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Remembrance of evaluations past

How S34 theory was handled before

Solar Fusion I:

Tombrello & Parker 1963 model

Thus the energy dependence of the 3He(a,g)7Be reac-
tion seems to be well determined. The only free
parameter in the extrapolation to thermal energies is the
normalization of the energy dependence of the cross
sections to the measured data sets. While the energy
dependence predicted by the existing theoretical models
is in good agreement with the energy dependence of the
measured cross sections, it would be useful to explore
how robust this energy dependence is for a wider range
of models. Extrapolations based on physical models
should be used; such extrapolations are more credible

than those based only on the extension of multiparam-
eter mathematical fits (e.g., those of Castellani et al.,
1997).

There are six sets of measurements of the cross sec-
tion for the 3He(a,g)7Be reaction that are based on de-
tecting the capture gamma rays (Table II). The weighted
average of the six prompt g-ray experiments yields a
value of S34(0)5(0.50760.016) keV b, based on ex-
trapolations made using the calculated energy depen-
dence for this direct-capture reaction. In computing this
weighted average, we have used the renormalization of
the Kräwinkel et al. (1982) result by Hilgemeier et al.

(1988).
There are also three sets of cross sections for this re-

action that are based on measurements of the activity of
the synthesized 7Be (Table II). These decay measure-
ments have the advantage of determining the total cross
section directly, but have the disadvantage that (since
the source of the residual activity can not be uniquely
identified) there is always the possibility that some of
the 7Be may have been produced in a contaminant reac-
tion that evaded background tests. The three activity
measurements (when extrapolated in the same way as
the direct-capture gamma-ray measurements) yield a
value of S34(0)5(0.57260.026) keV b, which differs by
about 2.5s from the value based on the direct-capture
gamma rays.

It has been suggested that the systematic discrepancy
between these two data sets might arise from a small
monopole (E0) contribution, to which the prompt mea-
surements would be much less sensitive and whose con-
tribution could have been overlooked. However, esti-
mates of the E0 contribution are consistently found to
be exceedingly small in realistic models of this reaction:
they are of order a2, whereas the leading contribution is
of order a (the fine-structure constant). The importance
of any E0 contributions would be further suppressed by
the fact that they would have to come from the p-

FIG. 3. Comparison of the energy dependence of the direct-
capture model calculation (Tombrello and Parker, 1963) with
the energy dependence of each of the four S34(E) data sets,
which cover a significant energy range. The data sets have
been shifted arbitrarily in order to show the comparison of the
calculation with each data set. They are denoted as follows:
[Hi88]: (Hilgemeier et al., 1988); [Kr82]: (Kräwinkel et al.,
1982); [Os82]: (Osborne et al., 1982); [Pa63]: (Parker and Ka-
vanagh, 1963).

TABLE II. Measured values of S34(0).

S34(0) (keV b) Reference

Measurement of capture g rays:

0.4760.05 Parker and Kavanagh (1963)
0.5860.07 Nagatani, Dwarakanath, and Ashery (1969)a

0.4560.06 Kräwinkel et al. (1982)b

0.5260.03 Osborne et al. (1982, 1984)
0.4760.04 Alexander et al. (1984)
0.5360.03 Hilgemeier et al. (1988)

Weighted Mean50.50760.016
Measurement of 7Be activity:

0.53560.04 Osborne et al. (1982, 1984)
0.6360.04 Robertson et al. (1983)
0.5660.03 Volk et al. (1983)

Weighted Mean50.57260.026

aAs extrapolated using the direct-capture model of Tombrello and Parker (1963).
bAs renormalized by Hilgemeier et al. (1988).
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Each data set used to fit an overall rescaling of theory curve

Then S(0) values averaged – discrepancy between prompt &
activity?

Mistook 2.8 fm hard sphere radius that describes scattering as a
good small-radius cutoff

Overestimated s/d-wave ratio, flat at higher E



Remembrance of evaluations past

How S34 theory was handled before

Solar Fusion II:

Kajino 1986 & Nollett 2001 models

realistic treatment of contributions from 2.8 to 7.0 fm is
provided by potential models (Kim et al., 1981; Buck
et al., 1985; Buck and Merchant, 1988; Mohr et al., 1993;
Dubovichenko and Dzhazairov-Kakhramanov, 1995; Mohr,
2009), which generate wave functions from a Woods-Saxon
or similar potential, constrained by measured phase shifts.

Microscopic models take explicit account of nucleon short-
range correlations. In the RGM a simplified nucleon-nucleon
interaction is tuned to observables in the system being inves-
tigated (e.g., energies of the 7Be bound states), and the phase
shifts are computed, not fitted. The RGM wave functions are
sums of states consisting of simple cluster substructure; in
most 7Be calculations, they are antisymmetrized products of
Gaussians for 4He and 3He, multiplied by a function of the
coordinate describing cluster separation.

The RGM calculations of Kajino (1986) and the potential
model of Langanke (1986) (which employed antisymme-
trized many-body wave functions) predicted the energy de-
pendence of the 3Hð!;"Þ7Li reaction quite accurately,
prior to the precise measurement of Brune et al. (1994).
On the other hand, there is some variation of the computed
3Heð!;"Þ7Be S factors among RGM models using different
interaction types and different Gaussian widths within the
clusters. This variation has been shown to correlate with
measures of the diffuseness of the 7Be ground state
(Kajino, 1986; Csótó and Langanke, 2000). Substantial
changes in the S factor and phase shifts also occur when
6Liþ p configurations are added to the RGM wave functions
(Mertelmeier and Hofmann, 1986; Csótó and Langanke,
2000).

Calculations using highly accurate nucleon-nucleon poten-
tials are now possible. Nollett (2001) computed both bound
states using the variational Monte Carlo method, while the
relative motion of the initial-state nuclei was modeled by one-
body wave functions from the earlier potential-model studies.
This approach should provide additional realism to the nu-
clear wave function at short range, and it features initial states
that fit the measured phase shifts. It produced very nearly the
same S34ðEÞ energy dependence as Kajino (1986), and an
absolute S34ð0Þ that is lower by about 25%.

Through a numerical coincidence, the branching ratio for
captures to the two final states is very nearly constant at low
energy (Kajino, 1986). This circumstance and the external-
capture nature of the reaction suggest that laboratory data can
be extrapolated to low energy by fitting a single rescaling
parameter that multiplies a model S34ðEÞ to match the data.
Such a rescaling does not have a strong physical justification
for microscopic models, as they do not have undetermined
spectroscopic factors. However, rescaled microscopic models
should be at least as accurate as potential models and more
accurate than the hard-sphere model.

A different approach was followed by Cyburt and Davids
(2008), where a parametrized function fit was made to three
of the four modern data sets over a wider energy interval than
we used to determine our recommended S34ð0Þ (see below),
with the result S34ð0Þ ¼ 0:580% 0:043 keV b. Their fitting
function is motivated by recent work emphasizing external
capture and subthreshold poles in low-energy S factors
(Jennings et al., 1998a, 1998b; Mukhamedzhanov and
Nunes, 2002), and it matches expressions for zero phase shift

derived in Mukhamedzhanov and Nunes (2002). For S34, the
d waves have small phase shifts, and the function describes
d-wave capture quite well. In the more-important s-wave
capture, the function does not match detailed models of
S34ðEÞ, irrespective of fitted parameters; its closeness to the
expressions of Mukhamedzhanov and Nunes (2002) suggests
that some other functional form is needed to account for
nonzero phase shifts.

1. Model selection for S34ð0Þ determination

To determine S34ð0Þ from experimental capture data, we
use the microscopic models of Kajino (1986) and Nollett
(2001) (Kim A potential), rescaled to fit the data below E ¼
1 MeV (see below). We selected these two models based on
several factors.

(i) They both accurately reproduce the s-wave phase shifts
[as given by the phase-shift analysis of Tombrello and
Parker (1963b)] and the long-range asymptotics of the
7Be bound states. The Kajino model reproduces the
phase shifts without having been fitted to them.

(ii) They contain more short-range physics than hard-
sphere or potential models, which may extend the
energy range over which they describe the reaction
correctly.

(iii) They agree well with each other even though they
were generated by very different computational
approaches.

(iv) They reproduce the measured energy dependence of
S34ðEÞ well, up to at least E ¼ 1:5 MeV [see Fig. 5,
and also Fig. 3 of Di Leva et al. (2009)].

(v) They calculate other electromagnetic observables in
7Li and 7Be that are in reasonable agreement with
experiment.

2. Region of S34ðEÞ fitting

We restricted the energy range for fitting to E & 1 MeV.
The scatter among models (which differ mainly at short
range) becomes much larger at energies above 1 MeV,

FIG. 5 (color online). S34ðEÞ vs E. Solid curve—best fit
scaled Nollett theory to the data with E & 1:002 MeV. The band
indicates the %1# error band. Data are shown with statistical-plus-
varying-systematic errors only; overall systematic errors are not
included.

214 Adelberger et al.: Solar fusion cross . . .. II. The pp chain . . .

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011

Similar fitting procedure (but parameterizing models
was bad)

This time models were more physical

Models with even a little microscopic content cut off
short-range s-wave capture at & 5 fm

Nice demonstration of that in Neff 2011 calculation

Substantially same results for Kajino/Nollett/Neff
(cf. Iliadis et al. 2016)

Theory error:

Spread among RGM models + Snover/Nollett
negotiation



Theory work since Solar Fusion II

Additional ab initio models:
Neff 2011, Dohet-Eraly 2016 (Vorabbi 2019)

RGM models:
Solovyev 2017, 2019 (looks unconverged at low energy – S(E) flattens)

Potential models:
Tursunov 2018, 2021, Dubovichenko 2019

Halo EFT:
Higa 2018, Premarathna 2020, Zhang 2020



Fit/extrapolation work since Solar Fusion II

Model rescaling:
Iliadis 2016 (Bayesian)
Tursunov 2018, 2021, Dubovichenko 2019, Kiss 2020 (potential model, range of parameters)

R-matrix:
deBoer 2014 (frequentist), Odell 2022 (Bayesian)

Halo EFT:
Higa 2018, Premarathna 2020, Zhang 2020 (Bayesian, ∼ 6 parameters + floated norms)



3He(α, γ)7Be questions to be answered

Previous Solar Fusion:

• Very conservative

• Only capture data

• Only direct data

• Avoid correlations between datasets

• One model is a fixed shape

• Two models estimate theory error

• No new or complicated methods

Choices to make:

• Model with more adjustable parameters?
(R-matrix? Halo EFT? Potential model?)

• Use scattering constraints directly? As test of models?
Not at all?

• Fit multiple ways & compare?

• ANC on same footing as capture data?
(Need to use in consistent model)

• How to improve theory error estimate?
(More models? Adjustable-parameter models?)

Worth noticing:S′ and S′′ are different things for model derivatives at E = 0 & for fits over some range



Remembrance of evaluations past

Several old RGM models of 3He(3He,2p)4He exist (reviewed in SF I, not much action since)

All kind of incomplete, but all predict very gentle S(E), so polynomial fit isn’t completely stupid

Model used for Solar Fusion I/II is S(E) = S(0)+S′(0)E+ 1
2S
′′(0)E2, plus exp(πηUe/E) lab screening

SFI assumed Ue = 240 eV

SFII fit Ue = 305± 90 eV simultaneously with polynomial

Iliadis 2016: Bayesian fit to similar model with floating norms & possible “outlier” status, Ue = 325+47
−48 eV

(different slope from different E range)



Whither 3He(3He,2p)4He?

There are no new data to fit, & I didn’t find any new theory
developments

Main question is then: Can we improve on procedure? If yes, is
there a consensus on how?

Not obvious to me how correlated errors were handled in SF II

Remove single-event data á la Iliadis 2016?

Anything we should recommend?
(Revisit theory? Inertial confinement for different screening?)

discussed in the Appendix, one needs a detailed discussion of
systematic uncertainties, particularly common-mode system-
atics. This requirement reduces the data sets considered to
just four experiments. The earliest of these originates from
the Muenster group (Krauss et al., 1987), followed by the
two LUNA publications of Junker et al. (1998) [which
supersedes Arpesella et al. (1996)] and Bonetti et al.
(1999); and the OCEAN effort of Kudomi et al. (2004).
Krauss et al. (1987) and Kudomi et al. (2004) identified a
common systematic error for their respective data sets while
the LUNA group provided statistical and systematical errors
at each experimental energy measured. In order to use a
uniform treatment we calculated an average systematic error
for the latter data sets. Larger systematic errors were noted
only at the lowest energies (due to uncertainties in stopping
power), where the total error is dominated by statistics.

Past efforts have fit data to an S factor including screening
corrections, with the bare S factor a polynomial up to qua-
dratic order,

S33ðEÞ ¼ Sbare33 ðEÞ exp
!
!"ðEÞUe

E

"
; (31)

Sbare33 ðEÞ ¼ S33ð0Þ þ S033ð0ÞEþ 1

2
S0033ð0ÞE2:

Although model calculations of Sbare33 ðEÞ are available [see,
e.g., Typel et al. (1991)], a phenomenological representation
for the bare S factor is appropriate because the data extend
to the Gamow peak. There is no need for a theoretical model
to guide an extrapolation, apart from the functional form of
the screening potential.

The selected data for this review cover the range from
the solar Gamow peak to 350 keV, providing a limited range
with which to perform a four parameter fit to the S factor
including electron screening [S33ð0Þ, S033ð0Þ, S0033ð0Þ, and Ue].
We test the robustness of the fit parameters, by varying the
order of the polynomial for the bare S factor. Our results are
given in Table II.

Our quadratic fit agrees quite well with the fit derived by
Krauss et al. (1987), adopted in the reaction rate compilation
of Caughlan and Fowler (1988). However, there is a signifi-
cant spread in fit parameter values for the different order
polynomial fits, with slight decreases in the total #2. One can
also see this spread in fit results from other groups (Junker
et al., 1998; Bonetti et al., 1999; Kudomi et al., 2004). This
suggests that the data do not have the resolving power to
accurately determine all fit parameters: There are strong
correlations for the choices of data and fitting functions
made here. Adopting any single fit will underestimate the
uncertainties due to the degeneracy between parameter val-
ues. From Bayes’s theorem, assuming that the S factor in this
region (E < 350 keV) can be described without cubic terms,
we can derive constraints on the parameters by weighting
each fit in Table II by its total #2 value. This method takes
into account the spread from fit to fit. We find

S33ð0Þ ¼ 5:21% 0:27 MeV b;

S033ð0Þ ¼ &4:90% 3:18 b;

S0033ð0Þ ¼ 22:4% 17:1 MeV&1 b;

Ue ¼ 305% 90 eV:

(32)

The results (see Fig. 4) reveal that existing data cannot
strongly constrain all of the fitting parameters separately, and,
in particular, do not sharply constrain Ue. To improve con-
straints on the screening potential one will need more precise
data from near the Gamow peak, as well as new measure-
ments up to the MeV range (with well-documented system-
atics) to better determine the higher-order terms in the
quadratic fit. New theory efforts in determining the shape
of this S factor would also be beneficial, as new low-energy
3He-3He elastic scattering data could be used as an additional
constraint.

Our principal concern, however, is the precision with
which Sbest33 can be determined in the vicinity of the Gamow
peak, not the separate parameters. From the fit’s correlation
matrix we find

Sbest33 ðEÞ ¼ 5:21& 4:90
!

E

MeV

"
þ 11:21

!
E

MeV

"
2
MeV b;

$S33ðEÞ ¼
#
0:075& 1:516

!
E

MeV

"

þ 14:037
!

E

MeV

"
2
& 15:504

!
E

MeV

"
3

þ 71:640
!

E

MeV

"
4
$
1=2

MeV b;

where

FIG. 4 (color online). The data, the best quadratic þ screening
result for S33ðEÞ, and the deduced best quadratic fit (line) and
allowed range (band) for Sbare33 . See text for references.

TABLE II. Table of fit parameters and their total errors for
constant, linear, and quadratic representations of the bare S factor.

Parameter Constant Linear Quadratic

S33ð0Þ (MeV b) 4:84% 0:13 4:95% 0:15 5:32% 0:23

S033ð0Þ (b) &1:06% 0:51 &6:44% 1:29

S0033ð0Þ (MeV&1 b) 30:7% 12:2

Ue (eV) 395% 50 360% 55 280% 70

#2
tot

35.4 34.1 31.8

#2
tot=dof 0.40 0.39 0.37
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SLIDES FROM PRELIMINARY ZOOM MEETING



3He(α, γ)7Be

New ab initio:

Neff (2011); Dohet-Eraly (2016); Vorabbi (2019)

New microsopic/RGM:

Solovyev (2017); Solovyev (2019)

New potential model:

Tursunov (2018); Dubovichenko (2019); Tursunov (2021)

Halo EFT, R-matrix, Bayesian, etc.:

Higa (2018); Premarathna (2020); Zhang (2020); Odell (2022); deBoer (2014); Iliadis (2016); [Poudel (2022)]



3He(α, γ)7Be: Issues for fitting

Model selection (feasible to fit multiparameter model?)
SF I&II just rescaled theory models
Scaling found for each data set, then averaged
Understanding of model determines E range of fit

(How) should ab initio inputs be used?

Role of scattering data?
“Must be this tall” test?
Needs a formalism that can use them
Barnard data appear to have problems (at least in
error quantification)

How to use ANCs from transfer & scattering?
Any role for mirror symmetry?

realistic treatment of contributions from 2.8 to 7.0 fm is
provided by potential models (Kim et al., 1981; Buck
et al., 1985; Buck and Merchant, 1988; Mohr et al., 1993;
Dubovichenko and Dzhazairov-Kakhramanov, 1995; Mohr,
2009), which generate wave functions from a Woods-Saxon
or similar potential, constrained by measured phase shifts.

Microscopic models take explicit account of nucleon short-
range correlations. In the RGM a simplified nucleon-nucleon
interaction is tuned to observables in the system being inves-
tigated (e.g., energies of the 7Be bound states), and the phase
shifts are computed, not fitted. The RGM wave functions are
sums of states consisting of simple cluster substructure; in
most 7Be calculations, they are antisymmetrized products of
Gaussians for 4He and 3He, multiplied by a function of the
coordinate describing cluster separation.

The RGM calculations of Kajino (1986) and the potential
model of Langanke (1986) (which employed antisymme-
trized many-body wave functions) predicted the energy de-
pendence of the 3Hð!;"Þ7Li reaction quite accurately,
prior to the precise measurement of Brune et al. (1994).
On the other hand, there is some variation of the computed
3Heð!;"Þ7Be S factors among RGM models using different
interaction types and different Gaussian widths within the
clusters. This variation has been shown to correlate with
measures of the diffuseness of the 7Be ground state
(Kajino, 1986; Csótó and Langanke, 2000). Substantial
changes in the S factor and phase shifts also occur when
6Liþ p configurations are added to the RGM wave functions
(Mertelmeier and Hofmann, 1986; Csótó and Langanke,
2000).

Calculations using highly accurate nucleon-nucleon poten-
tials are now possible. Nollett (2001) computed both bound
states using the variational Monte Carlo method, while the
relative motion of the initial-state nuclei was modeled by one-
body wave functions from the earlier potential-model studies.
This approach should provide additional realism to the nu-
clear wave function at short range, and it features initial states
that fit the measured phase shifts. It produced very nearly the
same S34ðEÞ energy dependence as Kajino (1986), and an
absolute S34ð0Þ that is lower by about 25%.

Through a numerical coincidence, the branching ratio for
captures to the two final states is very nearly constant at low
energy (Kajino, 1986). This circumstance and the external-
capture nature of the reaction suggest that laboratory data can
be extrapolated to low energy by fitting a single rescaling
parameter that multiplies a model S34ðEÞ to match the data.
Such a rescaling does not have a strong physical justification
for microscopic models, as they do not have undetermined
spectroscopic factors. However, rescaled microscopic models
should be at least as accurate as potential models and more
accurate than the hard-sphere model.

A different approach was followed by Cyburt and Davids
(2008), where a parametrized function fit was made to three
of the four modern data sets over a wider energy interval than
we used to determine our recommended S34ð0Þ (see below),
with the result S34ð0Þ ¼ 0:580% 0:043 keV b. Their fitting
function is motivated by recent work emphasizing external
capture and subthreshold poles in low-energy S factors
(Jennings et al., 1998a, 1998b; Mukhamedzhanov and
Nunes, 2002), and it matches expressions for zero phase shift

derived in Mukhamedzhanov and Nunes (2002). For S34, the
d waves have small phase shifts, and the function describes
d-wave capture quite well. In the more-important s-wave
capture, the function does not match detailed models of
S34ðEÞ, irrespective of fitted parameters; its closeness to the
expressions of Mukhamedzhanov and Nunes (2002) suggests
that some other functional form is needed to account for
nonzero phase shifts.

1. Model selection for S34ð0Þ determination

To determine S34ð0Þ from experimental capture data, we
use the microscopic models of Kajino (1986) and Nollett
(2001) (Kim A potential), rescaled to fit the data below E ¼
1 MeV (see below). We selected these two models based on
several factors.

(i) They both accurately reproduce the s-wave phase shifts
[as given by the phase-shift analysis of Tombrello and
Parker (1963b)] and the long-range asymptotics of the
7Be bound states. The Kajino model reproduces the
phase shifts without having been fitted to them.

(ii) They contain more short-range physics than hard-
sphere or potential models, which may extend the
energy range over which they describe the reaction
correctly.

(iii) They agree well with each other even though they
were generated by very different computational
approaches.

(iv) They reproduce the measured energy dependence of
S34ðEÞ well, up to at least E ¼ 1:5 MeV [see Fig. 5,
and also Fig. 3 of Di Leva et al. (2009)].

(v) They calculate other electromagnetic observables in
7Li and 7Be that are in reasonable agreement with
experiment.

2. Region of S34ðEÞ fitting

We restricted the energy range for fitting to E & 1 MeV.
The scatter among models (which differ mainly at short
range) becomes much larger at energies above 1 MeV,

FIG. 5 (color online). S34ðEÞ vs E. Solid curve—best fit
scaled Nollett theory to the data with E & 1:002 MeV. The band
indicates the %1# error band. Data are shown with statistical-plus-
varying-systematic errors only; overall systematic errors are not
included.
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Personal prejudice: I would like to see see a less crude approach, and better quantification of theory error,
this time



3He(3He,2p)4He

Last time: Fitted S(0), S′, S′′, Ueff

Only models are Typel (1991) RGM

New theory & fitting:

Nesterov (2010) 3-cluster RGM; Iliadis (2016) (adding 5 floating norms); anything else?

discussed in the Appendix, one needs a detailed discussion of
systematic uncertainties, particularly common-mode system-
atics. This requirement reduces the data sets considered to
just four experiments. The earliest of these originates from
the Muenster group (Krauss et al., 1987), followed by the
two LUNA publications of Junker et al. (1998) [which
supersedes Arpesella et al. (1996)] and Bonetti et al.
(1999); and the OCEAN effort of Kudomi et al. (2004).
Krauss et al. (1987) and Kudomi et al. (2004) identified a
common systematic error for their respective data sets while
the LUNA group provided statistical and systematical errors
at each experimental energy measured. In order to use a
uniform treatment we calculated an average systematic error
for the latter data sets. Larger systematic errors were noted
only at the lowest energies (due to uncertainties in stopping
power), where the total error is dominated by statistics.

Past efforts have fit data to an S factor including screening
corrections, with the bare S factor a polynomial up to qua-
dratic order,

S33ðEÞ ¼ Sbare33 ðEÞ exp
!
!"ðEÞUe

E

"
; (31)

Sbare33 ðEÞ ¼ S33ð0Þ þ S033ð0ÞEþ 1

2
S0033ð0ÞE2:

Although model calculations of Sbare33 ðEÞ are available [see,
e.g., Typel et al. (1991)], a phenomenological representation
for the bare S factor is appropriate because the data extend
to the Gamow peak. There is no need for a theoretical model
to guide an extrapolation, apart from the functional form of
the screening potential.

The selected data for this review cover the range from
the solar Gamow peak to 350 keV, providing a limited range
with which to perform a four parameter fit to the S factor
including electron screening [S33ð0Þ, S033ð0Þ, S0033ð0Þ, and Ue].
We test the robustness of the fit parameters, by varying the
order of the polynomial for the bare S factor. Our results are
given in Table II.

Our quadratic fit agrees quite well with the fit derived by
Krauss et al. (1987), adopted in the reaction rate compilation
of Caughlan and Fowler (1988). However, there is a signifi-
cant spread in fit parameter values for the different order
polynomial fits, with slight decreases in the total #2. One can
also see this spread in fit results from other groups (Junker
et al., 1998; Bonetti et al., 1999; Kudomi et al., 2004). This
suggests that the data do not have the resolving power to
accurately determine all fit parameters: There are strong
correlations for the choices of data and fitting functions
made here. Adopting any single fit will underestimate the
uncertainties due to the degeneracy between parameter val-
ues. From Bayes’s theorem, assuming that the S factor in this
region (E < 350 keV) can be described without cubic terms,
we can derive constraints on the parameters by weighting
each fit in Table II by its total #2 value. This method takes
into account the spread from fit to fit. We find

S33ð0Þ ¼ 5:21% 0:27 MeV b;

S033ð0Þ ¼ &4:90% 3:18 b;

S0033ð0Þ ¼ 22:4% 17:1 MeV&1 b;

Ue ¼ 305% 90 eV:

(32)

The results (see Fig. 4) reveal that existing data cannot
strongly constrain all of the fitting parameters separately, and,
in particular, do not sharply constrain Ue. To improve con-
straints on the screening potential one will need more precise
data from near the Gamow peak, as well as new measure-
ments up to the MeV range (with well-documented system-
atics) to better determine the higher-order terms in the
quadratic fit. New theory efforts in determining the shape
of this S factor would also be beneficial, as new low-energy
3He-3He elastic scattering data could be used as an additional
constraint.

Our principal concern, however, is the precision with
which Sbest33 can be determined in the vicinity of the Gamow
peak, not the separate parameters. From the fit’s correlation
matrix we find

Sbest33 ðEÞ ¼ 5:21& 4:90
!

E

MeV

"
þ 11:21

!
E

MeV

"
2
MeV b;

$S33ðEÞ ¼
#
0:075& 1:516

!
E

MeV

"

þ 14:037
!

E

MeV

"
2
& 15:504

!
E

MeV

"
3

þ 71:640
!

E

MeV

"
4
$
1=2

MeV b;

where

FIG. 4 (color online). The data, the best quadratic þ screening
result for S33ðEÞ, and the deduced best quadratic fit (line) and
allowed range (band) for Sbare33 . See text for references.

TABLE II. Table of fit parameters and their total errors for
constant, linear, and quadratic representations of the bare S factor.

Parameter Constant Linear Quadratic

S33ð0Þ (MeV b) 4:84% 0:13 4:95% 0:15 5:32% 0:23

S033ð0Þ (b) &1:06% 0:51 &6:44% 1:29

S0033ð0Þ (MeV&1 b) 30:7% 12:2

Ue (eV) 395% 50 360% 55 280% 70

#2
tot

35.4 34.1 31.8

#2
tot=dof 0.40 0.39 0.37
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3He(3He,2p)4He: Issues for fitting

Any progress on lab screening?

Should we aim to encourage ICF experiments?

discussed in the Appendix, one needs a detailed discussion of
systematic uncertainties, particularly common-mode system-
atics. This requirement reduces the data sets considered to
just four experiments. The earliest of these originates from
the Muenster group (Krauss et al., 1987), followed by the
two LUNA publications of Junker et al. (1998) [which
supersedes Arpesella et al. (1996)] and Bonetti et al.
(1999); and the OCEAN effort of Kudomi et al. (2004).
Krauss et al. (1987) and Kudomi et al. (2004) identified a
common systematic error for their respective data sets while
the LUNA group provided statistical and systematical errors
at each experimental energy measured. In order to use a
uniform treatment we calculated an average systematic error
for the latter data sets. Larger systematic errors were noted
only at the lowest energies (due to uncertainties in stopping
power), where the total error is dominated by statistics.

Past efforts have fit data to an S factor including screening
corrections, with the bare S factor a polynomial up to qua-
dratic order,

S33ðEÞ ¼ Sbare33 ðEÞ exp
!
!"ðEÞUe

E

"
; (31)

Sbare33 ðEÞ ¼ S33ð0Þ þ S033ð0ÞEþ 1

2
S0033ð0ÞE2:

Although model calculations of Sbare33 ðEÞ are available [see,
e.g., Typel et al. (1991)], a phenomenological representation
for the bare S factor is appropriate because the data extend
to the Gamow peak. There is no need for a theoretical model
to guide an extrapolation, apart from the functional form of
the screening potential.

The selected data for this review cover the range from
the solar Gamow peak to 350 keV, providing a limited range
with which to perform a four parameter fit to the S factor
including electron screening [S33ð0Þ, S033ð0Þ, S0033ð0Þ, and Ue].
We test the robustness of the fit parameters, by varying the
order of the polynomial for the bare S factor. Our results are
given in Table II.

Our quadratic fit agrees quite well with the fit derived by
Krauss et al. (1987), adopted in the reaction rate compilation
of Caughlan and Fowler (1988). However, there is a signifi-
cant spread in fit parameter values for the different order
polynomial fits, with slight decreases in the total #2. One can
also see this spread in fit results from other groups (Junker
et al., 1998; Bonetti et al., 1999; Kudomi et al., 2004). This
suggests that the data do not have the resolving power to
accurately determine all fit parameters: There are strong
correlations for the choices of data and fitting functions
made here. Adopting any single fit will underestimate the
uncertainties due to the degeneracy between parameter val-
ues. From Bayes’s theorem, assuming that the S factor in this
region (E < 350 keV) can be described without cubic terms,
we can derive constraints on the parameters by weighting
each fit in Table II by its total #2 value. This method takes
into account the spread from fit to fit. We find

S33ð0Þ ¼ 5:21% 0:27 MeV b;

S033ð0Þ ¼ &4:90% 3:18 b;

S0033ð0Þ ¼ 22:4% 17:1 MeV&1 b;

Ue ¼ 305% 90 eV:

(32)

The results (see Fig. 4) reveal that existing data cannot
strongly constrain all of the fitting parameters separately, and,
in particular, do not sharply constrain Ue. To improve con-
straints on the screening potential one will need more precise
data from near the Gamow peak, as well as new measure-
ments up to the MeV range (with well-documented system-
atics) to better determine the higher-order terms in the
quadratic fit. New theory efforts in determining the shape
of this S factor would also be beneficial, as new low-energy
3He-3He elastic scattering data could be used as an additional
constraint.

Our principal concern, however, is the precision with
which Sbest33 can be determined in the vicinity of the Gamow
peak, not the separate parameters. From the fit’s correlation
matrix we find

Sbest33 ðEÞ ¼ 5:21& 4:90
!

E

MeV

"
þ 11:21

!
E

MeV

"
2
MeV b;

$S33ðEÞ ¼
#
0:075& 1:516

!
E

MeV

"

þ 14:037
!

E

MeV

"
2
& 15:504

!
E

MeV

"
3

þ 71:640
!

E

MeV

"
4
$
1=2

MeV b;

where

FIG. 4 (color online). The data, the best quadratic þ screening
result for S33ðEÞ, and the deduced best quadratic fit (line) and
allowed range (band) for Sbare33 . See text for references.

TABLE II. Table of fit parameters and their total errors for
constant, linear, and quadratic representations of the bare S factor.

Parameter Constant Linear Quadratic

S33ð0Þ (MeV b) 4:84% 0:13 4:95% 0:15 5:32% 0:23

S033ð0Þ (b) &1:06% 0:51 &6:44% 1:29

S0033ð0Þ (MeV&1 b) 30:7% 12:2

Ue (eV) 395% 50 360% 55 280% 70

#2
tot

35.4 34.1 31.8

#2
tot=dof 0.40 0.39 0.37
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