± 0.062 GeV = 0.621+0.084

−0.070 GeV, (5.45a)
fΥ(2S) = 0.447+0.002

−0.000
+0.003
−0.003 ± 0.024± 0.013 GeV = 0.447+0.028

−0.027 GeV, (5.45b)
fΥ(3S) = 0.395+0.001

−0.000
+0.006
−0.000 ± 0.021± 0.012 GeV = 0.395+0.025

−0.024 GeV, (5.45c)

where the first uncertainties come from varying µR between 2GeV and 8GeV, and the
second uncertainties come from varying r0 between 0.05GeV−1 and 0.2GeV−1. The third
uncertainties take into account the neglect of the correction −V (2)

p2 (0)/(2m) to the wave-
functions at the origin, which we take to be ±500 MeV/(2m) times the central value.
For fΥ(1S), the final uncertainty comes from the uncalculated order-v2 corrections to the
LDME, which we take to be 10% of the central value. This is based on the typical estimate
v2 ≈ 0.1 for bottomonium states. For fΥ(2S) and fΥ(3S), the final uncertainties come from
the uncalculated corrections of order v3, which we take to be 3% of the central value, based
on the typical estimate v2 ≈ 0.1. We add the uncertainties in quadrature.

Compared to the LO values fLO
Υ(nS), the central values in eq. (5.45) are 12% larger for

Υ(1S), 3% smaller for Υ(2S), and 8% smaller for Υ(3S). If we had ignored the corrections
to the wavefunctions at the origin, the order-αs correction would have been −18% of the
central value, while the order-α2

s correction would have been −20% of the central value, so
that the perturbative corrections to two-loop accuracy would add up to −38% of the central
value. Similarly to the case of charmonia, inclusion of the corrections to the wavefunctions
at the origin reduces the sizes of the corrections considerably, significantly improving the
convergence of the corrections.

The results for fΥ(1S) and fΥ(2S) that we obtain agree well within uncertainties with
the lattice NRQCD determinations fΥ(1S) = 0.639(31)GeV and fΥ(2S) = 0.481(39)GeV
from ref. [82], where the SDCs and the LDMEs are both obtained in lattice regularization,
avoiding the use of the MS scheme. In order to compare with experimental measurements,
we compute the leptonic decay rates of Υ(nS) from fΥ(nS) by using eq. (5.4). We obtain

Γ(Υ(1S)→ e+e−) = 1.11+0.32
−0.24 keV, (5.46a)

Γ(Υ(2S)→ e+e−) = 0.54+0.07
−0.06 keV, (5.46b)

Γ(Υ(3S)→ e+e−) = 0.41+0.05
−0.05 keV, (5.46c)

where we used α = 1/131, which is computed at the scale of the Υ(nS) mass. These results
agree within uncertainties with the experimental values Γ(Υ(1S) → e+e−) = 1.340 ±
0.018 keV, Γ(Υ(2S) → e+e−) = 0.612 ± 0.011 keV, and Γ(Υ(3S) → e+e−) = 0.443 ±
0.008 keV in ref. [79]. If we use the expressions for the decay rates expanded at the squared
amplitude level, we obtain Γ(Υ(1S)→ e+e−) = 1.10+0.23

−0.16 keV, Γ(Υ(2S)→ e+e−) = 0.54±
0.06 keV, and Γ(Υ(3S) → e+e−) = 0.41 ± 0.05 keV, which agree well with the results in
eq. (5.46) within uncertainties.

We note that the result for Γ(Υ(1S) → e+e−) that we obtain also agrees well with
the perturbative QCD prediction at third order in ref. [83]. However, the convergence
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INCLUSIVE PRODUCTION IN PNRQCD

NRQCD MATRIX ELEMENTS
▸ Inclusive production matrix elements are vacuum 

expectation values with projection onto quarkonium states.  
 
 

▸ The projection is onto states that contain a quarkonium + 
anything. 

▸ Existing pNRQCD formalism describes the state       .  
We extend the formalism to describe the states               , 
which is valid up to corrections of order 1/Nc2. 

17

Inclusive production :

Projection onto states 
containing quarkonium

color/spin matrices and 
covariant derivatives
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INCLUSIVE PRODUCTION IN PNRQCD

INCLUSIVE P-WAVE PRODUCTION
▸ We apply the pNRQCD formalism for 𝜒QJ (Q=c or b, J=1, 2) 

▸ At leading order in v, the cross section is given by 

▸ We compute both color singlet and color octet matrix 
elements in strongly coupled pNRQCD.

18
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We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia in the framework of pNRQCD. In this way, the color octet NRQCD
long-distance matrix element can be determined without relying on measured cross section data,
which has not been possible so far. We obtain inclusive cross sections of �cJ and �bJ at the LHC,
which are in good agreement with data. In principle, the formalism developed in this work can be
applied to all inclusive production processes of heavy quarkonia.

The mechanism underlying heavy quarkonium produc-
tion is a key to understanding the dynamics of strongly
coupled systems [1–5]. Quarkonium production is ex-
tensively studied in experiments at particle colliders like
LHC, SuperKEKB, BEPC II, and RHIC, and will con-
tinue to be an important subject in future colliders such
as the planned Electron-Ion Collider. Quarkonium pro-
duction has a large impact on studies of the QCD phase
diagrams and early universe, as the production in proton-
proton collisions is the bottom line to which quarkonium
suppression in heavy ion collisions is compared [6]. More-
over, from the theoretical point of view, quarkonium pro-
duction processes have exquisite theoretical issues pin-
ning down on factorization in strongly coupled theories,
definition and calculation of nonperturbative matrix ele-
ments, and resummation of logarithms of large ratios of
scales [7–11].

The typical hierarchy of energy scales that character-
izes heavy quarkonium is m � mv � mv2, where m is
the heavy quark mass and v ⌧ 1 the relative velocity of
the quark in the bound state. This hierarchy of energy
scales may be exploited to construct a hierarchy of e↵ec-
tive field theories. Nonrelativistic QCD (NRQCD) [7, 12]
follows from QCD by integrating out modes associated
with the energy scale m from Green’s functions describ-
ing a heavy quark and a heavy antiquark near thresh-
old. The matching to NRQCD can be done perturba-
tively, since m is larger than the typical hadronic scale
⇤QCD. Potential NRQCD (pNRQCD) [13–15] follows
from NRQCD by integrating out gluons of energy or mo-
mentum of order mv. The matching to pNRQCD may
need to rely on nonperturbative methods if the momen-
tum scale, mv, is comparable to ⇤QCD.

While NRQCD had great success in heavy quarko-
nium phenomenology, a satisfactory description of inclu-
sive production processes from first principles is still be-
yond reach. Much of the di�culty stems from our limited
knowledge of the NRQCD long-distance matrix elements
(LDMEs), which describe the nonperturbative evolution
of the heavy quarkQ and antiquark Q̄ into a quarkonium.
First-principles determinations have not been possible,

even approximately, for a class of important LDMEs that
are associated with the QQ̄ in a color octet state. On the
other hand, phenomenological determinations of the un-
known LDMEs based on di↵erent choices of observables
have led to inconsistent sets of LDMEs, which have re-
sulted in contradicting predictions, in particular, leaving
open the long-standing problem of the polarization of
quarkonium produced in hadron colliders [16]. It would
be of enormous impact to be able to compute the un-
known LDMEs from first principles.
Potential NRQCD has been successfully applied to an-

nihilation and exclusive electromagnetic production pro-
cesses of heavy quarkonia [17–19]. It has been anticipated
that pNRQCD could also be used to describe inclusive
production processes. In this Letter, we apply for the
first time pNRQCD to this kind of processes by comput-
ing the NRQCD LDMEs that appear in the inclusive pro-
duction cross section of P -wave quarkonia. Specifically,
we consider production cross sections of �QJ (Q = c or
b, J = 0, 1, and 2) at leading order in v.
The cross section is given in the NRQCD factorization

formalism at leading order in v by [7]

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)

Here, we use spectroscopic notation for the angular mo-
mentum state of the QQ̄, while the superscripts 1 and 8
denote the color state of the QQ̄: color singlet (CS) and
color octet (CO), respectively. The quantities �

QQ̄(3P [1]
J )

and �
QQ̄(3S[8]

1 )
are the perturbatively calculable short-

distance coe�cients (SDCs). We have used the heavy-
quark spin symmetry to reduce the �QJ LDMEs into
LDMEs of �Q0, which are defined by

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q0(P=0)

⇥  †(� i
2

 !
D · �)�|⌦i, (2a)

hO
�Q0(3S[8]

1 )i = h⌦|�†�iT a �†ab
` P�Q0(P=0)

⇥ �bc
`  

†�iT c�|⌦i, (2b)
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INCLUSIVE PRODUCTION IN PNRQCD

P-WAVE MATRIX ELEMENTS
▸ Color-singlet matrix element:  

we reproduce the known result in vacuum-saturation 
approximation. 

▸ Color-octet matrix element: result is given in terms of a 
universal gluonic correlator.  
 
 

▸ 𝓔 is a universal quantity that does not depend on quark 
flavor or radial excitation. Determination of 𝓔 leads to 
determination of all P-wave quarkonium cross sections.

19

3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies
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n typically obtained by lattice QCD methods.
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Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For
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in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439

– 12 –



INCLUSIVE PRODUCTION IN PNRQCD

P-WAVE CHARMONIUM PRODUCTION
▸ Cross section ratio                              at the LHC compared to 

ATLAS and CMS data. 
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Perturbative QQ̅ cross sections  
computed at NLO in 𝜶s +  
resummed logarithms from  
Bodwin, Chao, HSC, Kim, Lee, Ma,  
PRD93, 034041 (2016)
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using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642
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(MS͞ scheme)

▸ We determine 𝓔 
from measurements 
of this ratio:
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INCLUSIVE PRODUCTION IN PNRQCD

P-WAVE CHARMONIUM 
PRODUCTION
▸ 𝜒c2 and 𝜒c1 cross sections at 

the LHC, compared to 
ATLAS data. 

▸ Wavefunctions at the origin 
obtained from two-photon 
decay rates of 𝜒c2 and 𝜒c0.
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Perturbative QQ̅ cross sections  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PRD93, 034041 (2016)

Hadron Spectroscopy and Phenomenology                                      Dec 15, 2020                                                   Hee Sok Chung        



INCLUSIVE PRODUCTION IN PNRQCD

P-WAVE CHARMONIUM POLARIZATION
▸ 𝜒c2 and 𝜒c1 polarization at the LHC compared to 

experimental constraints from CMS.
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INCLUSIVE PRODUCTION IN PNRQCD

P-WAVE BOTTOMONIUM PRODUCTION
▸ Cross section ratio                              for 1P states at the LHC 

compared to LHCb and CMS measurements.
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INCLUSIVE PRODUCTION IN PNRQCD

P-WAVE BOTTOMONIUM PRODUCTION
▸ 𝜒bJ(nP) production rates 

relative to 𝛶(n′S) cross sections 
at the LHC compared to LHCb 
measurement of feeddown 
fractions.

24
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Perturbative QQ̅ cross sections computed 
at NLO in 𝜶s using FDCHQHP Package 
from Wan and Wang, Comput. Phys. 
Commun. 185, 2939 (2014)

𝛶(nS) matrix elements taken from fits to data in 
Han, Ma, Meng, Shao, Zhang, Chao, PRD94, 014028 (2016)

𝜒bJ wavefunctions computed from potential models
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HEAVY QUARKONIUM PRODUCTION IN PNRQCD

SUMMARY AND OUTLOOK
▸ We computed quarkonium production cross sections in strongly 

coupled potential NRQCD, where matrix elements are given in 
terms of wavefunctions at the origin and gluonic correlators.  

▸ Due to universality of gluonic correlators, the number of 
independent nonperturbative quantities are reduced. 

▸ We also developed a formalism for inclusive production, and for 
the first time computed matrix elements for inclusive 
production from first principles. 

▸ We determine the gluonic correlators from measured P-wave 
charmonium data, which provide good descriptions of 
charmonium and bottomonium measurements. 

▸ Lattice QCD determinations of gluonic correlators are desirable.

25
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DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

DECAY MATRIX ELEMENTS IN PNRQCD
▸ The formalism for computing decay matrix elements in 

strongly coupled pNRQCD have been developed. 
 

▸ Decay matrix elements are computed in expansion in 
powers of 1/m : 

▸                     is the ground state,  
x1 and x2 are positions of Q and Q̅.

27

NRQCD  
Hamiltonian

Eigenstates
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DECAY AND ELECTROMAGNETIC PRODUCTION IN PNRQCD

DECAY MATRIX ELEMENTS IN PNRQCD
▸ A heavy quarkonium in vacuum is given by the ground 

state                    , because excited states have energy gaps 
of 𝚲QCD or more and are integrated out. 

▸ This leads to the following formula 

▸ The contact term is proportional to                          , so the 
decay matrix element involves wavefunctions at the origin.

28

Quarkonium  
wavefunction

Contact term, 
computed order by order in 1/m
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INCLUSIVE PRODUCTION IN PNRQCD

QUARKONIUM PROJECTION OPERATOR
▸ It is necessary to describe the projection operator in order 

to compute inclusive production matrix elements. 

▸ The projection operator                          is essentially a 
number operator. If we neglect decay rates,         and the 
NRQCD Hamiltonian are simultaneously diagonalizable. 

▸ The matrix elements of         should involve                    , 
because this describes quarkonia in vacuum. 

▸ Matrix elements of         can also involve                     with 
n>0, if this describes a quarkonium + light particles. 

29
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INCLUSIVE PRODUCTION IN PNRQCD

QUARKONIUM PROJECTION OPERATOR
▸ A simultaneous eigenstate of         and the Hamiltonian is 
 

▸ For n=0, this is just the quarkonium in vacuum and 𝜙 is the 
usual quarkonium wavefunction.  

▸ For n>0, the “wavefunctions” 𝜙  are in general unknown.  

▸ The projection operator is then                                              . 
 
The sum is restricted to states that reduce to color-singlet 
QQ̅ at leading order in 1/m and at x1=x2. 

30
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INCLUSIVE PRODUCTION IN PNRQCD

QUARKONIUM WAVEFUNCTIONS
▸ Nonperturbatively, quarkonium wavefunctions are 

determined from a Schrödinger equation, where the 
potential is a vacuum expectation value of a Wilson loop: 
at leading order in 1/m (static potential for n=0),  
 

▸ For the potential for the n>0 states, the light excitations in 
the                     states should be included.

31

T

r

T

r

⊗ ⊗

gluonic operators
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INCLUSIVE PRODUCTION IN PNRQCD

QUARKONIUM WAVEFUNCTIONS
▸ In general, VEVs of products of color-singlet operators 

factorize into products of VEVs of individual operators.  

▸ So the n>0 potentials reduce to

32

T

r

T

r

T

r + constant

⊗ ⊗

⊗ ⊗
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INCLUSIVE PRODUCTION IN PNRQCD

QUARKONIUM PROJECTION OPERATOR
▸ Hence, the n>0 potentials are just the n=0 potential, plus  

constants that have no effect to the wavefunctions. 

▸ Therefore, the wavefunctions 𝜙 are independent of n, and 
the projection operator is just 

▸ These are valid up to corrections of relative order 1/Nc2. 

33
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INCLUSIVE PRODUCTION IN PNRQCD

PRODUCTION MATRIX ELEMENTS
▸ Now we can compute the production matrix elements 

▸ This allows calculation of production matrix elements in 
strongly coupled pNRQCD, by computing the contact 
terms in the same way as the decay matrix elements.

34

Contact term, 
computed order by order in 1/m
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