

Dust formation in AGB stars ICE Summer School "Life Cycle of Dust" 5 July 2023 Ciska Kemper (ICE-CSIC / ICREA / IEEC)

The Asymptotic Giant Branch

Characteristics of AGB stars

Mass	0.8 - 8 M_{\odot}
Radius	200 - 600 $\rm R_{\odot}$
T _{eff}	2500 - 3500 K
Luminosity	10^3 - 10^4 L $_{\odot}$
Mass-loss rate	10 ⁻⁸ - 10 ⁻⁴ M _o /yr
Variability period	30 - 2800 days
AGB life time	10 ⁵ - 5x10 ⁶ yrs

Elemental composition of the ISM

Whittet 2003

Elemental yield from stars

Marigo 20<u>01</u>

Composition and convection

Transport to the surface

Evolution to a C star through TP

The fate of planetary systems

The circumstellar envelope

Mass loss on the AGB Observed to have a stellar wind • Infrared excess showing dust is found at some distance from the star (>10 R_*) • In some cases, detached shells are seen

Sources of dust

Source	$\dot{\mathrm{M}}_{H}^{a}$	$\dot{\mathbf{M}}^b_c$	$\dot{\mathbf{M}}^{c}_{sil}$	
	[M _☉ kpc ⁻² Myr ⁻¹]	$[\mathrm{M}_{\odot}~\mathrm{kpc}^{-2}~\mathrm{Myr}^{-1}]$	$[\mathrm{M}_{\odot}\mathrm{kpc}^{-2}\mathrm{Myr}^{-1}]$	
C-rich giants	750	3	-	Novae SN la Doo
O-rich giants	750	-	5	Notae on the RSG
Novae	6	0.3	0.03	YSO
SN type Ia		0.3^d	2^d	
OB stars	30	—		
Red supergiants	20	-	0.2	
Wolf Rayet	100	0.06^{e}		
SN type II	100	2^d	10^d	AGB WC
YSO	$(1500)^{f}$		8	

Tielens et al. 2005

Evidence from presolar grains

Expanded from Clayton & Nittler 2004

The dusty wind

Höfner & Olofsson 2018

Density waves in pulsating stars

Willson 2000

Velocity profile

Willson 2000

• Stellar pulsation does not lead to a wind without dust formation CO 2-1 - JCMT MB [K] $v_{exp} \approx 10-50$ km/s Velocity [km/s] grains in red giant star's atmsphere ejected gas

radiation pushes on grains; grains push on gas

Radiation pressure

 $(I/c)C_{\rm pr}$ $Q_{
m pr}=C_{
m pr}/\pi a^2$ $Q_{\rm pr} = Q_{\rm abs} + \{1 - g(\theta)\}Q_{\rm sca}$ $F_{\rm pr} = \pi a^2 \langle Q_{\rm pr} \rangle \left(\frac{L}{4\pi r^2 c} \right)$ $F_{\rm gr} = \frac{GMm_{\rm d}}{r^2}$ $\frac{F_{\rm pr}}{F_{\rm gr}} = \frac{3L}{16\pi GMc} \left\{ \frac{\langle Q_{\rm pr} \rangle}{as} \right\}$

Time scales to grow dust grains

Dominik et al. 1989

Modelling the dust shell

Kemper et al. 2001

Observed mass-loss rates

Whittet 2003

The extent of the dust shell

- Active investigation
- History of mass loss
- Dust survival upon entrance in ISM; shock (Ladjal et al. 2010, Cox et al. 2012, Dharmawardena et al. 2019, Scicluna et al. 2022, Maercker et al. 2022)

The infrared spectral zoo

Condensation of Solar System solids

Stability limits

Gail & Sedlmayr 1999

Condensation predictions

Tielens 2022, Cami 2001

Early condensates

Mg-Fe oxides

Corundum (Al_2O_3)

Depew et al. 2006

Posch et al. 2002

Early condensates: systematic fits

alumina mellilite silicates periclase spinel

Silicates and alumina (Al_2O_3)

Sloan et al. 2003

Modelling alumina and silicates

Jones et al. 2014

Amorphous silicates

Sargent et al. 2010, 2011

Crystallinity of silicates

Crystalline

Amorphous

Crystallinity of silicates

$T_{ m glass}$ ~1000 K

(*T*_{evap} ~1500 K)

T_{cond} > T_{glass}: atoms in mineral are mobile, crystallization may occur

A trend with mass-loss rate?

Sylvester et al. 1999

... maybe not!

Crystallinity and metallicity

O-AGBs and RSG in the LMC, SMC and MW dM/dt determined with SED fitting

Crystalline silicates

Sogawa & Kozasa 1999

Crystalline silicates

Sogawa & Kozasa 1999

Highly crystalline AGB stars

Generally a crystallinity of 5~10% is observed

A good quantification is lacking

Jiang et al. 2013

Crystallinity not well quantified

- This becomes important when comparing with ISM dust in our on Milky Way and external galaxies
- Open PhD project @ICE to address this
- See : https://www.ice.csic.es/about-us/jobs
- Understanding and quantifying crystalline silicate production by evolved stars
- RL3, supervisor: F. Kemper
- Deadline: 7 July 2023

Fe²⁺-content of silicates

Chihara et al. 2002

Fe²⁺-content of silicates

Amorphous silicates: unknown Crystalline silicates: almost completely Mg-rich (forsterite: $Mg_{2(1-x)}Fe_{2x}SiO_4$) x=0%

de Vries et al. 2014

Metallic iron

Kemper et al. 2002

Carbonates

Kemper et al. 2002

Note lake sediment but formed as dust. Successfully reproduced in lab.

Dust-forming molecules

Spatially resolved observations with ALMA

AlO in o Cet (Kaminski et al. 2016)

SiO in IRC -10529 (Gottlieb et al. 2021)

Spatially resolved CO physical conditions gas-to-dust ratio

The missing link: nanosilicates

structures and energies of Si_xO_x nanoclusters *(Reber et al. 2006)*

structures, energies and IR spectra of Mg-rich silicate nanoclusters (*Macià Escatllar et al. 2019*)

Carbon-rich species

Post-AGB and PN evolution

 $\leftarrow \text{Log}_{10}(T_e)$

SED evolution

Habing 2004

Circumstellar disk & bipolar outflow

ALMA Band 8 commissioning data (NAOJ, 2013)

Crystallinity in disk sources

Molster et al. 1999

Gielen et al. 2011

Dual chemistry

Silicate dust is preserved in a disk, as the star has become carbon-rich

Molster et al. 2001

Secondary planetary systems

Circumstantial evidence:Transitional disks (left)Grain growth

Kluska et al. 2022

The white dwarf phase

Dufour et al. 2010

Jura & Young 2014

- Swept up ISM dust
- Disintegrating primary planets/asteroids
- Disintegrating secondary planets/asteroids