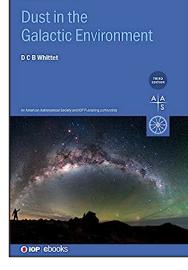
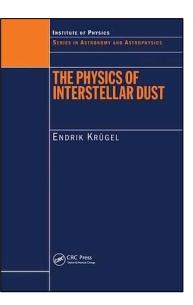

Life Cycle of Dust

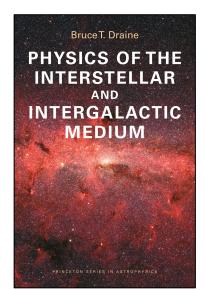
Introduction to dust astrophysics (I)

Álvaro Sánchez-Monge Institute of Space Sciences (ICE-CSIC / IEEC)


Institute of Space Sciences

Bibliography

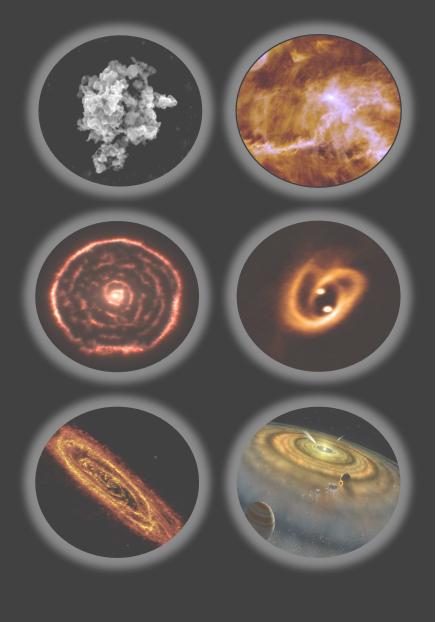

AAS | IOP Astronomy



Dust in the Galactic environment by Douglas C B Whittet

The physics of interstellar dust

by Endrik Krügel

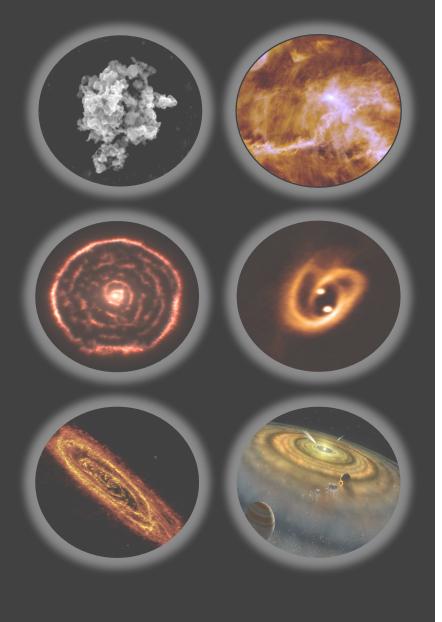


Physics of the interstellar medium by Bruce T Draine

Physics and chemistry of circumstellar dust shells by Hans-Peter Gail & Erwin Sendlmayr

Life Cycle of Dust

Existence of Interstellar Dust

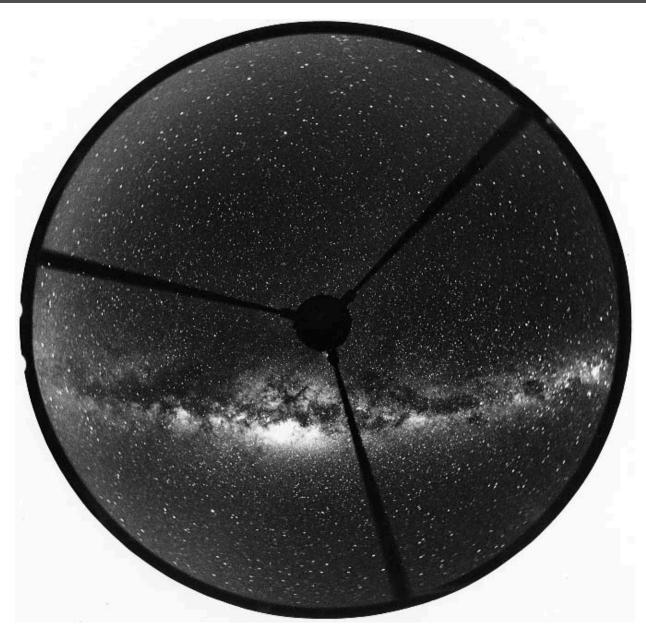

Outline

Properties of the Interstellar Medium

Abundances, Depletion, Composition

Dusty astrophysical objects

Life Cycle of Dust

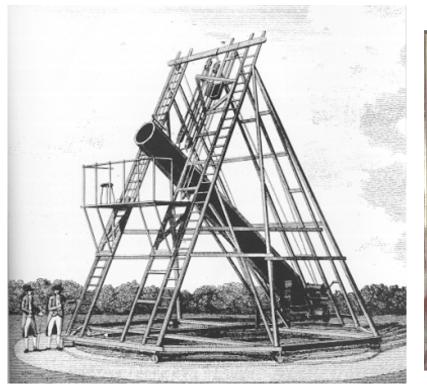

Existence of Interstellar Dust

Outline

Properties of the Interstellar Medium

Abundances, Depletion, Composition

Dusty astrophysical objects

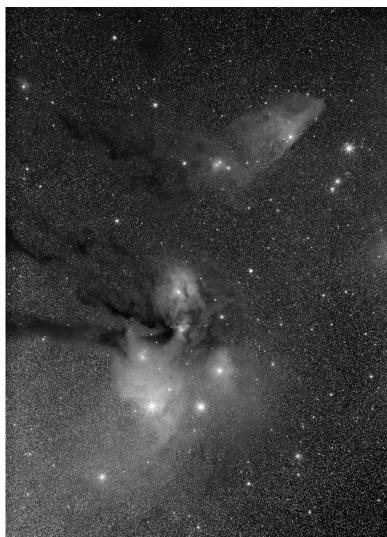


Wide-angle photograph of the sky. W Schlosser and Th Schmidt-Kaler, Ruhr Universität, Bochum. Taken from La Silla, ESO

... ein Loch im Himmel!

William Herschel (1738-1822)

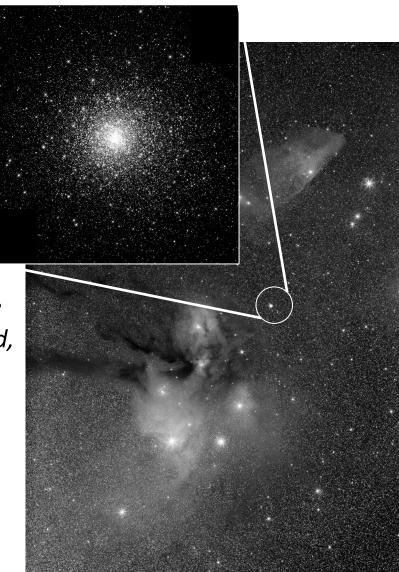
'Forty-foot' telescope



Caroline Herschel (1750-1848)

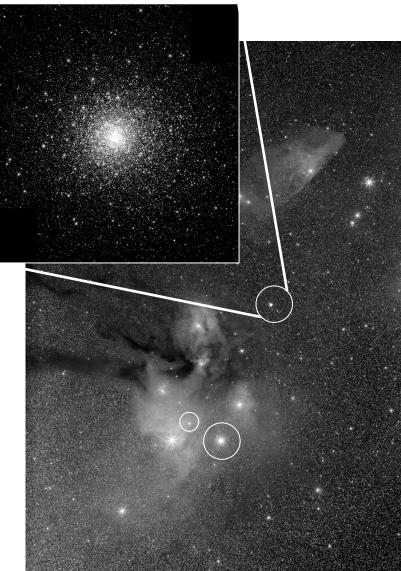
... ein Loch im Himmel!

"... for instance, in the body of the Scorpion is an opening, or hole, ... I found it while I was gauging in parallel from 112 to 114 degrees north of polar distance... As I approached the Milky Way the gauges were gradually running up ... when all of a sudden, they fell down to nothing..."


William **Herschel** 1785, Phil. Trans. LXXV, pp. 213-266

... ein Loch im Himmel!

"... It is remarkable, that one of the richest and most compressed clusters [M80] of small stars I remember to have seen, is situated on the western border of it, and would almost authorise a suspicion that the stars, of which it is composed, were collected from that place and had left the vacancy."


William Herschel 1785, Phil. Trans. LXXV, pp. 213-266

... ein Loch im Himmel!

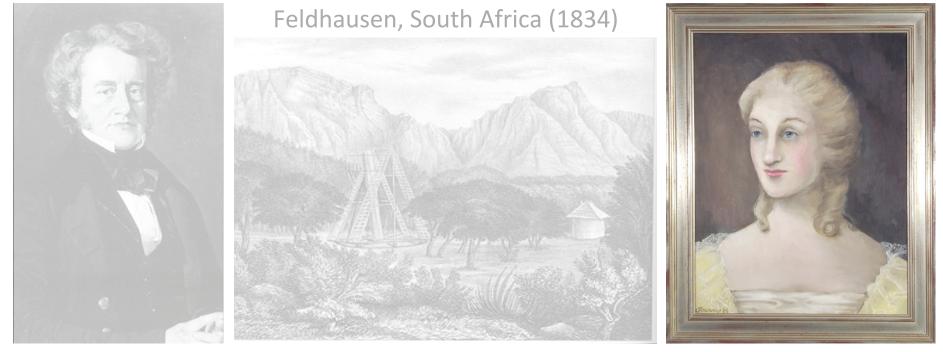
"What adds not a little to this surmise is, that the same phaenomenon is once more repeated with [M4] which is also on the western border of another vacancy and has moreover a small miniature cluster (NGC6144) ... north following it, at no very great distance."

William Herschel 1785, Phil. Trans. LXXV, pp. 213-266

... ein Loch im Himmel!

John **Herschel** (1792-1871)

Feldhausen, South Africa (1834)

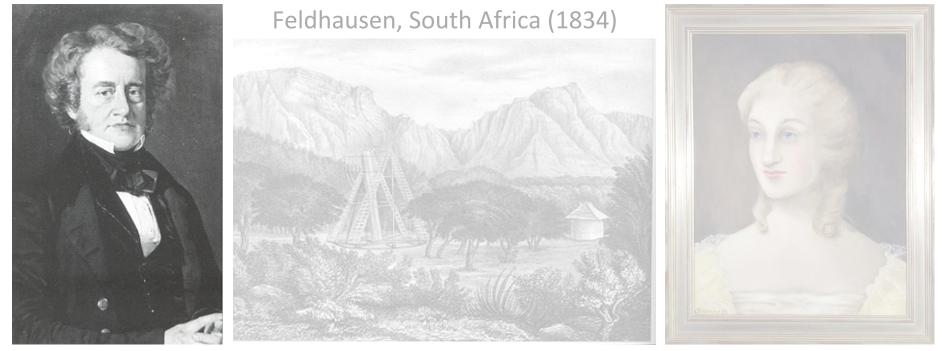

Caroline Herschel (1750-1848)

... ein Loch im Himmel!

John **Herschel** (1792-1871)

Caroline Herschel (1750-1848)

August 1, 1833

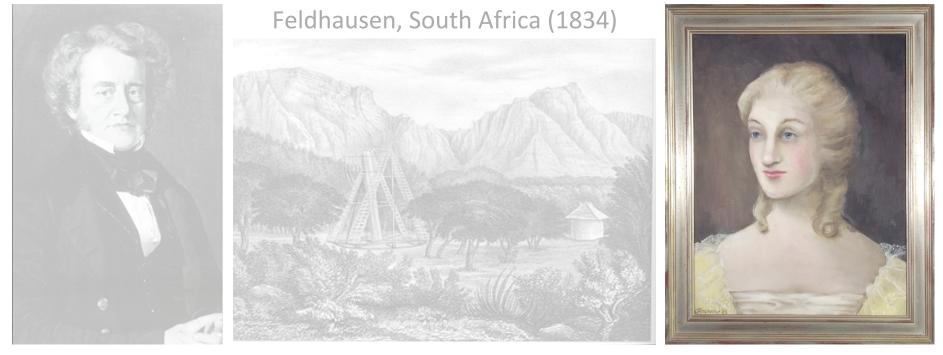

"Dear Nephew,

As soon as your instrument is erected I wish you would see if there is not something remarkable in the lower part of the Scorpion to be found..."

... ein Loch im Himmel!

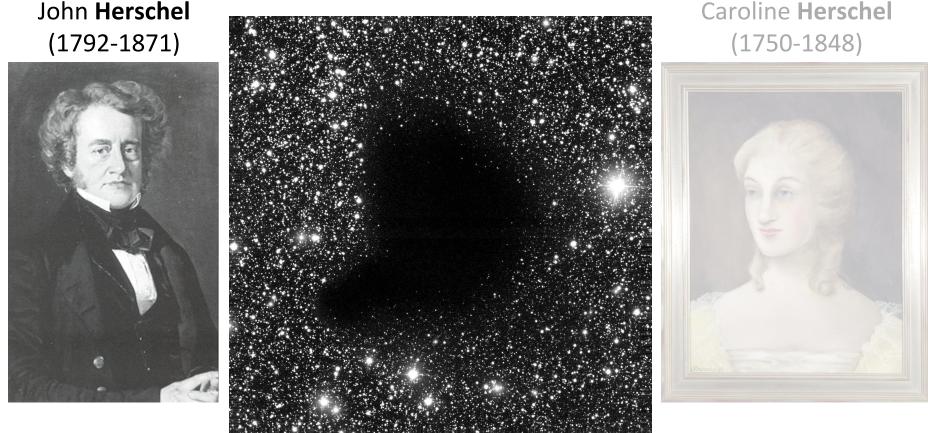
John **Herschel** (1792-1871)

Caroline Herschel (1750-1848)


June 6, 1834

"... I have not been unmindful of your hint about Scorpio. I am now rummaging the recesses of that constellation and find it full of beautiful globular clusters."

... ein Loch im Himmel!


John **Herschel** (1792-1871)

Caroline Herschel (1750-1848)

"It is not Clusters of Stars I want you to discover in the body of the Scorpion (or thereabouts) for that does not answer my expectation, remembering having once heard your father... exlaim, '**Hier ist wahrhaftig ein Loch im Himmel**!' "

... ein Loch im Himmel!

February 22, 1835

"I have swept well over Scorpio and have many entries in my sweeping books of the kind you describe viz: blank spaces in the heavens without the smallest star."

First studies of dark nebulae

Catalogue of Nebulae and Clusters of Stars (**CN**), General Catalogue of Nebulae and Clusters of Stars (**GC**) ... precursors of **NGC** catalogue

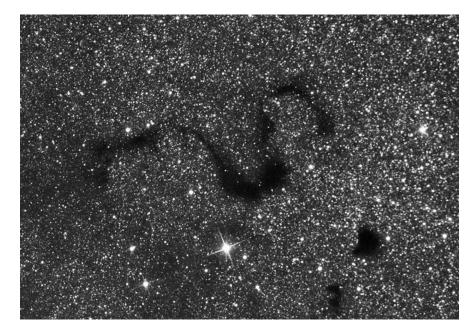
1912, The Scientific Papers of Sir William Herschel (The Royal Society & Royal Astronomical Society), Vol II, pg 712

							PLACES O.S. AM gran
		[Exti	racted	from th	he Swe	eps. Pla	uces for the Year of Observation.]
Sweep.	R.A.			. P.			
Sweep.		K.A	•	P	D.	Stars.	
383	16	5	22	100	25	0	23 A. W
Mar. 10	16	6	22	100	20	0	
1785	16	6	32	109	31	0	a second s
	16	7	22	109		0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	16 16	7	42	109	12	0	
	10	11	52 22	110 100	17 11	0	
	16	12	40	IIO	25	0	
	16	13	0	III	29	2	
485	4	17	37	65	29		Upper border of a vacancy, but it is a very
Dec. 7 1785		-0		6.			irregular one.
	4	18	30		27		Do.
	4	19 21	17 35		29 31	0	Do.
	4	22	26	64	22	0	the second s
	4	23	53	64	4	0	and many such in the neighbourhood,
	4	25	17				There is a vacancy between the bright row of stars in the direction of Orion's belt and the Bull's head, Perseus' body and the Milky Way, and I am now in that vacancy.
	4	27	26	65	4	0	sin the second s
	4	28	6	64		0	
	4	28	42	65		0	Intermixed with places that have many stars.
	4	29 30	24	65	15 16	0	
	4	37	54 51	65	10	0	
	4	39	16	P		°)	The straggling stars of the Milky Way seem
	4	43	20				now to come on gradually, most small. They begin now to be intermixed with some
							larger ones.
516	5	32	16	98	30	٥٦	•
Jan. 30 1786	5	32	42	100	21	0}	Vacant spaces picked out, between stars
1/00	55	33 34	5 40	99 100	33	0	sparingly and irregularly scattered.
			40	100	39		
566	16	8	52	113	18]		Vacant between these two places.*
May 26	16	9	12	II2	255		
1786	16	II	56	112	53		From this place to the bottom of sweep [113° 20'] vacant.
	16	16	8	II2	367		
	16 16	17 18	6	II2	37		From these places downwards vacant, the
	10	10	25 32	II2	27	•	night very fine.
	10	40	34	II2	54J		

STAR-GAGES FROM THE 358TH TO THE TITTH

Wilhelm **von Struve** (1793-1864)

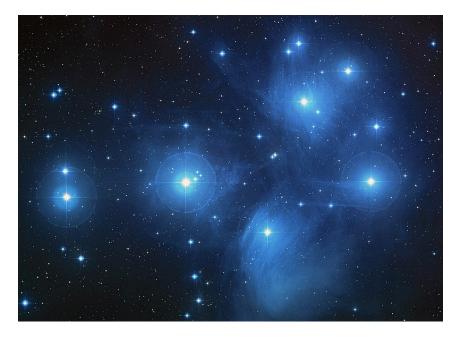
Struve (1847) noticed that the apparent number of stars per unit volume of space declines in all directions receding from the Sun. He attributed this effect to 'interstellar absorption'.


Jacobus **Kapteyn** (1851-1922)

"Undoubtedly one of the greatest difficulties, if not the greatest of all, in the way of obtaining understanding of the real distribution of the stars in space, lies in our uncertainty about the amount of loss suffered by the light on its way to the observer"

Edward Emerson Barnard (1857-1923)

"... my own photographs convinced me ... that many of these markings were not simply due to an actual want of stars, but were really obscuring bodies nearer to us than the stars."



"In a considerable number of cases no other explanation seems possible, but (that) some of them are doubtless only vacancies" Barnard 1919, Astrophysical Journal, 49, 1

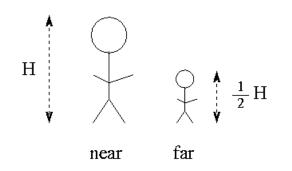
Vesto **Slipher** (1875-1969)

Slipher (1912) noticed that the diffuse nebulosity in the Pleiades shows a dark-line spectrum similar to that of the surrounding stars. He concluded that the nebula shines by reflected light.

"This observation of the nebula in the Pleiades has suggested to me that the Andromeda Nebula and similar spiral nebula might consist of a central star enveloped and beclouded by fragmentary and disintegrated matter" Slipher 1912, Lowell Observatory Bulletin, 2, 26

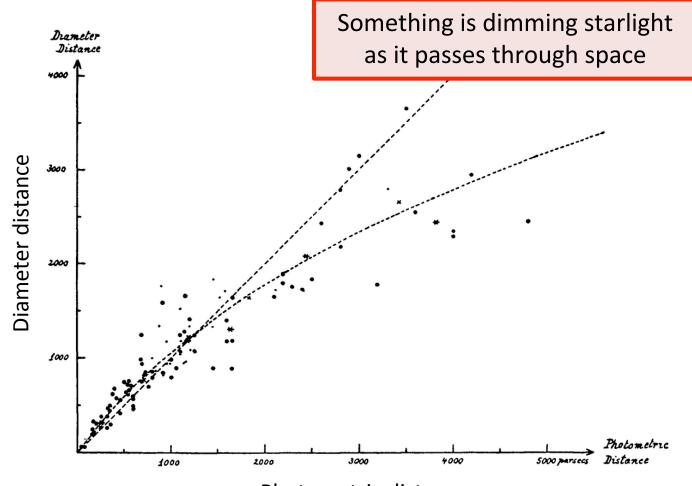
Robert Julius Trumpler (1886-1956)

R. J. Trumpler sought to determine the distances of open clusters by means of photometry and spectroscopy of individual member stars


Photometric distance

Spectral classification provides luminosity estimate Distance obtained by comparing apparent and absolute magnitudes

$$V - M_V = 5 \log d' - 5$$


Diameter distance

Based on concentration of stars he divided clusters in two groups, and assumed that they should be about the same physical size. Using the apparent size, it was possible to derive their distance

Robert Julius **Trumpler** (1886-1956) *R. J. Trumpler sought to determine the distances of open clusters by means of photometry and spectroscopy of individual member stars*

Trumpler 1930, PASP, 42, 248

Photometric distance

R. J. Trumpler sought to determine the distances of open clusters by means of photometry and spectroscopy of individual member stars

When determining (photometric) distances...

$$V - M_V = 5 \log d' - 5$$

Robert Julius n Trumpler (1886-1956)

Presence of a systematic error due to obscuration in the interstellar medium, a distance-dependent correction must be applied:

$$V - M_V - A_V = 5\log d - 5$$

A_V represents interstellar 'absorption' in reality it is the combined effect of absorption and scattering

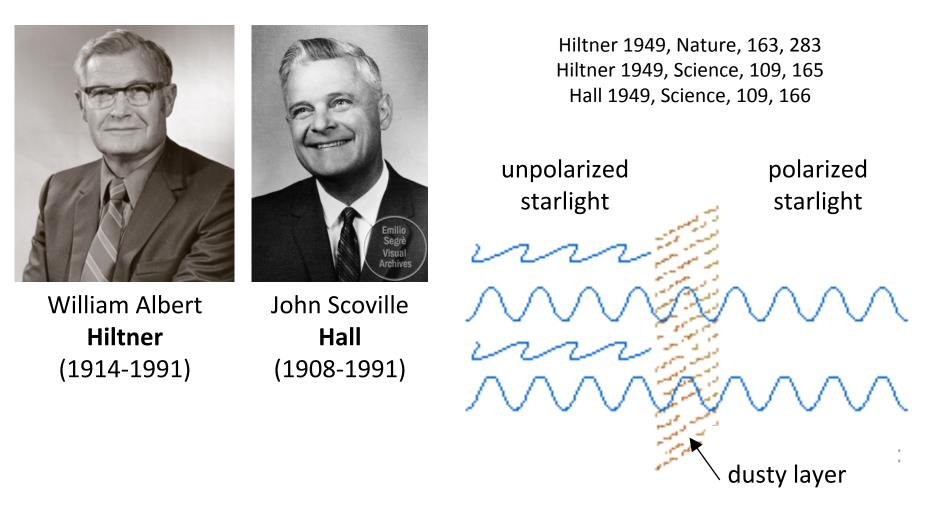
it tends to increase with distance ($\approx 1 \text{ mag kpc}^{-1}$)

Robert Julius Trumpler (1886-1956) *R. J. Trumpler sought to determine the distances of open clusters by means of photometry and spectroscopy of individual member stars*

Implications of this 'absorption' for the colors of stars... There was an existing problem: stars close to the galactic plane appear redder than expected on the basis of their spectral types

(B - V) color of a star, comparing magnitudes in two bands

$$E_{B-V} = (B - V) - (B - V)_0$$


degree of reddening 'selective extinction'

 $A_{\lambda} \propto \lambda^{-1}$ interstellar extinction is a function of wavelength in the visible region of the spectrum Implication: presence of solid particles with dimensions comparable to the wavelength of visile light size $\approx 0.1 - 1$ micron \rightarrow smoke / dust particles

 $A_V = R_V E_{B-V}$

 $R_V \approx 3.05 \pm 0.15$

Polarization of star light

Extinction by dust renders interstellar space a polarizing and attenuating medium The light of reddened stars if partially plane polarized, at a typical 1-5 % level

Content of dark nebulae (interstellar matter)

Bart J. **Bok** (1906-1983)

Following the discovery of HI emission at 21 cm (1951) ... Bart Bok studies the amount of HI in these dark nebulae

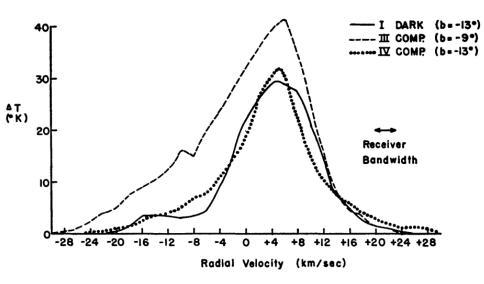
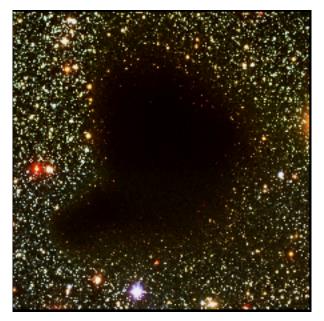
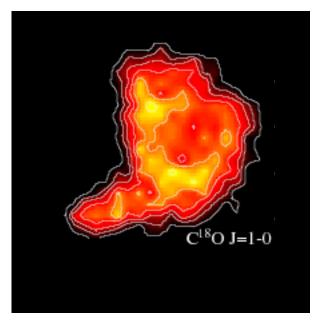



FIG. 4.—Reduced 21-cm profiles for the Ophiuchus Center and two comparison fields.


"There remains the possibility that the neutral hydrogen in the dark clouds is mostly in molecular form"

Content of dark nebulae (interstellar matter)

Barnard 68, in optical

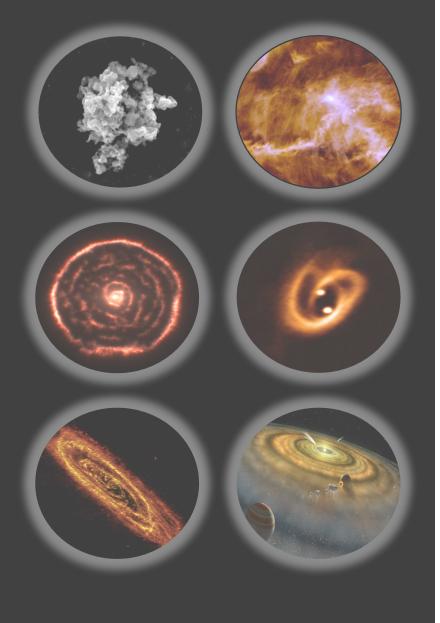
Barnard 68, in C¹⁸O

H₂ (molecular Hydrogen) is difficult to be observed (in most scenarios) ... but other molecular species can trace molecular gas (e.g., CO)

Take home messages

Existence of interstellar dust

For more than 200 years, many people have used telescopes and their knowledge to discover, study and understand the interstellar dust


... and many others

Interstellar dust is composed of small particles 0.1 µm and associated with gas Interstellar dust produces extinction, scattering and polarization

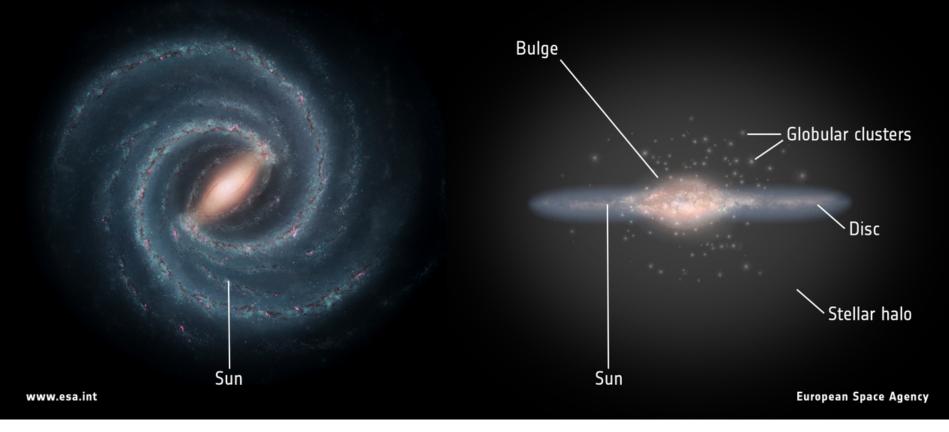
$$V - M_V - A_V = 5\log d - 5$$

 $A_V = R_V E_{B-V}$ $R_V \approx 3.05 \pm 0.15$ $A_\lambda \propto \lambda^{-1}$

Life Cycle of Dust

Existence of Interstellar Dust

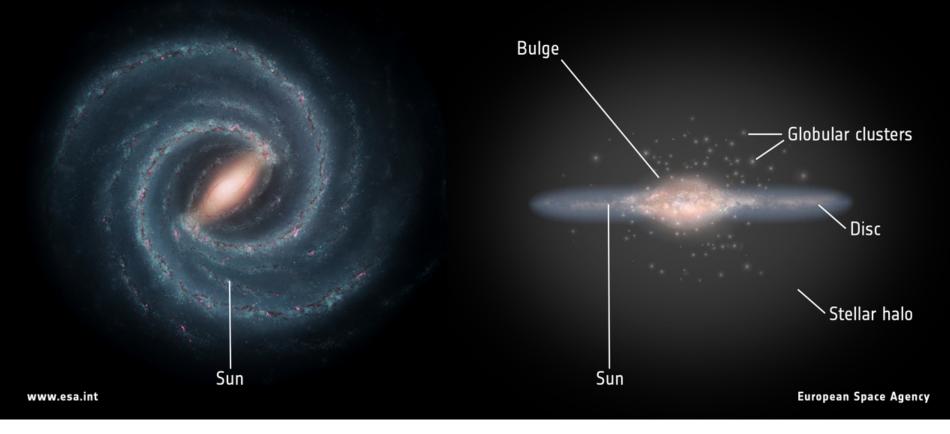
Properties of the Interstellar Medium


Abundances, Depletion, Composition

Dusty astrophysical objects

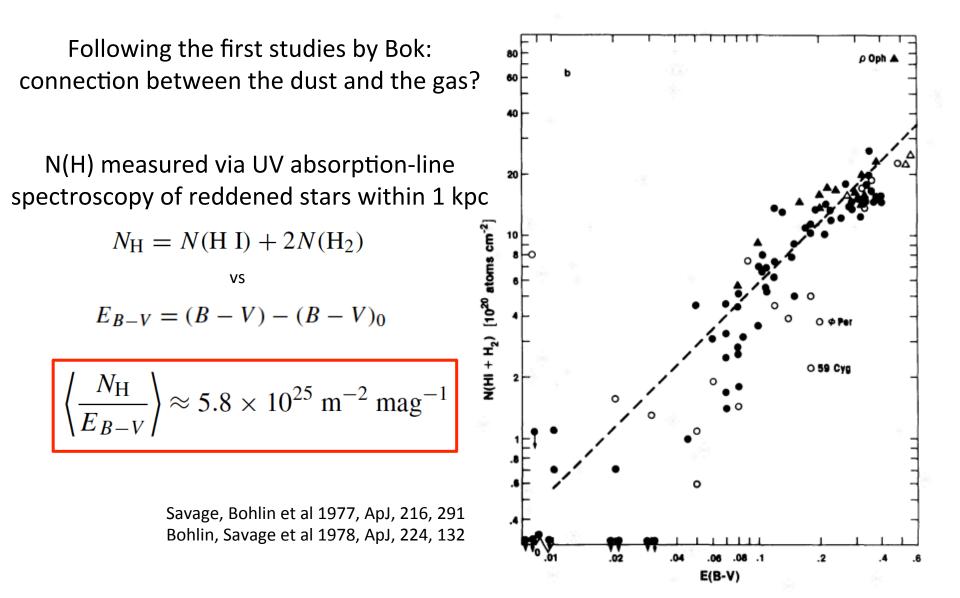
Outline

→ ANATOMY OF THE MILKY WAY



From star counts, most of the extinction material was concentrated in a continuous layer within the Galactic plane with a scale height ≈ 100 pc

→ ANATOMY OF THE MILKY WAY



On average, a column 1-kpc long in the Galactic disk intersects several (\approx 5) diffuse clouds and produces a typical reddening of $E_{B-V} \approx 0.6$

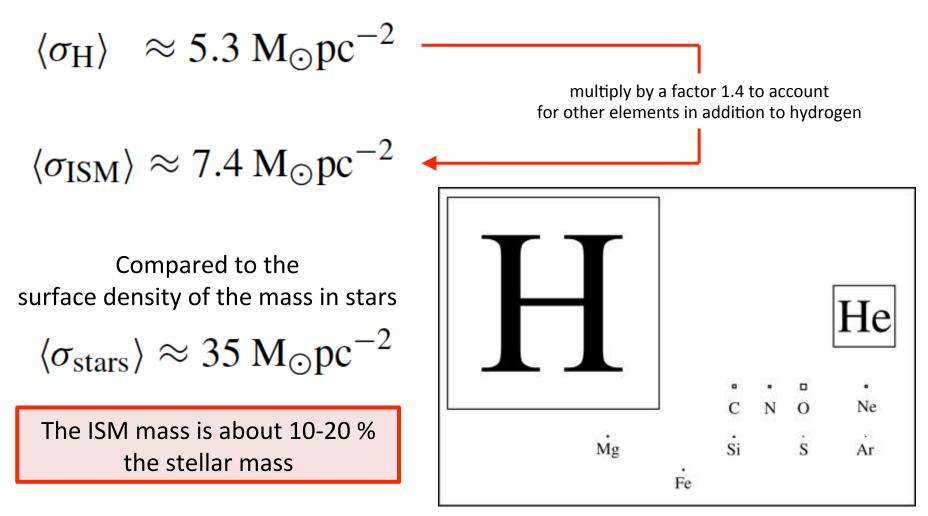
$$A_V = R_V E_{B-V} \longrightarrow \left\langle \frac{A_V}{L} \right\rangle \approx 1.8 \text{ mag kpc}^{-1}$$

Correlation between dust (extinction) and gas (hydrogen)

Correlation between dust (extinction) and gas (hydrogen)

$$\left\langle \frac{N_{\rm H}}{E_{B-V}} \right\rangle \approx 5.8 \times 10^{25} \,\mathrm{m}^{-2} \,\mathrm{mag}^{-1} \qquad \left\langle \frac{N_{\rm H}}{A_V} \right\rangle \approx 1.9 \times 10^{25} \,\mathrm{m}^{-2} \,\mathrm{mag}^{-1}$$
$$A_V = R_V E_{B-V}$$

For a typical extinction of 1.8 mag kpc⁻¹, we can derive a mean hydrogen number density: $\langle n_{\rm H} \rangle = \left\langle \frac{N_{\rm H}}{L} \right\rangle \approx 1.1 \times 10^6 \text{ m}^{-3}$

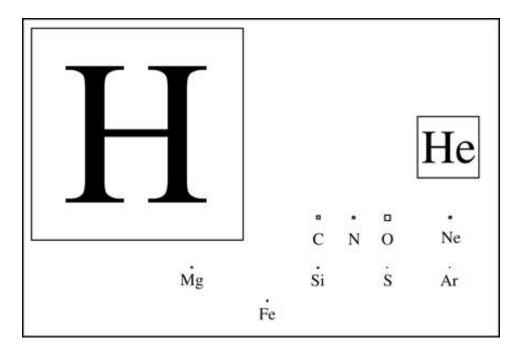

The mass density is then derived as: $\langle \rho_{\rm H} \rangle = m_{\rm H} \langle n_{\rm H} \rangle \approx 1.8 \times 10^{-21} \text{ kg m}^{-3}$

The contribution of the hydrogen gas to the mass of the Galactic disk can be better characterize via the surface mass density:

 $\langle \sigma_{\rm H} \rangle = 2h \langle \rho_{\rm H} \rangle \approx 5.3 \ {\rm M}_{\odot} {\rm pc}^{-2}$

using a scale height of 100 pc

Correlation between dust (extinction) and gas (hydrogen)


Hydrogen is the most abundant element (about 70% in mass),

followed by helium (about 25% in mass) and then other elements (carbon, oxygen, nitrogen)

Components of the interstellar medium

The gas (mainly hydrogen, as seen below) can be found in three main phases:

- **Atomic** H for hydrogen: 1 proton and 1 electron
- **lonized** H⁺ for hydrogen: 1 proton (electron has escaped)
- **Molecular**H₂ for hydrogen: 2 hydrogen atoms together

Hydrogen is the most abundant element (about 70% in mass),

followed by helium (about 25% in mass) and then other elements (carbon, oxygen, nitrogen)

Components of the interstellar medium

		Phase	$n_0^a ({\rm cm}^{-3})$	<i>T^b</i> (K)	ϕ_v^c (%)	${M^d \over (10^9 \ M_\odot)}$	$< n_0 >^e (cm^{-3})$	H^{f} (pc)	${\Sigma^g\over (M_\odot{ m pc}^{-2})}$
Hot	Ionized	Hot intercloud	0.003	10 ⁶	~50.0		0.0015	3000	0.3
Warm	Atomic	Warm neutral medium	0.5	8000	30.0	2.8	0.1^{h} 0.06^{h}	220^{h} 400^{h}	1.5 1.4
Warm	Ionized	Warm ionized medium	0.1	8000	25.0	1.0	0.025 ⁱ	900 ⁱ	1.4
Cold	Atomic	Cold neutral medium ^j	50.0	80	1.0	2.2	0.4	94	2.3
Cold	Molecular	Molecular clouds	>200.0	10	0.05	1.3	0.12	75	1.0
Hot	Ionized	HII regions	1-10 ⁵	104		0.05	0.015^{k}	70 ^k	0.05

^a Typical gas density for each phase.

^b Typical gas temperature for each phase.

^c Volume filling factor (very uncertain and controversial!) of each phase.

^d Total mass.

^e Average mid-plane density.

^f Gaussian scale height, $\sim \exp[-(z/H)^2/2]$, unless otherwise indicated.

⁸ Surface density in the solar neighborhood.

^h Best represented by a Gaussian and an exponential.

ⁱ WIM represented by an exponential.

^j Diffuse clouds.

^k HII regions represented by an exponential.

Components of the interstellar medium

		Phase	$n_0^a ({\rm cm}^{-3})$	<i>T^b</i> (K)	$\phi_v^c \left(\% ight)$	${M^d \over (10^9 \ M_\odot)}$	$< n_0 >^e (cm^{-3})$	H^{f} (pc)	${\Sigma^g\over (M_\odot{ m pc}^{-2})}$
Hot	Ionized	Hot intercloud	0.003	10 ⁶	~50.0	_	0.0015	3000	0.3
Warm	Atomic	Warm neutral medium	0.5	8000	30.0	2.8	0.1^{h} 0.06^{h}	220^{h} 400^{h}	1.5 1.4
Warm	Ionized	Warm ionized medium	0.1	8000	25.0	1.0	0.025 ⁱ	400 ⁱ	1.4
Cold	Atomic	Cold neutral medium ^j	50.0	80	1.0	2.2	0.4	94	2.3
Cold	Molecular	Molecular clouds	>200.0	10	0.05	1.3	0.12	75	1.0
Hot	Ionized	HII regions	1-10 ⁵	104		0.05	0.015 ^k	70 ^k	0.05

Interstellar medium:

Its total mass is about $5 \times 10^9 M_{\odot}$ (it is only 1% of the total Milky Way mass), but it occupies almost all the volume of the Galaxy.

The gas is mainly hydrogen, which can be **atomic** (about 50% in mass), **molecular** (about 50% in mass) and **ionized**

Components of the interstellar medium

Are these different ISM phases in equilibrium?

p = nkT

Phase	$n_0^a ({\rm cm}^{-3})$	<i>T^b</i> (K)	ϕ_v^c (%)	${M^d \over (10^9 \ M_\odot)}$	$< n_0 >^e (cm^{-3})$	H^{f} (pc)	${\Sigma^g\over (M_\odot{ m pc}^{-2})}$
Hot	0.002	1.06	50.0		0.0015	2000	
intercloud Warm	0.003	10°	$\sim \! 50.0$	_	0.0015	3000	0.3
neutral							
medium	0.5	8000	30.0	2.8	0.1^{h}	220^{h}	1.5
					0.06^{h}	400^{h}	1.4
Warm ionized					0.00	400	1.4
medium	0.1	8000	25.0	1.0	0.025^{i}	900 ⁱ	1.1
Cold neutral							
medium ^j	50.0	80	1.0	2.2	0.4	94	2.3
Molecular							
clouds	>200.0	10	0.05	1.3	0.12	75	1.0
HII regions	$1 - 10^5$	104		0.05	0.015^{k}	70^k	0.05

^a Typical gas density for each phase.

^b Typical gas temperature for each phase.

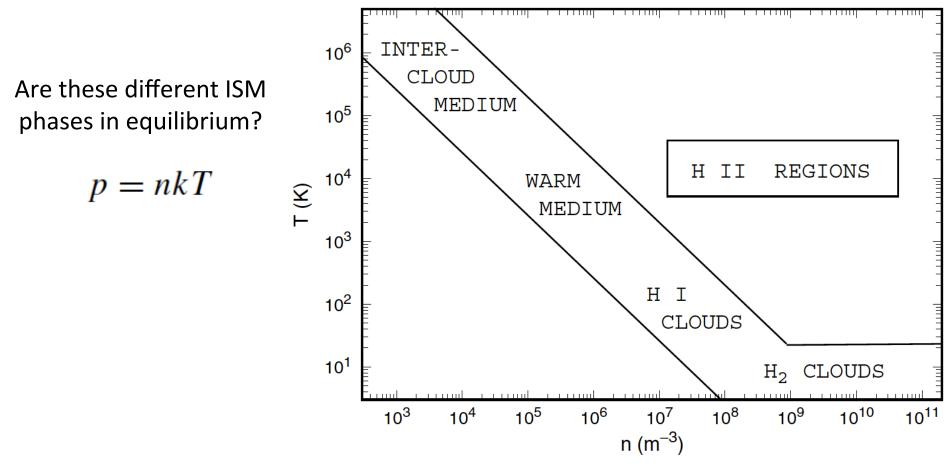
^c Volume filling factor (very uncertain and controversial!) of each phase.

^d Total mass.

^e Average mid-plane density.

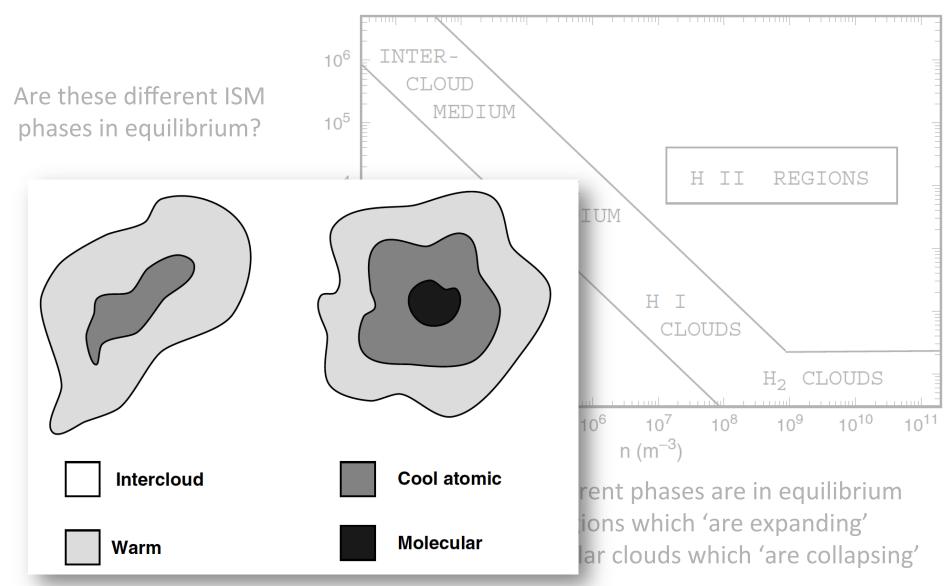
^f Gaussian scale height, $\sim \exp[-(z/H)^2/2]$, unless otherwise indicated.

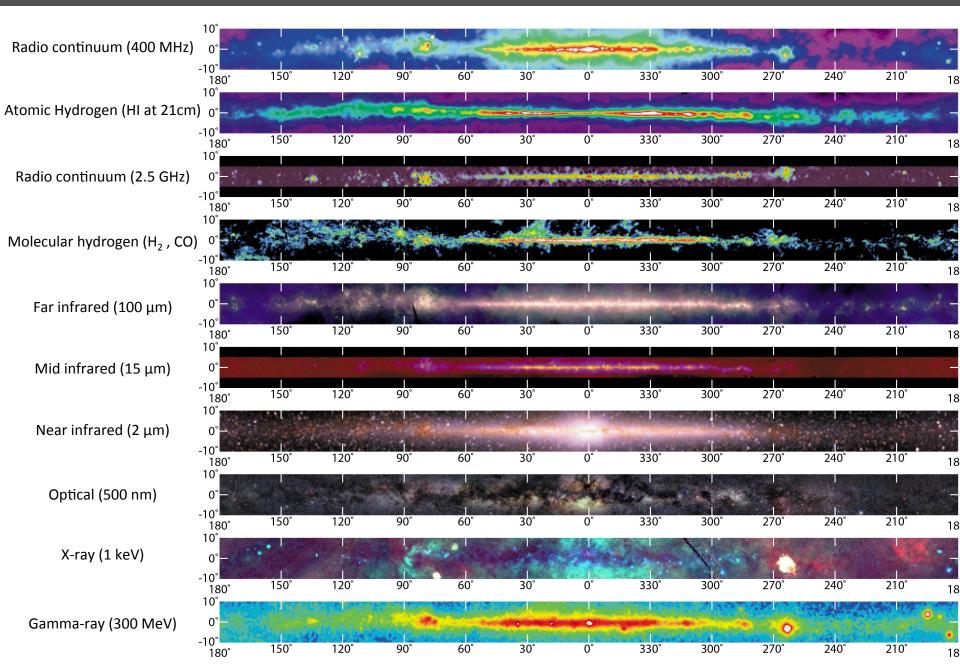
⁸ Surface density in the solar neighborhood.

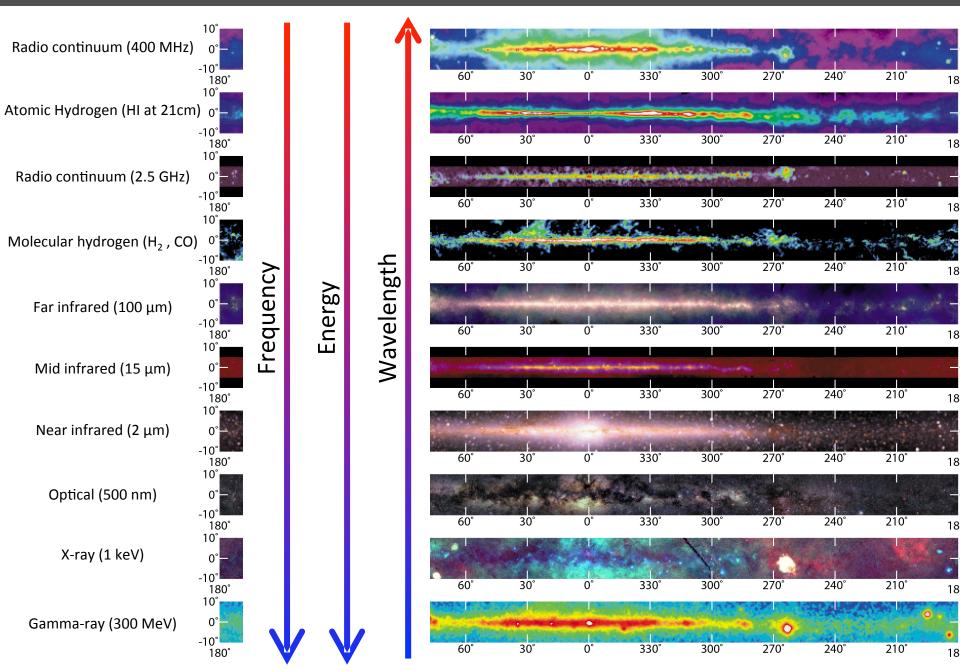

^h Best represented by a Gaussian and an exponential.

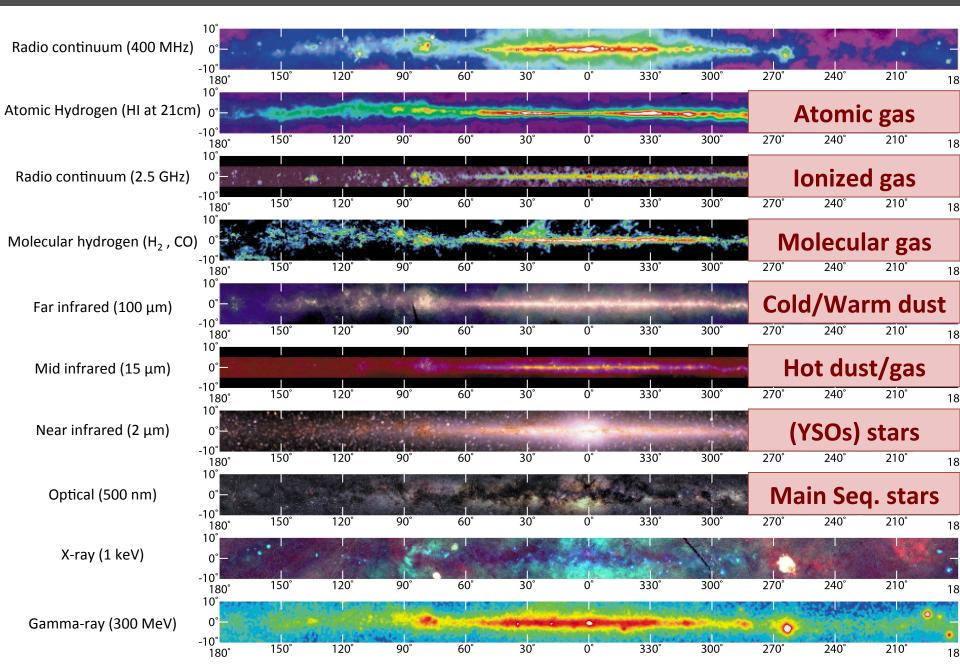
ⁱ WIM represented by an exponential.

^j Diffuse clouds.

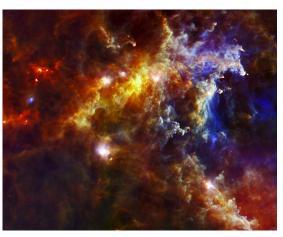

^k HII regions represented by an exponential.


Components of the interstellar medium




Most of the different phases are in equilibrium except HII regions which 'are expanding' and dense molecular clouds which 'are collapsing'

Components of the interstellar medium

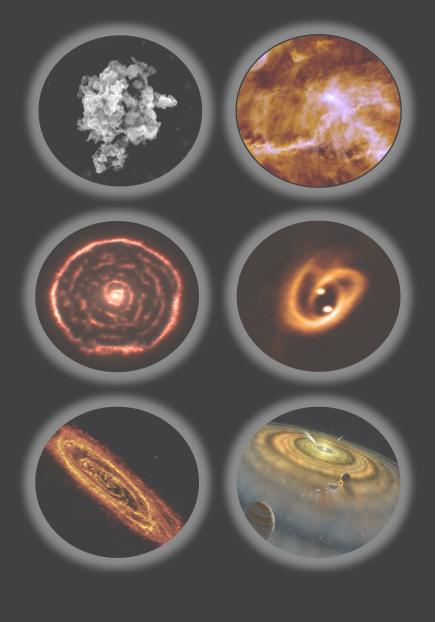

Interstellar medium: It is everything (e.g. matter and radiation) that exists in the space between stellar systems within galaxies

Components of the interstellar medium:

- Matter (dust and gas)
- Electromagnetic radiation
- Magnetic fields
- Cosmic rays (high energetic particles)
- Neutrinos
- Dark matter
- Gravitational waves

Take home messages

Properties of the interstellar medium


Most of the interstellar matter (producing extinction) is concentrated in the disk (with a scale height of about 100 pc)

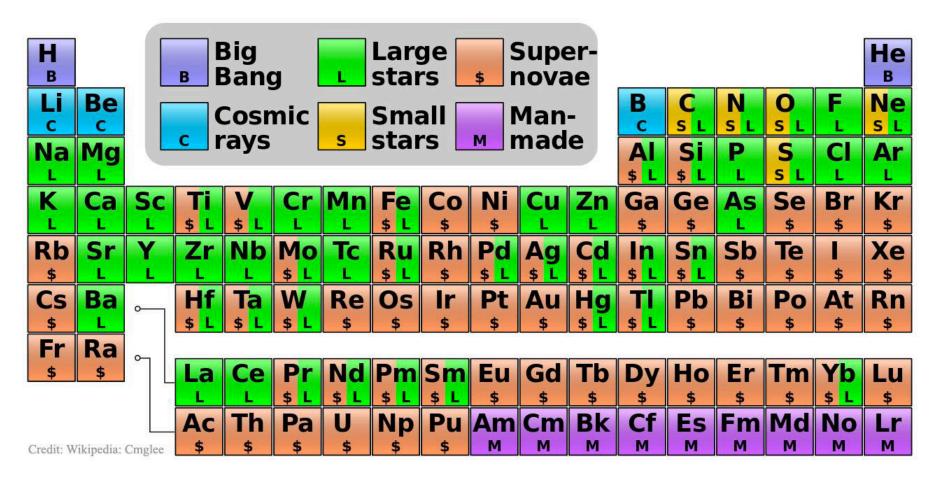
Correlation between extinction properties (dust) and presence of gas (hydrogen)

The mass of the ISM is about 10-20 % of the mass of stars in the Milky Way $M_{MW} \approx 1x10^{12} M_{\odot}$ (dark matter, stars and gas) $M_{stars} \approx 5x10^{10} M_{\odot}$ (mass in stars) $M_{ISM} \approx 5x10^9 M_{\odot}$ (gas: 99% and dust: 1%)

The interstellar medium is everything in-between stars: matter (gas and dust), radiation, magnetic fields, cosmic rays, neutrinos, dark matter, gravitational waves

Life Cycle of Dust

Existence of Interstellar Dust


Outline

Properties of the Interstellar Medium

Abundances, Depletion, Composition

Dusty astrophysical objects


Abundances of elements

Elements of the periodic table colored based on its origin

Abundances of elements

Elements of the periodic table according to their abundance in the Universe

Astronomer's periodic table

Hydrogen is the most abundant element (about 70% in mass),

followed by helium (about 25% in mass) and then other elements (carbon, oxygen, nitrogen)

Abundances of elements

Big Bang nucleogenesis

Production of nuclei during the early phases of the Universe It probably took place during the first ≈ 10 minutes after the Big Bang

Element	Symbol	Comp.	% in num.	% in mass
 Hydrogen	 ¹ H	1 p	92 %	75 % in mass
Helium	⁴ He	2 p , 2 n	8 %	25 % in mass
Deuterium	² H (or D)	1p,1n	0.01 % (or ≈ 10 ⁻⁴ - 10 ⁻⁵)	
Helium-3	³ He	2 p , 1 n	0.01 % (or ≈ 10 ⁻⁴ - 10 ⁻⁵)	
Lithium	⁷ Li	3 p <i>,</i> 4 n	10 ⁻⁸ % (or ≈ 10 ⁻¹⁰)	
Tritium	³ H (or T)	1 p , 2 n	ightarrow decayed fast into ³ H	le
Beryllium	⁷ Be	4 p , 7 n	ightarrow decayed fast into ⁷ L	i

Abundances of elements

Stellar nucleosynthesis

The rest of the elements (essentially all except H and He) are produced inside stars

... at $T \approx 10^6$ K The little amounts of Li, Be and B are quickly converted to ⁴He

... at T > 10⁷ K H-burning begins at the inner hot core

 $4^{1}\text{H} \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu$

pp-chain

no heavier element than Hydrogen is required **CNO cycle**

$$\label{eq:constraint} \begin{split} ^{12}\mathrm{C} + \mathrm{p} &\rightarrow \ ^{13}\mathrm{N} + \gamma \\ ^{13}\mathrm{N} &\rightarrow \ ^{13}\mathrm{C} + \mathrm{e}^+ + \nu \\ ^{13}\mathrm{C} + \mathrm{p} &\rightarrow \ ^{14}\mathrm{N} + \gamma \\ ^{14}\mathrm{N} + \mathrm{p} &\rightarrow \ ^{15}\mathrm{O} + \gamma \\ ^{15}\mathrm{O} &\rightarrow \ ^{15}\mathrm{N} + \mathrm{e}^+ + \nu \\ \end{split}$$

Abundances of elements

Stellar nucleosynthesis

The rest of the elements (essentially all except H and He) are produced inside stars

- ... at $T \approx 10^6 \text{ K}$ The little amounts of Li, Be and B are quickly converted to ⁴He
- ... at T > 10⁷ K H-burning begins at the inner hot core
- ... at T > 10⁸ K He-burning begins at the inner core where H is exhausted inner core (10 % of the mass) collapses and becomes hotter, while the envelope expands and cools down

 ${}^{4}\text{He} + {}^{4}\text{He} \Rightarrow {}^{8}\text{Be} + \gamma$ ${}^{8}\text{Be}$ dissociates rapidly back to ${}^{4}\text{He}$

$$3^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$$

 $^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma$

Abundances of elements

Stellar nucleosynthesis

The rest of the elements (essentially all except H and He) are produced inside stars

- ... at $T \approx 10^6 \text{ K}$ The little amounts of Li, Be and B are quickly converted to ⁴He
- ... at T > 10⁷ K H-burning begins at the inner hot core
- ... at T > 10⁸ K He-burning begins at the inner core where H is exhausted

... at T > 5x10⁸ KC-burning begins at the inner core... at T > 10⁹ KO-burning begins at the inner core

 ${}^{12}C + {}^{12}C \rightarrow {}^{24}Mg + \gamma \qquad {}^{16}O + {}^{16}O \rightarrow {}^{32}S + \gamma \\ \rightarrow {}^{23}Na + p \qquad \rightarrow {}^{31}P + p \\ \rightarrow {}^{20}Ne + {}^{4}He \qquad \rightarrow {}^{31}S + n \\ {}^{20}Ne + {}^{4}He \rightarrow {}^{24}Mg + \gamma \qquad \rightarrow {}^{28}Si + {}^{4}He$

Abundances of elements

Stellar nucleosynthesis

The rest of the elements (essentially all except H and He) are produced inside stars

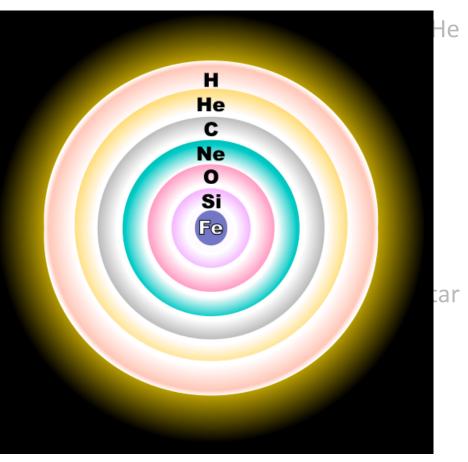
- ... at $T \approx 10^6$ K The little amounts of Li, Be and B are quickly converted to ⁴He
- ... at T > 10⁷ K H-burning begins at the inner hot core
- ... at T > 10⁸ K He-burning begins at the inner core where H is exhausted
- ... at T > 5x10⁸ K C-burning begins at the inner core ... at T > 10⁹ K O-burning begins at the inner core

... at T > 2x10⁹ K we reach the limit by forming Fe and Ni at the core of the star

Abundances of elements

Stellar nucleosynthesis

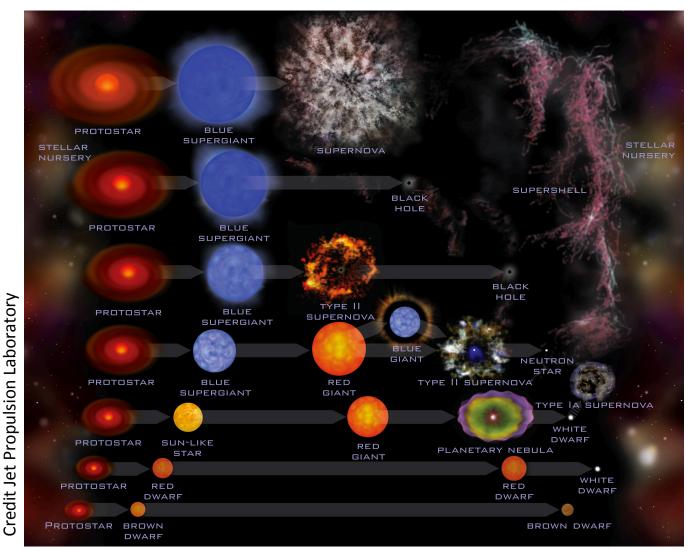
The rest of the elements (essentially all except H and He) are produced inside stars


... at $T \approx 10^6$ K The little amounts ... at $T > 10^7$ K H-burning begins a

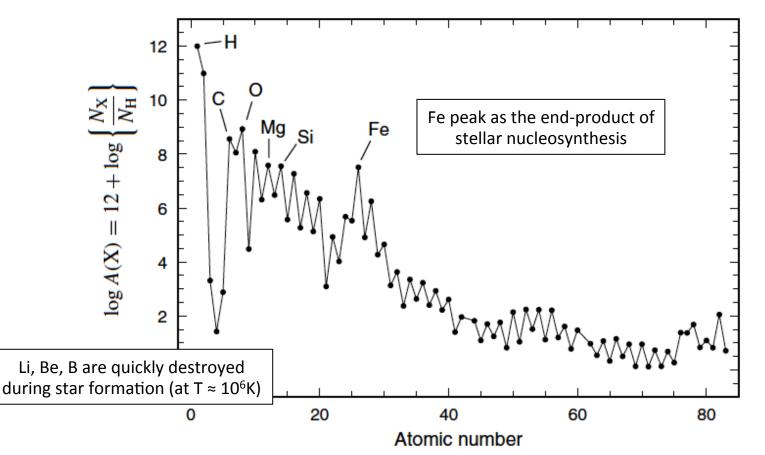
... at T > 10⁸ K He-burning begins

... at T > 5x10⁸ K C-burning begins a ... at T > 10⁹ K O-burning begins a

... at T > 2x10⁹ K we reach the limit

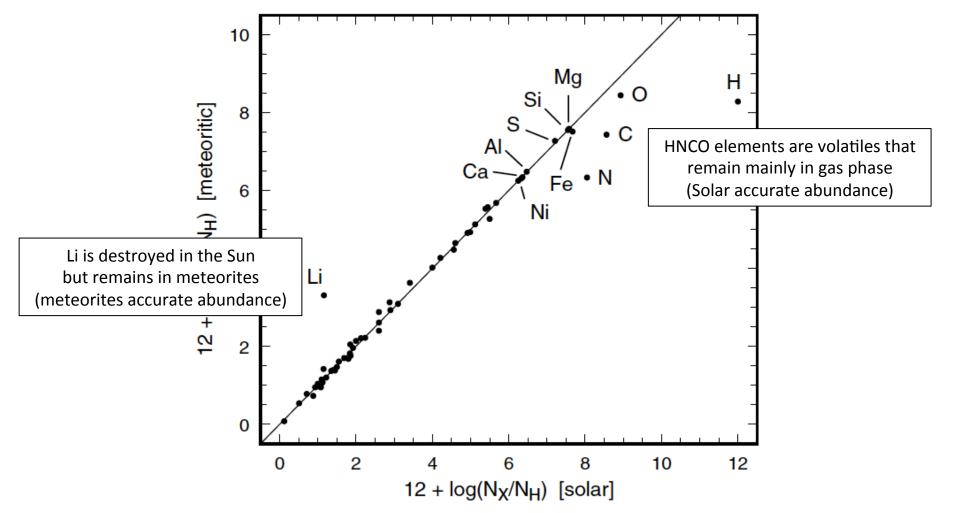

Stars are onion-like structures with heavier elements in their centers

Abundances of elements


Enrichment of the Interstellar Medium

(via winds, AGBs and SNe)

Typical abundances in the interstellar medium


The element abundances in the Solar System provide a general reference set

Note.- Elements in Sun's photosphere are all in gas phase (i.e. detectable)
 Not processed by nuclear reactions (not connected to the stellar core)
 → trace abundances of the interstellar gas when the Sun formed

Typical abundances in the interstellar medium

Solar System abundances from Sun's photosphere and abundances in meteorites

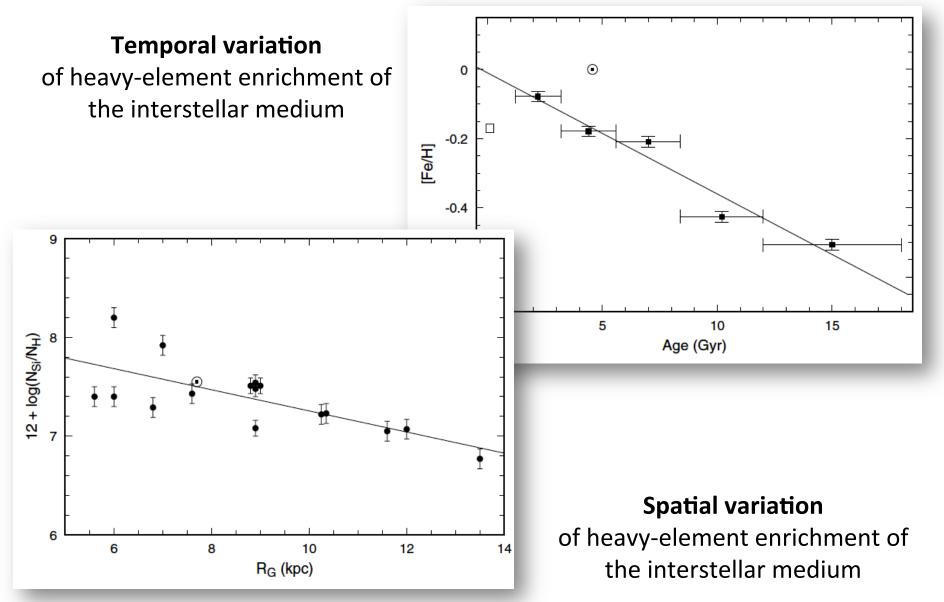
Typical abundances in the interstellar medium

	-				L
Element	z	m (g mol ⁻¹)	$\log A_{\odot} \ (N_{\rm H} = 10^{12})$	<i>A</i> ⊙ (ppm)	Solar System abundances of the
Н	1	1.01	12.00	10 ⁶	14 most abundant elements
С	6	12.01	8.56	360	likely to be present
Ν	7	14.01	7.97	93	in the interstellar matter (dust)
0	8	16.00	8.83	676	
Na	11	22.99	6.31	2	
Mg	12	24.31	7.59	39	
Al	13	26.98	6.48	3	
Si	14	28.09	7.55	35	$(N_{\rm Y})$
Р	15	30.97	5.57	0.4	$ A(\mathbf{X}) = 10^6 \left\{ \frac{N_{\mathbf{X}}}{N_{\mathbf{H}}} \right\} $
S	16	32.06	7.27	19	()
Ca	20	40.08	6.34	2	ppm: parts per million
Cr	24	52.00	5.68	0.5	
Fe	26	55.85	7.51	32	
Ni	28	58.71	6.25	2	
					$\log A(\mathbf{X}) = 12 + \log \left\{ \frac{N_{\mathbf{X}}}{N_{\mathbf{H}}} \right\}$

Typical abundances in the interstellar medium

Element	z	m (g mol ⁻¹)	$\log A_{\odot}$ $(N_{\rm H} = 10^{12})$	<i>A</i> ⊙ (ppm)
Н	1	1.01	12.00	10 ⁶
С	6	12.01	8.56	360
Ν	7	14.01	7.97	93
0	8	16.00	8.83	676
Na	11	22.99	6.31	2
Mg	12	24.31	7.59	39
Al	13	26.98	6.48	3
Si	14	28.09	7.55	35
Р	15	30.97	5.57	0.4
S	16	32.06	7.27	19
Ca	20	40.08	6.34	2
Cr	24	52.00	5.68	0.5
Fe	26	55.85	7.51	32
Ni	28	58.71	6.25	2

Interstellar dust is expected to be made of these elements


Thus, the mass fraction available to make dust is:

$$Z_{\odot} = 0.71 \sum \left\{ \frac{m_{\rm X} N_{\rm X}}{m_{\rm H} N_{\rm H}} \right\}_{\odot} \simeq 0.016$$

Note.- 0.71 is a factor to discount noble gases

This is effectively an upper limit on the dust-to-gas ratio (for solar abundances)

Abundances trends in the Galaxy

Depletions of elemental abundances

Depletion

Under-abundance of a gas-phase element with respect to its standard reference

	Agas	(Standard \equiv Solar)		Solar)
Element	(ppm)	D	δ	A _{dust}
С	140	-0.41	0.61	220
Ν	75	-0.09	0.19	17
0	320	-0.32	0.52	356
Na	0.6	-0.50	0.68	1
Mg	3.1	-1.10	0.92	36
Al	0.01	-2.50	1.00	3
Si	0.9	-1.60	0.97	34
Р	0.07	-0.74	0.82	0.3
S	19	0.00	0.00	0
Ca	0.0005	-3.60	1.00	2
Cr	0.04	-2.10	0.99	0.5
Fe	0.32	-2.00	0.99	32
Ni	0.01	-2.30	1.00	2

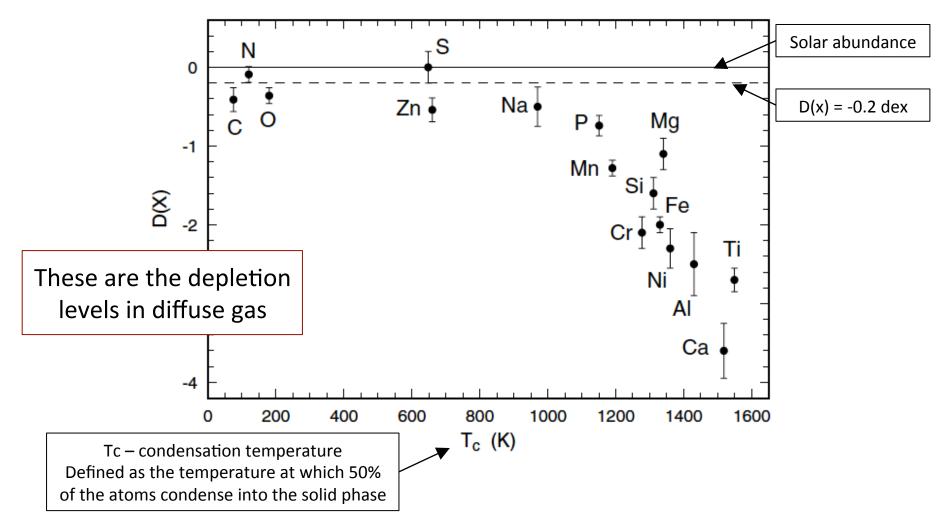
Depletion of element X is defined as:

$$D(\mathbf{X}) = \log\left\{\frac{N_{\mathbf{X}}}{N_{\mathbf{H}}}\right\} - \log\left\{\frac{N_{\mathbf{X}}}{N_{\mathbf{H}}}\right\}_{\mathbf{ISM}}$$

ISM refers to solar abundance

Fractional depletion: $\delta(X) = 1 - 10^{D(X)}$

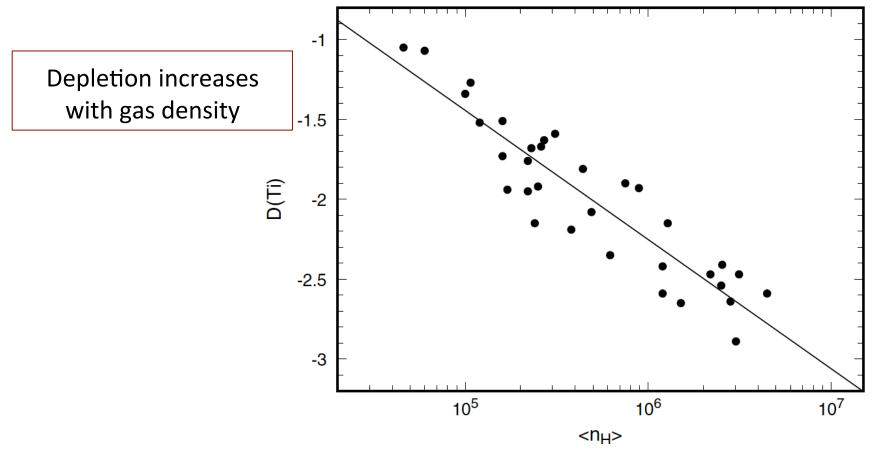
Abundance of element X in the dust relative to total hydrogen:


$$A_{\text{dust}} = \delta(\mathbf{X})A_{\text{ISM}}$$

$$A_{\rm ISM} = A_{\rm gas} + A_{\rm dust}.$$

Depletions of elemental abundances

Depletion


Under-abundance of a gas-phase element with respect to its standard reference

Depletions of elemental abundances

Depletion

Under-abundance of a gas-phase element with respect to its standard reference

Example of increase of depletion for Ti as function of ISM gas density

Depletions of elemental abundances

Depletion

Under-abundance of a gas-phase element with respect to its standard reference

Grouping the elements contained in dust

Group I C, N, O, S, Zn Elements with low to moderate depletions (0-60%) that do not correlate strongly with physical conditions (e.g., density)

Group II Mg, Si, P Elements with varying depletion according to density: low in intercloud medium, but high in diffuse clouds (80-100%)

Group III Fe, Ti, Ca, Cr, Mn, Ni Elements with varying depletion according to density, but always high (80-100%). Seems to represent an almost indestructible component of interstellar dust

Depletions of elemental abundances

Depletion

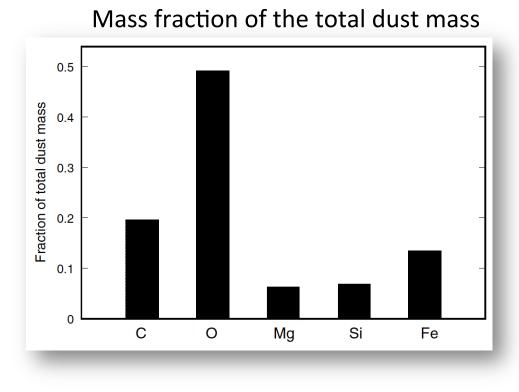
Under-abundance of a gas-phase element with respect to its standard reference

	Δ	$(Standard \equiv Solar)$		
Element	A _{gas} (ppm)	D	δ	A _{dust}
С	140	-0.41	0.61	220
Ν	75	-0.09	0.19	17
0	320	-0.32	0.52	356
Na	0.6	-0.50	0.68	1
Mg	3.1	-1.10	0.92	36
Al	0.01	-2.50	1.00	3
Si	0.9	-1.60	0.97	34
Р	0.07	-0.74	0.82	0.3
S	19	0.00	0.00	0
Ca	0.0005	-3.60	1.00	2
Cr	0.04	-2.10	0.99	0.5
Fe	0.32	-2.00	0.99	32
Ni	0.01	-2.30	1.00	2

Mass density of the dust components

$$\rho_{\rm d}({\rm X}) = 10^{-6} A_{\rm dust} \left(\frac{m_{\rm X}}{m_{\rm H}}\right) \rho_{\rm H}$$
$$\rho_{\rm d} = \sum \rho_{\rm d}({\rm X})$$
$$\approx 2.3 \times 10^{-23} \,\rm kg \, m^{-3}$$

Dust-to-gas mass fraction is:


$$Z_{\rm d} = 0.71 \frac{\rho_{\rm d}}{\rho_{\rm H}} \approx 0.009$$

Note.- 0.71 is a factor to discount noble gases

Depletions of elemental abundances

Depletion

Under-abundance of a gas-phase element with respect to its standard reference

Mass density of the dust components

$$\rho_{\rm d}({\rm X}) = 10^{-6} A_{\rm dust} \left(\frac{m_{\rm X}}{m_{\rm H}}\right) \rho_{\rm H}$$
$$\rho_{\rm d} = \sum \rho_{\rm d}({\rm X})$$
$$\approx 2.3 \times 10^{-23} \,\rm kg \, m^{-3}$$

Dust-to-gas mass fraction is:

$$Z_{\rm d} = 0.71 \frac{\rho_{\rm d}}{\rho_{\rm H}} \approx 0.009$$

Note.- 0.71 is a factor to discount noble gases

Models of dust grains

Grain models

Descriptions of the **composition** of dust grains that reproduce all observables

- **Ices such as H_2O, CO, NH_3, CH_4, ... (e.g. Lindblad 1935): Favored by the high cosmic abundance of the constituent atoms**
- Metals such as iron (e.g. Schalen 1936):
 Metals alone not sufficient abundant to account for the interstellar extinction
- Dirty ices (e.g. Oort and van de Hulst 1946):
 Model for ice nucleation and growth, including metals.
 Extinction calculations for such particles give a good fit to the extinction curve from infrared to near ultraviolet (e.g., Greenberg 1968)
- Platt particles (e.g. Platt 1956, Donn 1968):
 Unsaturated molecules (rather than classical ice grains),
 with radii no more than ≈ 1 nm
 This macromolecules are indeed polycyclic aromatic hydrocarbons (PAHs),
 which account for ≈ 15% of C in the grain

Models of dust grains

Grain models

Descriptions of the **composition** of dust grains that reproduce all observables

- Graphites and Silicates:

New observations, expanding the observable electromagnetic range (IR, UV) revealed that previous models were not enough

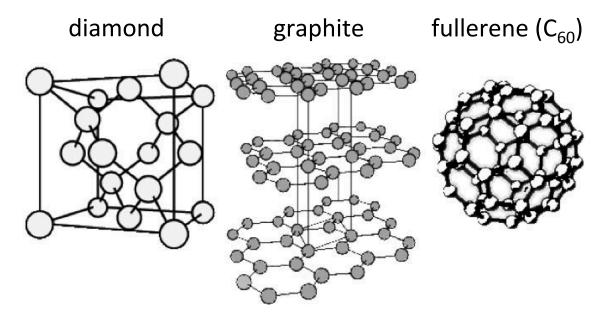
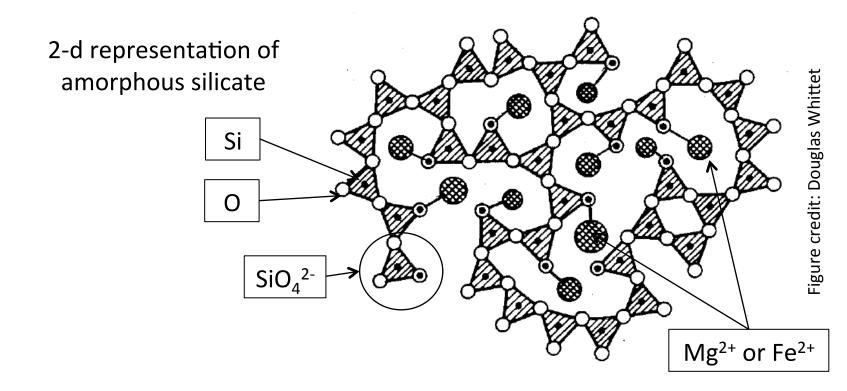


Figure credit: Mark Raylings


Models of dust grains

Grain models

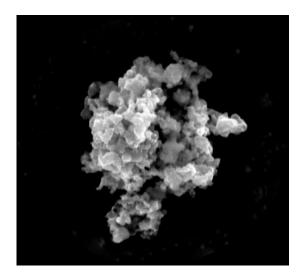
Descriptions of the **composition** of dust grains that reproduce all observables

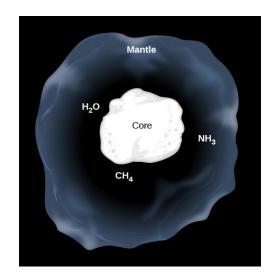
- Graphites and Silicates:

New observations, expanding the observable electromagnetic range (IR, UV) revealed that previous models were not enough

Models of dust grains

Grain models


Descriptions of the **composition** of dust grains that reproduce all observables


- Refractory mantle models:

The so-called MRN model (e.g. Mathis et al 1977) explains the extinction curve from infrared to far ultraviolet by separate populations of graphite and silicates

Defines a power-law size distribution: $n(a) \propto a^{-3.5}$

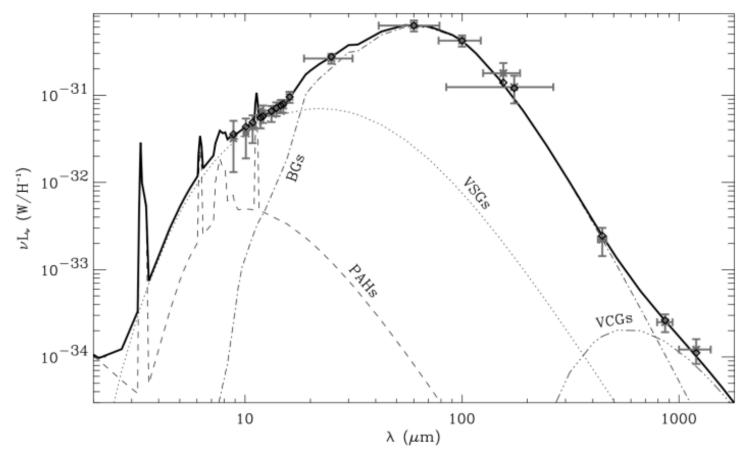
Effects of porosity are also included in the models

Models of dust grains

Grain models

Descriptions of the **composition** of dust grains that reproduce all observables

Grain models have to fit all observables (see Draine et al 2003, ARA&A)


- absorption and scattering in the UV and optical (extinction curves)
- emission in the infrared (and sub-mm), both continuum and spectral features
- polarization properties
- abundances and depletion constraints

Models of dust grains

Grain models

Descriptions of the **composition** of dust grains that reproduce all observables

Grain models have to fit all observables (see Draine et al 2003, ARA&A)

Composition of grains via infrared spectroscopy

Vibrational modes in solids

Dust composition is investigated via spectroscopic observations in the infrared

		<i>,</i>	
Material	Mode	λ (μm)	$(m^2 kg^{-1})$
НАС	C–H stretch	3.4	30–690
Organic residue	C-H stretch	3.4	40-80
MgSiO ₃ (enstatite)	Si–O stretch O–Si–O bend	9.7 19.0	315 88
(Mg, Fe)SiO ₃ (bronzite)	Si–O stretch O–Si–O bend	9.5 18.5	300 165
FeSiO ₃ (ferrosilite)	Si–O stretch O–Si–O bend	9.5 20.0	210 82
Mg ₂ SiO ₄ (fosterite)	Si–O stretch O–Si–O bend	10.0 19.5	240 86
Silicon carbide	Si-C stretch	11.2	660

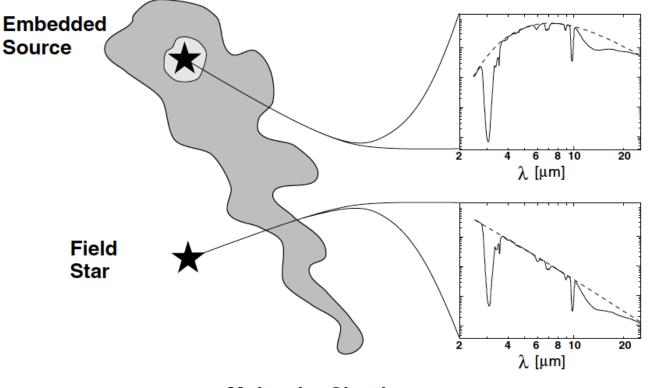
Molecular vibrational modes in some refractory solids

Abundances, depleti

Composition of grains via

Vibrational modes in solids Dust composition is investigated via spectrc

Molecular vibrational modes in some refractory solids				
Material	Mode	λ (μm)	$(m^2 kg^{-1})$	
HAC	C–H stretch	3.4	30-690	
Organic residue	C-H stretch	3.4	40-80	
MgSiO ₃ (enstatite)	Si-O stretch	9.7	315	
	O-Si-O bend	19.0	88	
(Mg, Fe)SiO ₃ (bronzite)	Si-O stretch	9.5	300	
	O–Si–O bend	18.5	165	
FeSiO ₃ (ferrosilite)	Si-O stretch	9.5	210	
	O–Si–O bend	20.0	82	
Mg ₂ SiO ₄ (fosterite)	Si-O stretch	10.0	240	
	O-Si-O bend	19.5	86	
Silicon carbide	Si-C stretch	11.2	660	

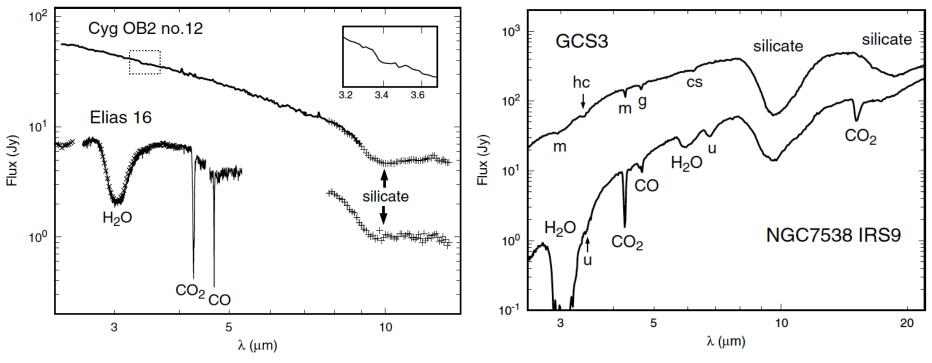

Molecular vibrational modes in some ices

		λ	\mathcal{A}
Molecule	Mode	(µm)	(m/molecule)
H ₂ O	O-H stretch	3.05	2.0×10^{-18}
	H-O-H bend	6.0	8.4×10^{-20}
	libration	12	3.1×10^{-19}
NH ₃	N-H stretch	2.96	2.2×10^{-19}
	deformation	6.16	4.7×10^{-20}
	inversion	9.35	1.7×10^{-19}
CH ₄	C-H stretch	3.32	7.7×10^{-20}
	deformation	7.69	7.3×10^{-20}
CO	C=O stretch	4.67	1.1×10^{-19}
CO_2	C=O stretch	4.27	$7.6 imes 10^{-19}$
	O=C=O bend	15.3	1.5×10^{-19}
CH ₃ OH	O-H stretch	3.08	$1.3 imes 10^{-18}$
	C-H stretch	3.53	5.3×10^{-20}
	CH ₃ deformation	6.85	1.2×10^{-19}
	CH ₃ rock C–O stretch	8.85 9.75	1.8×10^{-20} 1.8×10^{-19}
H_2CO	C-H stretch (asym.)	3.47	2.7×10^{-20}
	C–H stretch (sym.) C=O stretch	3.54 5.81	3.7×10^{-20} 9.6×10^{-20}
	CH ₂ scissor	6.69	3.9×10^{-20}
НСООН	C=O stretch	5.85	6.7×10^{-19}
	CH deformation	7.25	2.6×10^{-20}
C ₂ H ₆	C-H stretch	3.36	$1.6 imes 10^{-19}$
	CH ₃ deformation	6.85	6.0×10^{-20}
CH ₃ CN	C=N stretch	4.41	3.0×10^{-20}
OCN-	C≡N stretch	4.62	$1.0 imes 10^{-18}$
H ₂ S	S-H stretch	3.93	2.9×10^{-19}
OCS	O=C=S stretch	4.93	1.5×10^{-18}
SO ₂	S=O stretch	7.55	3.4×10^{-19}

Composition of grains via infrared spectroscopy

Vibrational modes in solids

Dust composition is investigated via spectroscopic observations in the infrared


Molecular Cloud

Sketch showing different continuum levels depending on the location of the star Figure credit: Perry Gerakines, Douglas Whittet

Composition of grains via infrared spectroscopy

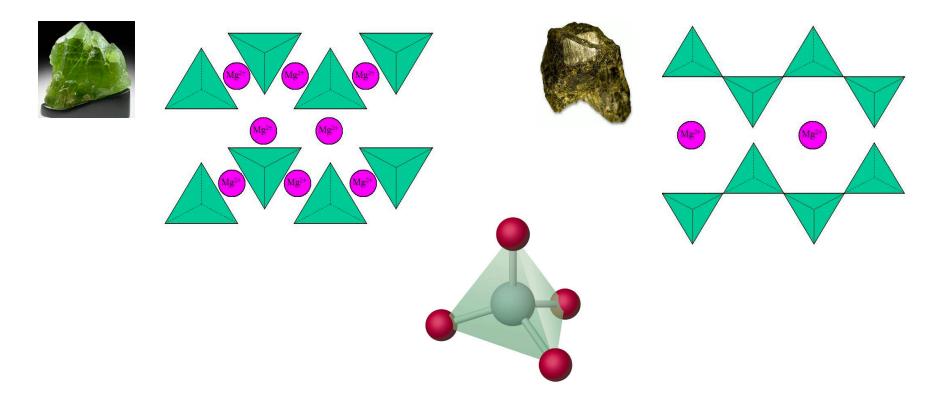
Vibrational modes in solids

Dust composition is investigated via spectroscopic observations in the infrared

IR spectra from 2 to 15 μ m of two field stars

<u>CygOB2 n.12</u>.- blue hyper-giant reddened by diffusecloud material (with no ice)

Elias 16.- red giant behind a dense clump in Taurus

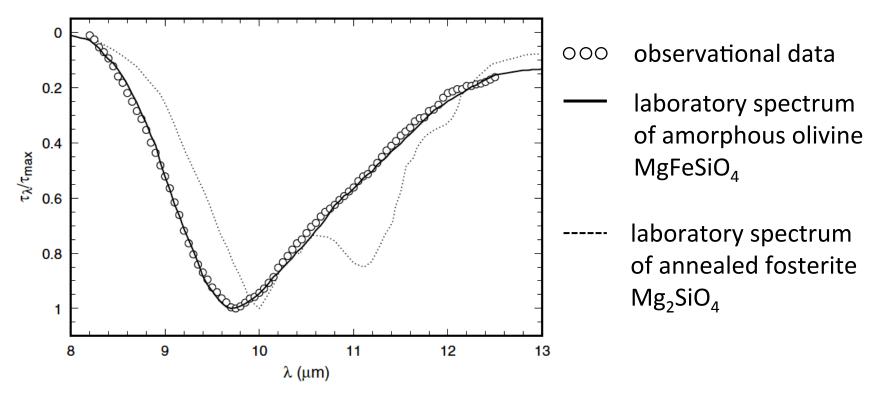

IR spectra from 2.5 to 20 μm of embedded sources <u>GCS3</u>.- galactic center source <u>NGC7538-IRS9</u>.- embedded protostar Feature 'g' is CO gas-phase, all others are solid-phase 'm': ices; 'hc': hydrocarbons in diffuse ISM; 'cs' circumstellar shell of GCS3

Composition of grains via infrared spectroscopy

Infrared spectroscopy of silicates

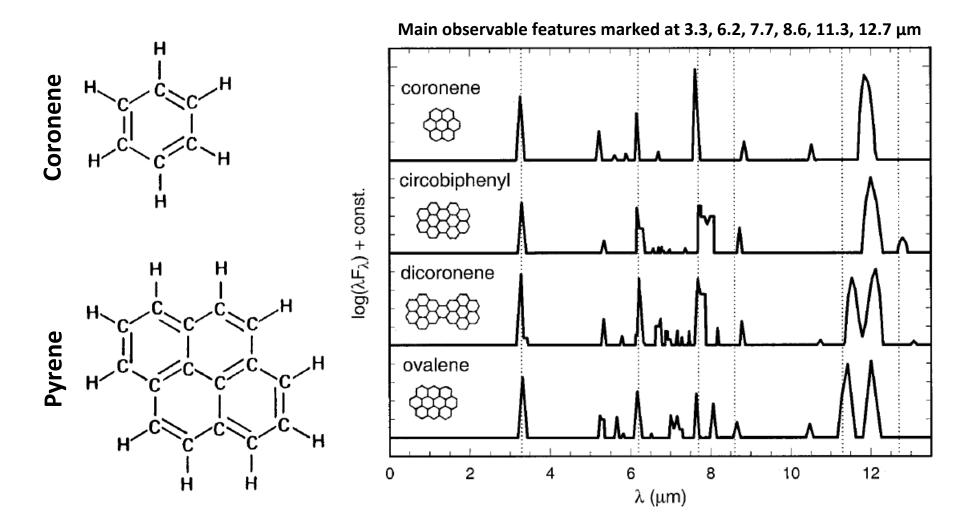
Olivine

 $Fe_{2x}Mg_{2(1-x)}SiO_{4}$ x=0 \rightarrow Mg₂SiO₄ (fosterite) Pyroxene $Fe_xMg_{1-x}SiO_3$ $x=0 \rightarrow MgSiO_3$ (enstatite)

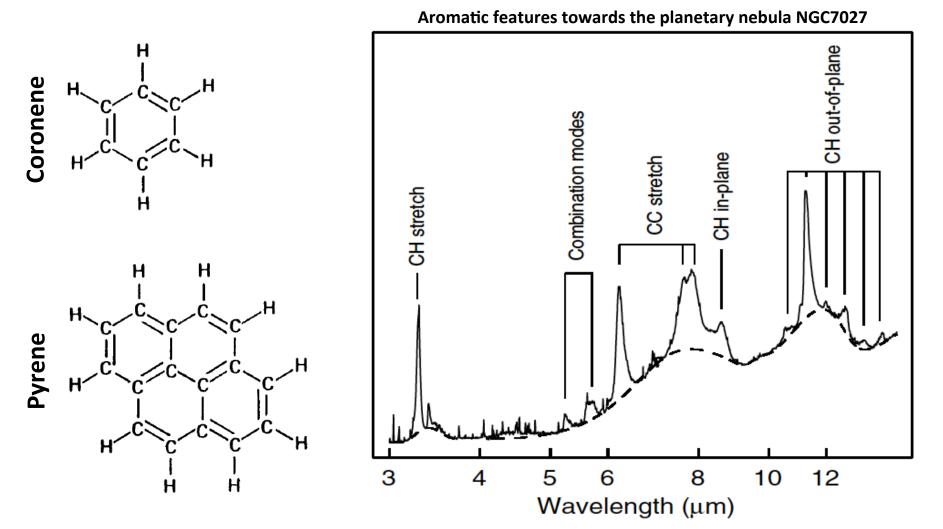


Composition of grains via infrared spectroscopy

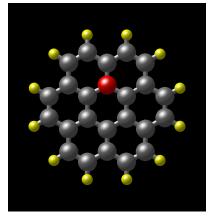
Infrared spectroscopy of silicates


Assigning features to compounds

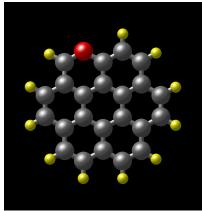
9.7 µm silicate profile towards the Galactic Center source SgrA

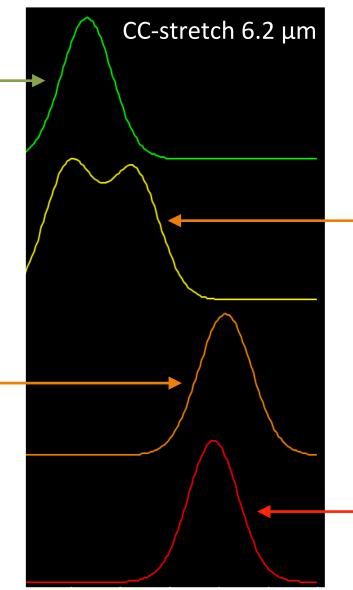

Composition of grains via infrared spectroscopy

Infrared spectroscopy of polycyclic aromatic hydrocarbons (PAHs)

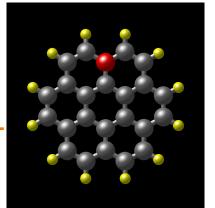

Composition of grains via infrared spectroscopy

Infrared spectroscopy of polycyclic aromatic hydrocarbons (PAHs)

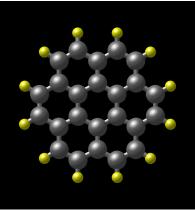



Composition of grains via infrared spectroscopy

N3b-Coronene cation $C_{23}H_{11}N^+$



N1b-Coronene cation $C_{23}H_{11}N^+$



N2b-Coronene cation $C_{23}H_{11}N^+$

Coronene cation $C_{24}H_{12}^{+}$

Dust components in the ISM

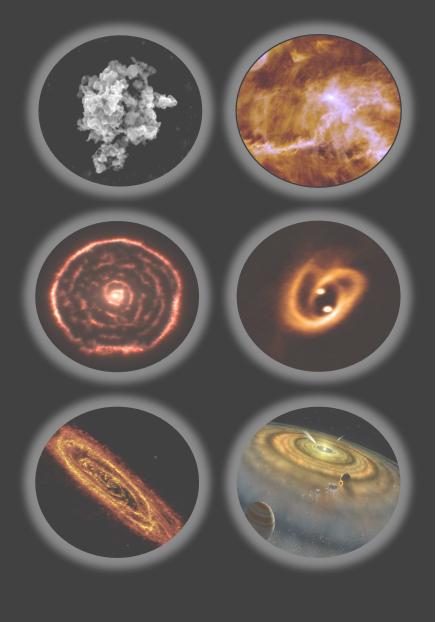
Amorphous olivine: Amorphous pyroxene: Metallic iron: Enstatite: Forsterite: Diopside: Hydrous silicates: Carbonates: Silica: Spinel:

 $(Fe,Mg)_2SiO_4$ $(Fe,Mg)SiO_3$ Fe $MgSiO_3$ Mg_2SiO_4 $(Ca,Mg)SiO_3$ $silicate + H_2O$ $(Ca,Mg)CO_3$ SiO_2 $MgAl_2O_4$

Iron-Mangesium oxide:	Mg _(0,1) Fe _(0,9) O
Periclase:	MgO
Corundum:	Al_2O_3
Pyrite:	FeS ₂
Pyrrhotite:	Fe _{1-x} S
Troilite:	FeS
Silicon carbide:	SiC
Amorphous carbon:	С
Graphite:	С
Magnesium sulfide:	MgS

- + Polycyclic Aromatic Hydrocarbons
- + various ices: H_2O , CO_2 , CO, CH_4 , CH_3OH , ...

Take home messages

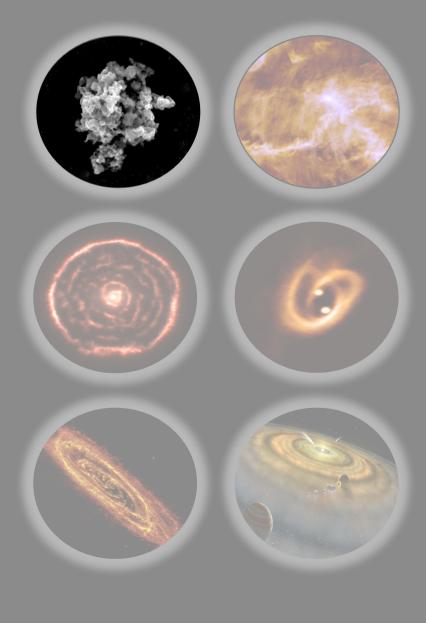

Abundances, Depletion, Composition

Abundances of elements in the ISM (from stellar photospheres, e.g. Sun) Spatial and temporal variation: e.g. heavy-elements increase in new generations

Depletion: under-abundance of a gas-phase element High depletion levels for heavy elements such as: Ti, Fe, Si, Mg, ... Mass fraction of depleted elements $\approx 0.01 \rightarrow$ dust-to-gas mass ratio

Dust grain models: (porous) refractory cores surrounded by ices

Composition of dust grains via infrared spectroscopy (obsverations vs laboratory) Main constituents: silicates, graphites, PAHs and ices

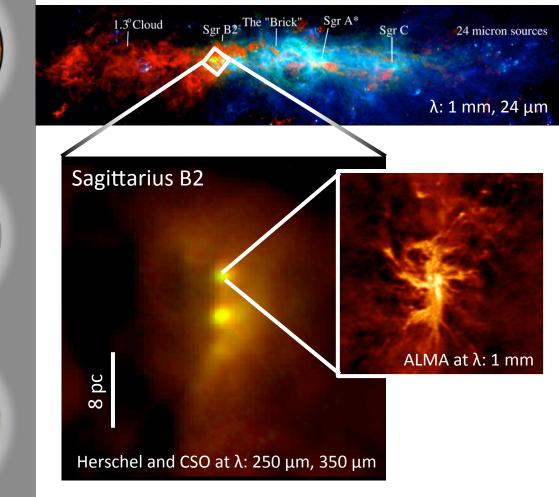

Existence of Interstellar Dust

Outline

Properties of the Interstellar Medium

Abundances, Depletion, Composition

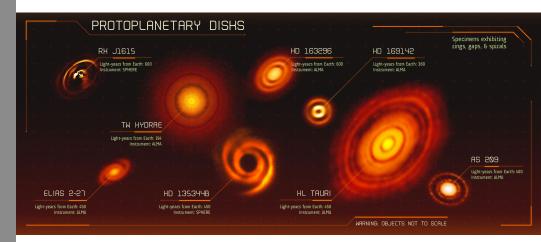
Dusty astrophysical objects

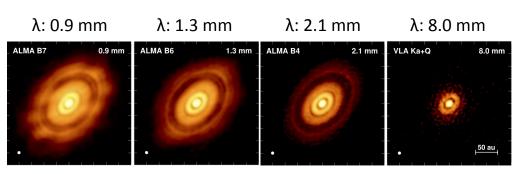


interstellar dust

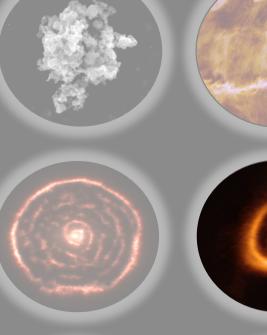
Outline

Outline

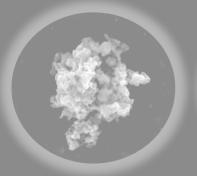

interstellar medium


clouds, clumps, cores and filaments

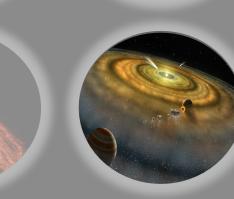
Outline


protostellar disks

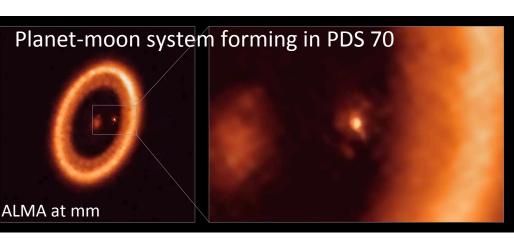
disks: morphology, rings, gaps, spirals

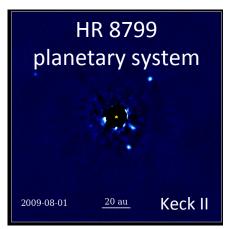



disks: grain growth

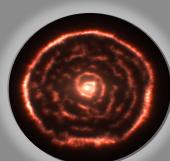


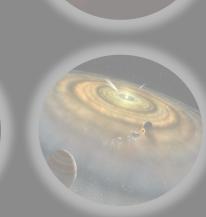
Outline



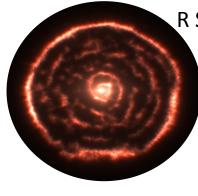


stellar (planetary) systems



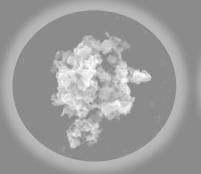

NWA 869 meteorite

planets, satellites, meteorites, asteroides

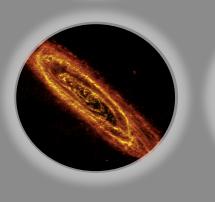


Outline

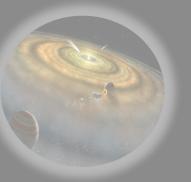
evolved stars

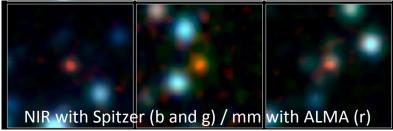


R Sculptoris with ALMA



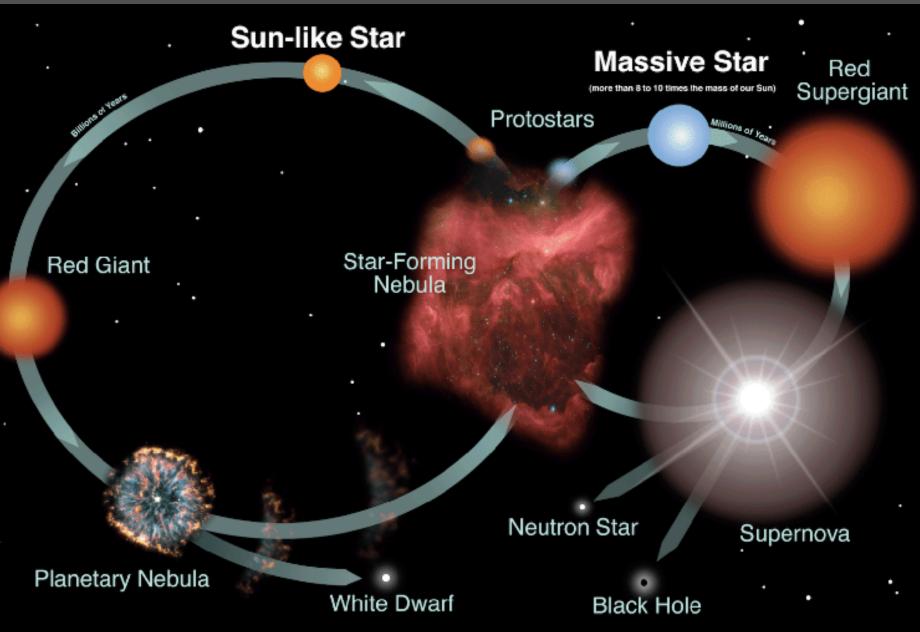
dust formation in PNe, AGBs, SNe





galaxies across cosmic time

Outline



Galaxies at redshifts z > 3



dust in galaxies / galaxy formation

The life cycle of dust

Astro2020: Decadal Survey on Astronomy and Astrophysics, no. 241; Rau et al 2019

Thank you

Álvaro Sánchez-Monge Institute of Space Sciences (ICE-CSIC / IEEC)

Institute of Space Sciences

