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1 Extinction

Consider light passing through a medium �lled with absorbing particles:

Figure 1: Ray passing through a medium of absorbers. The column has length L and
the absorbing grains have radius a. The volume number density of absorbing particles is
nd. Figure adopted from Rybicki & Lightman (1979).

The reduction of starlight over a length dL is:

dI

I
= −ndCext dL (1)

with Cext being the extinction cross-section, which can also be written as
the extinction e�ciency applied to the geometrical cross-section:

Cext = Qext · πa2 (2)

Integrating over the full path-length L gives:
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I = I0 e
−τ (3)

with

τ =

∫
nd dL · Cext = NdCext (4)

Nd is the column density of dust, or the total number of grains in the
column towards the star.

The (wavelength-dependent) reduction in magnitude Aλ can be expressed
as:

Aλ = −2.5 log

(
I

Io

)
= −2.5 10log e−τ

≈ 1.086 τ = 1.086NdCext = 1.086Nd πa
2Qext

(5)

The interstellar extinction curve shows the wavelength dependence of the
reduction in magnitude, with respect to the reduction in V-band magnitude
AV .

Figure 2: Interstellar extinction curve, measured towards three di�erent background
stars. Figure taken from Cardelli et al. (1989).
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Sometimes the extinction curve is also shown in terms of color excess.
The color excess is de�ned as Eλ1−λ2 = Aλ1 − Aλ2 , and is usually expressed
with respect to the B-V color: EB−V .

Figure 3: Interstellar extinction curve with respect to the B-V color, with several spectral
features indicated. Figure taken from Whittet (2003).

The intersect with the vertical axis can be calculated by having λ → ∞,
and this is known as the reddening law:

lim
λ→∞

Eλ−V

EB−V

=
AV

EB−V

= RV (6)

In the Milky Way, RV ≈ 3.1, but this is just an average, and values
may vary between 2.7 and 4.5, especially in other galaxies. Fig. 4 shows the
comparison between the Milky Way, and the Large and Small Magellanic
Clouds, to illustrate this.

For a distribution of grain sizes, n(a) da represents the number of grains
per unit volume in the size range from a to a + da. Thus, we can write for
the extinction caused by grains of a range of sizes:

Aλ = 1.086πL

∫
a2Qext(a)n(a) da (7)

2 Opacities

Following Whittet (2003), the extinction e�ciencies of materials can be sep-
arated out in two components for absorption and scattering:

Qext = Qabs +Qsca (8)
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Figure 4: Comparison between the interstellar extinction curves measured for the Milky
Way (averaged over multiple sightlines), the Small Magellanic Cloud, and the Large Mag-
ellanic Cloud. In the case of the Large Magellanic Clouds, sightlines within the massive
star formation region 30 Doradus have been considered separately from the rest of the
galaxy. Figure after e.g. Gordon et al. (2003).

These e�ciencies are functions of two quantities, a dimensionless size
parameter,

X =
2πa

λ
(9)

and a composition parameter, the complex refractive index of the grain
material:

m = n− ik (10)

Figure 5: Results of Mie theory calculations for spherical grains of refractive index
m = 1.5− 0.05i, plotted agains size parameter X. Figure taken from Whittet (2003).

4



In principle, n and k are wavelenght dependent, and can be used to
calculate wavelength-dependent Qabs and Qext, given a grain size and grain
shape. For pure dielectric materials k = 0, and m = n ≈ c1+ c2λ

−2. Thus m
is in principle wavelength-dependent, but only weakly, as c2 is usually small.
Real materials, such as silicates and ices, are not purely dielectric, and k has
a small, non-zero value. For strong absorbers, such as metals, k ≈ n, or both
vary strongly with wavelength.

When X << 1 the interaction between the grain and light is in the
Rayleigh domain. In this case, following Whittet (2003), the small particle
approximation can be derived (see Bohren & Hu�man, 1983, Chapter 5):

Qsca ≈
8

3

(
2πa

λ

)4∣∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣∣
2

(11)

and

Qabs ≈
8πa

λ
Im

{
m2 − 1

m2 + 2

}
(12)

Again, for pure dielectrics, m is real and by approximation constant with
wavelength as stated above. In that case Qabs becomes 0, and Qsca ∝ λ−4,
a situation called Rayleigh scattering. In general, (m2 − 1)/(m2 + 2) is
only weakly dependent on wavelength for materials that are not strongly
absorbing, and then Qsca ∝ λ−4 and Qabs ∝ λ−1.

In the case of a strong wavelength dependence, e.g. spectral features,
the situation becomes more complicated, and a more sophisticated approach
is needed to determine Qsca(λ) and Qabs(λ). Fig. 6 shows an example of
wavelength-dependent n, k values.

Figure 6: Example of n, k as a function of wavelength, here presented for crystalline
silicon.
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For spherical grains, Mie theory can be applied (Mie, 1908; van de Hulst,
1957) to determine Qabs(λ) and Qext(λ) from n and k, while for non-spherical
grains more complex treatments are required, see e.g. Bohren & Hu�man
(1983). Useful approximations to calculate Qabs(λ) and Qext(λ) of non-
spherical grain sizes are found in the continuous distribution of ellipsoids
(CDE; Bohren & Hu�man, 1983), arbitrarily-shaped particles (e.g. Min et al.,
2006), or hollow spheres (Min et al., 2005). It is shown that all three of these
show similar results in Qabs and Qext, while the hollow spheres and CDE o�er
relative ease of calculation.

3 Radiative transfer

Radiative transfer equation I(ν) is controlled by radiative transfer.

De�ne κ(ν) as the absorption coe�cient per unit length of path s.

Absorption only (foreground screen): the change in intensity as light
travels through the ISM:

dI(ν)/ds = −κ(ν)I(ν) (13)

De�ne optical depth τν as dτν = κ(ν)ds or

τν =

∫
κ(ν)ds (14)

Optical depth can be seen as the probability that a photon will interact
with a particle while passing through a medium.

τ < 1 : optically thin

τ > 1 : optically thick

Thus:

κν =
dτν
ds

(15)

dI(ν)

ds
= −I(ν)

dτν
ds

(16)

− 1

I(ν)
dI(ν) = dτν (17)

−lnI(ν) = τν + C (18)

I(ν) = Iν0e
−τν (19)
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Full radiative transfer equation So far, we have looked at absorption
only. However, a medium may also be emitting radiation.

Thus, radiative transfer becomes:

dI(ν)

ds
= −κ(ν)I(ν) + j(ν) (20)

Emission: j(ν), de�ned so that j(ν)dV dνdΩdt is the energy emitted
by volume element dV , in frequency width dν, during time interval dt,
into solid angle dΩ.

Using dτν = κ(ν)ds:

dI(ν)

dτν
= −I(ν) + S(ν) (21)

with the source function S(ν) = j(ν)
κ(ν)

� Formal solution:

multiply by eτν :

eτν
dI(ν)

dτν
= −I(ν)eτν + S(ν)eτν (22)

dI(ν)eτν

dτν
− I(ν)eτν = −I(ν)eτν + S(ν)eτν (23)

dI(ν)eτν

dτν
= S(ν)eτν (24)

(25)

de�ne I = I(ν)eτν and S = S(ν)eτν

thus:

dI
dτν

= S (26)

with solution:

I(τν) = I(0) +
∫ τν

0

S(τ ′ν)dτ ′ν (27)
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rewrite with I(ν), S(ν) again:

I(ν)eτν = Iν0e
0 +

∫ τν

0

S(ν)eτ
′
νdτ ′ν (28)

I(ν) = Iν0e
−τν +

∫ τν

0

S(ν)e−(τν−τ ′ν)dτ ′ν (29)

Figure 7: Schematic drawing de�ning intensities after absorption. Figure from Dyson &
Williams (1997).

Interpretation:

Resulting intensity = initial intensity diminished by absorption + in-
tegrated source function diminished by remaining absorption.

4 Thermal dust emission

Blackbody radiation Blackbody radiation: a blackbody is a perfect ab-
sorber at all wavelengths/frequencies, and a perfect emitter.

Emitted intensity depends solely on T , ν, and therefore Kirchho�'s
Law applies:

j(ν) = κ(ν)Bν(T ) (30)

with the Planck Function Bν(T ):

Bν(T ) =
2hν3

c2
1

ehν/kT − 1
(31)

We speak of thermal radiation when S(ν) = Bν(T ) (Kirchho�'s law)

and of blackbody radiation when I(ν) = Bν(T )
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Thermal radiation becomes blackbody radiation when the emitting
medium is optically thick:

Assume:

S(ν) = Bν(T ) (32)

So:

lim
τν→∞

I(ν) = Iν0e
−τν + S(ν)(1− e−τν ) (33)

I(ν) = Bν(T ) (34)

Figure 8: Spectrum of blackbody radiation at di�erent temperatures. This is Fig. 1.11
from Rybicki & Lightman (1979), reproduced from Kraus (1966).

Properties of the Planck Function: We can derive the following proper-
ties:
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� hν ≪ kT : low energy, large wavelength, Rayleigh-Jeans approxi-
mation:

ehν/kT − 1 =
hν

kT
+ . . . (35)

⇒ IRJ
ν (T ) =

2ν2

c2
kT (36)

� hν ≫ kT : high energy, short wavelength, Wien approximation:

1

ehν/kT − 1
≈ 1

ehν/kT
(37)

⇒ IWν (T ) =
2hν3

c2
e−hν/kT (38)

� Monoticity with T . Two blackbody curves with di�erent do not
intersect, the one with higher T lies entirely above the other.

� Wien Displacement Law: νmax at the peak of Bν(T ) satis�es

∂Bν

∂ν
= 0 (39)

⇒ νmax

T
= 5.88× 1010Hz K−1 (40)

Characteristic temperatures: The following can be derived:

� Brightness temperature Tb satis�es: I(ν) = Bν(Tb). In radio-
astronomy where Rayleigh-Jeans is applicable: I(ν) = 2ν2

c2
kTb or

Tb = c
2ν2k

I(ν). Basically: try to �t emitter with a blackbody.
Insert Tb ∝ I(ν) and T ∝ Bν(T ) into:

I(ν) = Iν0e
−τν +Bν(T )(1− e−τν ) (41)

Tb = Tb0e
−τν + T (1− e−τν ) (42)

For large τν : Tb → T
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� Colour temperature Tc

� Shape approaches blackbody form, but does not have the ap-
propriate absolute value

� Fit blackbody shape to data using I(ν) = C ·Bν(Tc)

� Often done by only measuring peak position and applying
Wien Displacement Law

Modi�ed blackbodies:∫
F (λ)Qabs(a, λ) dλ =

∫
Qabs(a, λ)B(λ, Tg) dλ (43)

B(λ, Tg) =
2hc2

λ5

1

ehc/kλTg − 1
(44)
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