Quantum chemical and atomistic modelling of dust

1 um

Stefan T. Bromley / @stefan_bromley University of Barcelona / ICREA www.ub.edu/nnmgroup

1 nm

Top-down vs bottom-up grain models

TYPICAL ASTRONOMICAL DUST GRAIN MODEL

Use of parameters to estimate properties of nanosilicates

f(x, y, z, ...) = Property Value

Parameters based on experimental results on bulk silicates

TOP-DOWN APPROACH

Top-down vs bottom-up grain models

INTERNAL STRUCTURAL DETAIL

Top-down vs bottom-up grain models

DIRECTLY OBTAIN ACCURATE NANOSILICATE PROPERTIES

- Chemical structure
- Morphology
- Chemical Composition
- Vibrational frequencies

Bottom-up atomistic modelling methods

Computationally cheap / less accurate

Empirically fitted force field methods – atomistic structure, molecular dynamics, **global optimisation**

Computationally costly / more accurate

"Ab initio" quantum mechanical electronic structure methods (e.g. density functional theory - DFT)

Other bottom-up approaches to dust grain modelling

"Coarse grained" approaches (e.g. Wada et al. ApJ 2011)

1000s of **identical elastic sphere monomers** (typically 100 nm / 0.01 μ m diameter). Positions and dynamics consider all local mechanical interparticle interactions

Off-lattice Monte Carlo kinetic model (e.g. Jarrod ApJ 2013)

Icy mantles with 10000s of atoms/molecules **Fixed positions** determined by local interactions with nearest surface atoms.

Realistic morphologies but no atomistic dynamical degrees of freedom...IR spectra?

Bottom-up atomistic modelling approaches

- Assumes infinitely repeated unit cell structure.
- Bulk crystalline systems
- Amorphous/discrete systems

- Complex discrete models
- Bulk crystalline systems
- Amorphous/discrete systems

From stars to dust grains

Size-dependency of grain properties

• Large surface area/volume ratios

- Non crystalline structures
- Specific surface sites
 (e.g. low coordination)
- Quantum effects
 (e.g. quantum confinement)

Special astro-chemical/physical properties for nanograins?

Structure of low energy nanoclusters

Size: the number of cluster isomers grows exponentially with increasing system size

Complexity: isomer energy depends on coordinates of all atoms $E(r_1, r_2, r_3, r_N)$ leads to a multi-dimensional "energy landscape"

Need **global optimisation** methods to search energy landscapes (e.g. Basin Hopping, Evolutionary Algorithms)

Basin Hopping global optimisation

Basic Idea

- Transform energy landscape into a step-wise function of energy
- Energy within a basin (minimum) becomes constant

Why

- Maintain all minima but remove all barriers
- Easier landscape to explore

Basin Hopping

Stochastic Monte-Carlo based exploration of the transformed energy landscape

Bottom-up models of nanosilicate dust grains

Bottom-up grain models allow for detailed understanding of:

Grain catalysed astrochemistry

Dust grain size and structure

Astronomical relevance of nanosilicates

- Silicates: most abundant solids in space
- Silicate dust is found in interstellar clouds, circumstellar disks, interplanetary space, comets, exoplanet atmopheres...
- Silicate dust grains grow to a size ~0.1 μm before entering the ISM
- Dust in the ISM is "processed" (e.g. supernovae shocks)

- ~10% of interstellar Si could be in nanosilicate grains (<3 nm diameter)
- ×10000 more nanosilicates than ~0.1 μm grains

Bulk silicate structure

Infrared spectra of silicate dust grains

How does silicate dust form?

Circumstellar nucleation conditions:

- Temperature: 800 1200 K
- Pressure: 0.1 Pa
- Chemical species: SiO, H₂O, Mg

Initial attempts to understand silicate dust formation used classical nucleation theory (CNT) to model the condensation of SiO molecules...

Classical Nucleation theory (CNT)

Homogeneous (i.e. not on a surface) nucleation of a spherical particle

Total change in

free energy

Problems for CNT: cohesive energy of clusters

Problems for CNT: nanostructure vs bulk structure

Classical Nucleation Theory for Silicates? The case of (SiO)_x

Donn and Nuth, ApJ. 288, 187 (1985)

"...experimental evidence now suggests that <u>nucleation theory</u> is not applicable to the condensation of refractory species....

...determine the relative stability of a series of (SiO)_x clusters...via experimental techniques or modern quantum mechanical calculations.

A kinetic route...could then be postulated and the rate of formation of circumstellar grains via this reaction network calculated."

Bromley, Gomez and Plane, PCCP 18, 26913 (2016)

Using classical global optimisation + *ab initio* quantum chemical calculations + kinetic modelling...

Nucleation of (SiO)_x from Kinetic Nucleation Theory (KNT)

- (SiO)_x isomer structures from global optimisation
- Free energies from quantum chemical calculations
- Apply chemical kinetic rate equations

$$J = k_{1\to2} [\text{SiO}]^2 \left(1 + \sum_{n=2}^{20} \frac{k_{2\to1} k_{3\to2} \dots k_{n\to n-1}}{(k_{2\to3} [\text{SiO}])(k_{3\to4} [\text{SiO}]) \dots (k_{n-1\to n} [\text{SiO}])} \right)$$

Predictions from KNT:

- (SiO)_x particles will <u>NOT</u> be produced in a stellar outflow (T > 900 K, P < 0.1 Pa)
- Significant nucleation below 10 Pa should only be observed for T < 700 K

Bromley, Gomez, Plane, *PCCP*, 18, 26913 (2016)

Need more than SiO...

Silicates detected via IR observations – most are assigned to be **amorphous** Mg-rich olivines ($Mg_2Si_2O_4$) or pyroxenes ($MgSiO_3$)

Silicates from nucleation of SiO, H₂O/OH and Mg

Free energies for addition reactions

Calculating IR spectra using atomistic modelling

Harmonic vs Anharmonic:

Anharmonicity leads to peak broadening and frequency dowshifting

OK vs finite temperature:

- "Standard" IR spectra: distinct non-coupled normal harmonic modes from small OK atomic displacements
- Molecular dynamics based IR spectra: coupled anharmonic vibrations of the system with temperature-dependent amplitudes

IR spectra of small nanosilicates

- Silicate dust in circumstellar environments is heated to between 100 -1000K
- Dynamics of nanoclusters modelled by *ab initio* molecular dynamics (MD)
- IR spectra can be calculated from recording periodic dipolar variations

• MD-derived IR spectra describe anharmonicities, combination bands and overtones.

IR spectra of small nanosilicates

Dust processing in the diffuse ISM

Silicate dust production

Shattering Sputtering Ionisation

Supernovae shockwaves

UV radiation

Dust processing in the diffuse ISM

UV radiation

Shattering – smaller dust grains Sputtering – reduced Mg (Olivine → Pyroxene) Ionisation – cationic grains

ISM processing \rightarrow Small cationic pyroxene species?

Supernovae

shockwaves

Free-Electron Laser for IntraCavity Experiments (FELICE)

Experiment and theory for (Mg₂SiO₉)⁺

Experiment (Free-Electron Laser for IntraCavity Experiments - FELICE)

Theory (Harmonic /DFT PBE0)

Experiment and theory for (MgSiO₉)⁺

Implications for silicates in the ISM

- All clusters found to be based on the MgSiO₃ monomer
- Previously assumed to be stable only part of bulk pyroxene solid
- Strongly interacts with oxygen molecules and Mg
- Highly dipolar species

Oxygen Depletion in the Diffuse ISM

Dust destruction and growth in the ISM?

Long-standing conundrum....

Time scale for dust formation from evolved stars

Microwave signatures of pyroxene monomers?

From the molecular scale to the nanoscale

- Global optimisation searches used to find the lowest energy structures for nanosilicates with diameters ≤ 1nm
- Structure and properties evaluated using accurate quantum chemical calculations

Small nanosilicates have intrinsically non-crystalline structures and are highly dipolar

Nanosilicates and the Anomalous Microwave Emission (AME)

- AME observed as peak at ~30 GHz with 10 -60 GHz range
- Observed in the interstellar medium (ISM), galactic clouds and circumstellar environments (*Dickinson+ New Astro Rev 2018*)

- Dust grains spin in the ISM due to collisions with gas atoms and other processes
- 30 GHz emission constrains properties of spinning dust: ≤ 1 nm size, high dipoles
- Spinning nanosilicates currently best candidate for AME carrier? (Hoang+ ApJ 2016, Hensley & Draine ApJ 2017)

Bottom-up evaluation of microwave emission from nanosilicates

Size-dependency of crystallinity

Amorphicity and crystallinity at the nanoscale...

 $\,\circ\,$ Nanosilicates with up to ~1500 atoms

 $\,\circ\,$ Computationally very costly with DFT

 \circ Use classical atomistic forcefield to model the grains

• Simulate circumstellar (~1000K) nucleation process

Radius ~ 1.7 nm

Atomistic modelling of dust grain growth

INITIALISE

Seed cluster with a desired temperature and stoichiometry

SELECTION

 Monomer (e.g. SiO, Mg) with stoichiometry-related probability
Temperature-dependent velocity vector

REPEAT

MOLECULAR DYNAMICS

- 1) Collide monomer with grain
- 2) Cool the grain to the ambient temperature

Density and sphericity of growing nanosilicate grains

Density increases with increasing size to an apparent limiting value - independent of temperature

Limiting value appears to be approximately 70% of bulk crystalline silicate

Connecting with observed IR spectra

Imaging cosmic dust with the James Webb Space Telescope (JWST)

Mid-Infrared observations with JWST

Computing average IR spectra of nanosilicate populations in the ISM

Variables to consider:

- Energetic stability (structure, morphology)
- Stoichiometry (e.g. pyroxenic, olivinic, Fe?)
- Size (sub-nm to nanometres)

Charge state (neutral, cationic, anionic)?Aggregated nanosilicates?

Reliability of DFT-computed IR spectra for populations

• Experimental IR spectra from cluster beam experiments on nanosilicates (FELIX)

Energy landscapes of nanosilicates

Average nanosilicate IR spectra

- 5 lowest energy nanosilicate from 10 sizes for pyroxenes and olivines
- Every nanosilicate produces 3n-6 vibrational lines (where n = number of atoms)
- ~100 nanosilicates leads to ~1800 lines

S. T. Zeegers, J. Mariñoso Guiu, F. Kemper, J. P. Marshall, S. T. Bromley, *Faraday Discuss.* (2023)

DIFFUSE ISM

Preliminary MIRI data – being processed...

Nanosilicates as promoters of H₂ formation?

- Silicate grains assumed to be essential third body for enabling H + H \rightarrow H₂ reaction
- H_2 formation from free H atoms entails a step-wise energy release of ~4.5 eV
- For rapid H_2 formation and a 50:50 H_2 /grain division of energy, a nanosilicate will be heated by ~700K

B. Kerkeni and S. T. Bromley, MNRAS, 435, 1486 (2013).

Nanosilicates as promoters of H₂ formation?

H₂ formation and dissociation on nanosilicates

Summary

Nanosilicate dust grains are likely to be found in many astronomical environments

Good nanodust models are required due to assist laboratory characteristion and observations – getting ready for JWST!

Accurate quantum chemical and classical modelling can give important and unrivalled insights into...

...chemical structure and grain morphology, dust nucleation processes, IR/microwave spectra, astrochemistry and much more...
Between bare silicates and ice-covered grains?

- Addition of O and H produces hydroxylated grains
- More favourable than production of H₂ or H₂O
- -OH (E_{ads}~2.8 eV) resists photodisorption?

F. Goumans and S. T. Bromley, MNRAS 2011

B. Kerkeni, M-C. Bacchus-Montabonel, S. T. Bromley Molecular Astrophys. submitted

Role of water adsorption on average dipoles?

