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The X-rays and the interstellar 
medium
• X-ray astronomy: a brief overview

• X-ray observatories 

• X-ray sources to study the interstellar medium 

• Phases in the interstellar medium

• The Interstellar medium and the X-rays: gas and dust 

• Hands-on session 
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X-ray missions and X-ray spectroscopy

X- ray astronomy is a relatively new field! -> 

Impossible from Earth 

Light behaves more like particles -> Not your 

standard telescope! 

Image credit: OBSERVATORY IMAGES FROM NASA, ESA (HERSCHEL AND PLANCK), LAVOCHKIN 
ASSOCIATION (SPECKTR-R), HESS COLLABORATION (HESS), SALT FOUNDATION (SALT), RICK 
PETERSON/WMKO (KECK), GERMINI OBSERVATORY/AURA (GEMINI), CARMA TEAM (CARMA), 
AND NRAO/AUI (GREENBANK AND VLA); BACKGROUND IMAGE FROM NASA)
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X-ray missions and X-ray spectroscopy

X- ray astronomy is a relatively new field! -> 

Impossible from Earth 

Light behaves more like particles -> Not your 

standard telescope! 

Detector: CCD or Calorimeter 

Credit: NASA/CXC/ D. Berry
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Discovering the ISM from the X-ray perspective

First X-ray missions in 1960s and 1970s, and many since 

1960 1970 1980 1990 2000

Uhuru
(1970)

Einstein
First 
imaging 
(1978)

EXOSAT 
(1983)

Chandra (1999)
XMM Newton (1999)
Hitomi (2016)
eROSITA (2019)

First “X-ray 
telescope” 
rocket 
experiment
By Giacconi

ROSAT
(1990)

ASCA
RXTE

BeppoSAX
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X-ray spectroscopy: units and other jargon

eV and keV : used sometimes instead of Angstrom 

Conversion factor: Ephoton = hν = hc/λ

and 1 Angstrom (A) corresponds to 12398 eV (or 12.398 keV)

Soft X-rays: 0.1 – 10 keV 

Hard X-rays: > 10 keV 

Counts on the y-axis: yes, we are counting photons! 



8

X-ray spectroscopy: OSO-8 (1978) vs Hitomi (2016)

Perseus cluster : Hitomi collaboration 
2017 

Cygnus X-3: Kestenbaum 
1978

c
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NASA/JPL-Caltech/R. 
Hurt (SSC/Caltech)

Structure of the Galaxy

ESO/S. Brunier
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SOFT X-RAY MAP: compact object population (NS), diffuse emission (shocked gas),  
scattering and absorption by interstellar dust
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SOFT X-RAY MAP: compact object population (NS), diffuse emission (shocked gas),  scattering and 
absorption by interstellar dust
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Phases of the ISM

Phase Density nH (cm -3) Temperature (K) Total mass 
(10^9 Msun)

Hot intercloud 
medium

0.003 106 -

Warm neutral 
medium

0.5 8000 2.8

Warm ionized 
medium 

0.1 8000 1.0

Cold neutral medium 
(diffuse clouds)

50.0 80 2.2

Molecular clouds >200.0 10 1.3

H II regions 1 - 105 104 0.05

Hot

Warm

Cold

Tielens 2005
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Phases of the ISM Tielens 2005

Phase Density nH (cm -
3)

Temperature (K) Total mass 
(10^9 Msun)

Heating/
ionizing source 

Hot intercloud 
medium

0.003 106 - Shockwaves 
from SNe

Warm neutral 
medium

0.5 8000 2.8 UV photons 
from hot stars

Warm ionized 
medium 

0.1 8000 1.0 Dust, stellar 
radiation, 
cosmic rays

Cold neutral 
medium (diffuse 
clouds)

50.0 80 2.2 Dust, stellar 
radiation, 
cosmic rays

Molecular clouds >200.0 10 1.3 Dust, stellar 
radiation, 
cosmic rays

Hot

Warm

Cold
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Phases of the ISM

Phase Density nH (cm 
-3)

Temperature (K) Total mass 
(10^9 Msun)

indicator

Hot intercloud 
medium

0.003 106 - O VI–VIII, ...

Warm neutral 
medium

0.5 8000 2.8 H I, O I, ...

Warm ionized 
medium 

0.1 8000 1.0 H II, O II–III, 
...

Cold neutral 
medium (diffuse 
clouds)

50.0 80 2.2 H I, O I, ...

Molecular 
clouds

>200.0 10 1.3 H2, CO, ...

Hot

Warm

Cold

Tielens 2005, Pinto 2013 

We can use the X-rays to detect these phases
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Discovering the ISM from the X-ray perspective

The X-rays provide important advantages to study the ISM

• The broad band energy coverage (0.1–10 keV) encompasses a variety of 
transitions, from neutral to highly ionized gas, of the fundamental metals 
in the Universe: C, N, O, Ne and Fe, among others.

• Provides the possibility to measure hydrogen column densities
• Sensitive to a wide range of column density → study various regions in 

the Galaxy
• Absorption and scattering of dust can be simultaneously studied → only 

X-rays can do this
• Easy to determine the depletion from the gas phase
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Discovering the ISM from the X-ray perspective

1) Observing emission in X-rays from the ISM 

2) Observing ISM in absorption with backlight source 

X-ray binary/
AGN
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Discovering the ISM from the X-ray perspective

1) Observing emission in X-rays from the ISM 

2) Observing ISM in absorption with backlight source 

X-ray binary/
AGN
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X-ray binaries

Binary star system: 

Neutron star, Blackhole or white 

dwarf accreting mass from a less 

evolved companion 
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Why are X-ray binaries bright in X-rays?

Binary star system: 

X-rays originate from the 

gravitational potential energy of 

the infalling matter. 

Soft X-rays: accretion disc

Hard X-rays: from thin-hot 

plasmas above or inside the 

optically thick disk
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Why are X-ray binaries bright in the X-rays?

Energy 

F
lu

x
Disk black body model + 
Compton component = Total

-> Upscattered photons: 
inverse Compton scattering
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Low and High mass X-ray binaries

There are two types of X-ray binaries: 

1) Low mass x-ray binaries companion star 

has a low mass:

< 1.5 Msun + spectral type A or later

2) High mass X-ray binaries

companion star has high mass: 

> 10 Msun + spectral type O or B star

Source: Tan 2012
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X-ray binaries and scattering haloes

X-rays are extremely  forward scattered. 

Scattering angles ~ 3o (max)

When observing bright X-ray binaries we can detect a 

narrow scattering halo around the source

Observed here: Cygnus X-1 by the Chandra 

Observatory 

(Credit: X-ray: NASA/CXC; Optical: DSS;
Illustration:NASA/CXC/M.Weiss)
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Sightlines towards the Galactic

Plane

We can probe different lines of sight along the Galactic Plane 

ESA/Gaia/DPAC
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AGN: Active Galactic Nuclei

AGN galaxies appear 

different depending on 

the observing angle 
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Why are AGN bright in the X-rays?

Blackbody emission 
from the accretion 
disc

Credit: E. Costantini
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Why are AGN bright in the X-rays?

Credit: E. Costantini
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Why are AGN bright in the X-rays?

Fluorescence Iron K α line at 6.4 keV from
reflected photons on the disk

Credit: E. Costantini
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Why are AGN bright in the X-rays?

Figure: W. Brandt
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MODELING THE X-RAY ABSORPTION IN THE ISM:

X-ray edges

Extinction:   
𝐼(𝐸)

𝐼0 (𝐸)
= 𝑒−𝜏

𝜏: optical depth 

𝜏 = 𝜎𝐼𝑆𝑀𝑁 𝐻

defined as the cross section times the number of particles, (N(H) is 

number of Hydrogen particles) 

Cross sections: 𝜎𝐼𝑆𝑀 = 𝜎𝑔𝑎𝑠 + 𝜎𝑑𝑢𝑠𝑡

𝐼0 (𝐸)
𝐼 (𝐸)
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MODELING THE X-RAY ABSORPTION IN THE ISM:

X-ray edges

Cross sections

𝜎𝐼𝑆𝑀 = 𝜎𝑔𝑎𝑠 + 𝜎𝑑𝑢𝑠𝑡

Abundance of element Z:

𝐴𝑍 =
𝑁 𝑍

𝑁(𝐻)

Fraction of ions of element Z in ionization 
state i: 

𝑎𝑍,𝑖 =
𝑁 𝑍, 𝑖

𝑁 𝑍

Depletion factor: 1 − 𝛽𝑍,𝑖

Total photoionization crossection of elements 
: 𝜎𝑏𝑓(𝑍, 𝑖)Reference: Wilms et al. 2000 
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Elemental 

abundances 

and 

depletion

Savage and Sembach 1996
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Cross 

sections 

Wilms et al. 2000

Jumps are called 
edges 
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What is an edge?

Credit: S. Zeegers
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What is an edge?

K
L M

K edge

Credit: S. Zeegers
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Exploring different environments in the Galaxy

Figure: D. Rogantini 2020
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Warm and hot gas

eROSITA bubbles hot gas: energies of 0.6-
1.0 keV (image credit: MPE/IKI)

Yao et al. 2006

• 1965 Spitzer predicts hot gas
• First evidence from UV 

(Copernicus): hot gas (106 K) in 
the local bubble. 

• ROSAT satellite: emission outside 
local bubble 

Chandra and XMM Newton -> new 
possibilities!  
• Yao and Wang (2005) studied 12 

X-ray sources in the Galaxy: 
2 × 106 K and a scaleheight of 
about 1 kpc
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Warm and hot gas: clouds with different temperatures

along the sightline of 4U 1820-30

Costantini et al. 2012

O K edge 
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Gas edges: more complex

Gatuzz et al. 2018
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X-rays and interstellar dust

•Dust in the diffuse ISM: 
Studying X-ray edges  

• Scattering haloes

•Dust in other galaxies 
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Why study the dust in X-rays ?

• Sensitive to a wide range of column 
density → study various regions in 
the Galaxy

• Absorption and scattering of dust 
can be simultaneously studied → 
only X-rays can do this

• Easy to determine the depletion 
from the gas phase

• We can detect the properties of dust 
and compare observations with 
longer wavelengths
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Why do we need to study the properties of 

interstellar dust? 

Keller & Messenger 2013
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How to study the properties of Interstellar Dust? 
• Properties reveal what happened to grains in the Interstellar Medium

Imprint of dust features on spectra gives us information about: 

chemical composition 

crystallinity

grain size

Most ISM dust features are extremely weak and difficult to observe!

We can find these ISM features in X-ray stellar spectra! 

Credit: SRON
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Observational constraints on Dust properties

- What is the composition of the dust? How much iron, sulfur, 
oxygen etc. is depleted from the gas phase in dust?

- What is the ratio of crystalline/amorphous dust?

- What is the size distribution of dust in the ISM?

- Do the properties of dust vary in different environments? 

X-rays can provide an answer! 
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Observing dust in the X-rays

e.g. Lee 05,09, Costantini 12, Pinto 10,13, Corrales 
16, Zeegers 17, 19, Rogantini 20, Psaradaki 21
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Observing dust in the X-rays

e.g. Lee 05,09, Costantini 12, Pinto 10,13, Corrales 
16, Zeegers 17, 19, Rogantini 20, Psaradaki 21
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X-ray absorption fine structures (XAFS)

Costantini, Corrales 2022: Figure by S. 
Zeegers
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What can we learn from X-ray spectra?

Costantini, Corrales 2022: Figure by S. Zeegers
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The soft X-ray band 

0.4         0.6    0.8   1.0                    2.0                    4.0         6.0     8.0    10

Costantini, Zeegers 2019Energy (keV) 
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The soft X-ray band

0.4         0.6    0.8   1.0                    2.0                    4.0         6.0     8.0    10
Costantini, Zeegers 2019

Energy (keV) 

0.4         0.6    0.8   1.0                    2.0                    4.0         6.0     8.0    10
Energy (keV) 

With Chandra and XMM we can explore Silicates
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Figure: D. Rogantini

Extinction curve

Laboratory 
Campaigns
E. Costantini 2012
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Laboratory dust measurements

© Australian Synchrotron 2019

Dust samples
Synchrotron 
measurements Data analysis Fitting 

Spectra
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Laboratory dust measurements

© Australian Synchrotron 2019

Dust samples
Synchrotron 
measurements Data analysis Fitting 

Spectra

Conversion from lab 
absorption spectra to 
extinction models 
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From lab measurements to ID Models

Mie 
scattering 

code

Refractive 
index

Energy 

Size 
distribution

Dust
m = n - ik

References for further reading: 
Zeegers 2017 and Rogantini 2018

From the labcalculated
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N and K
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From lab measurements to ID Models

scattering 
code

(e.g. Mie)

Refractive 
index

Energy 

Size 
distribution

Dust
m = n - ik

References for further reading: 
Zeegers 2017 and Rogantini 2018

From the labcalculated

Kramers Kronig relations: 
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From lab measurements to ID Models

scattering 
code

(e.g. Mie)

Refractive 
index

Energy 

Size 
distribution

Dust
m = n - ik

References for further reading: 
Zeegers 2017 and Rogantini 2018

From the labcalculated

Kramers Kronig relations: 
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Grain Size

The sizes of the dust particles range from small molecular size to micron size dust 

Many different size distribution models 

Zubko et al. 2004, Mathis 
1977 et al. 

Draine & Fraisse
2009

Weingartner & Draine
2001
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From lab measurements to ID 

Models

scattering 
code

(e.g. Mie)

Refractive 
index

Energy 

Size 
distribution

Dust
m = n - ik

References for further reading: 
Zeegers 2017 and Rogantini 2018

From the labcalculated

Kramers Kronig relations: 
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|n -1| << 1 2𝜋𝑎

𝜆
𝑛 − 1 ≪ 1Hoffman and Draine

2016
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From lab measurements to ID 

Models

scattering 
code

(e.g. Mie)

Refractive 
index

Energy 

Extinction

profiles  

Size 
distribution

Dust

From absorption to Extinction:
Extinction = absorption + scattering

References for further reading: 
Zeegers 2017 and Rogantini 2018
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Laboratory dust measurements

© Australian Synchrotron 2019

Dust samples
Synchrotron 
measurements Data analysis Fitting 

Spectra

Conversion from lab 
absorption spectra 
to extinction models 
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Figure: D. Rogantini

Extinction curve 

Amol 
model 
in SPEX
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The Silicon K edge

Credit: 
D. Rogantini
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GX5-1 X-ray binary

Image credit: Chandra, Tgcat

• Bright X-ray binary 

• Column density: 
nH=3.52 x 1022 cm-2

• Assumed distance: 
9 kpc 
(Smith et al. 2006 )
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GX5-1 X-ray binary

Zeegers 2019

• Bright X-ray binary 

• Column density: 
nH=3.52 x 1022 cm-2

• Assumed distance: 
9 kpc 
(Smith et al. 2006 )
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Dust along the line of sight of GX 5-1

Best fit:
Mix of amorphous 
Olivine
( [Mg0.5Fe 0.5]2SiO4 )
and 
Crystalline Olivine
( Mg1.56Fe0.4Si0.91O4 )

(Zeegers et al.2017, 
Zeegers et al. 2019)
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Silicates in the X-rays

Credit: 
D. Rogantini
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Dense regions Diffuse regions 

Mg K edge + Si K edge 
9 sources 
Zeegers et al 2019, Rogantini et al 2020

O K edge + Fe L edge 
5 sources 
Psaradaki et al. 2023
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Dense regions Diffuse regions 
Conclusions:

Mg K edge + Si K edge 

- Crystallinity of 11% 
- Dominant component: 

Amorphous [Mg,Fe]2SiO4

Mg-rich dust not preferred in fits 
- No preference for pyroxene dust  

Zeegers et al 2019, Rogantini et al 
2020

Conclusions:

O K edge + Fe L edge 

- upper limit silicate crystallinity of 
15%

- Dominant component: 
Mg-rich amorphous pyroxene dust

- Metallic iron detected 

Psaradaki et al. 2023
Costantini 2012
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Si Abundances toward the GC

Zeegers et al. 2019 
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Grain Size

The sizes of the dust particles range from small molecular size to micron size dust 

Many different size distribution models 

Zubko et al. 2004, Mathis 
1977 et al. 

Draine & Fraisse
2009

Weingartner & Draine
2001
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Particle sizes and scattering efficiency

Zeegers 2018
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Grain size distribution

Figure by: Irene Abril 
Cabezas

New method to investigate grain sizes of interstellar dust
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Grain size distribution

Figure by: Irene Abril Cabezas
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Grain porosity

Hoffman and Draine 2016
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0.4         0.6    0.8   1.0                    2.0                    4.0         6.0     8.0    10Costantini, Zeegers 2019
Energy (keV) 

0.4         0.6    0.8   1.0                    2.0                    4.0         6.0     8.0    10
Energy (keV) 

Carbon K edge may be explored with Arcus

Carbon in the X-rays
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Carbon in the ISM: Carbon K edge

Costantini, Zeegers 2019
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Sulfur and iron in the ISM

Sulfur  K-edge

Costantini, Zeegers 2019

Iron  K-edge

Rogantini et al.  2018
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X-rays and dust: where is the dust?

Light echoes:

Light scatters on dust particles along the line of sight

Image: Costantini & Corrales 
2022 



80

X-rays and dust: where is the dust?

Light echoes:

Light scatters on dust particles along the line of sight

Heinz 2021
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X-rays and dust: where is the dust?

Dust distributions towards V404 Cygni (red; Heinz et al. 2016), Circinus X-1 (yellow; Heinz et al. 2015), and 1E1547.0-54.08 (green, from Tiengo et al. 2010
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DUST in AGN: 

QSO IC4329a

OPTICAL
(M
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8
)

• Negligible NH from MW
• Host galaxy
• Huge absorption in the SED
• Cold Absorption in the X-ray band
• Ionized Absorption in the X-ray band
• Emission in the Spitzer band
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DUST in AGN: 
QSO IC4329a

• The X-ray cold absorption can be explained by the sum of:
• Host galaxy (edge on)
• Ionized wind (dusty warm absorber!)

• The SED is obscured by:
• Host galaxy (Cardelli +89 extinction law, MW) 
• Dust intrinsic to AGN (Czerny+ 04 extinction law, grey)

• Emission from dusty torus: amorphous and porous silicates (Li+ 08)

Dust in host Galaxy

Dusty ionized Torus wind(M
eh

d
ip

o
u

r
&

 C
o

st
a

n
ti

n
i 1

8
)
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New missions to study the interstellar medium dust in

the X-rays

Bright future with upcoming observatories and new 
dust models!  

XRISM: launch later this year!
image credit: NASA 

Credit: ESA

Credit: MPE, ESA, Athena team

NEW
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Multi wavelength studies are important!

Bright future with upcoming observatories and new ISM models!  

Credit: ESA

Credit: MPE, ESA, 
Athena team

From the infrared To the X-rays! 
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SPEX Models ISM

Gas models: 

Hot cold model: neutral gas 

Hot model: neutral gas 

Xabs model: slab of ionized gas 

Dust models: 

Amol
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Summary and conclusion

The X-ray window provides us unique insights in the properties of the 
Interstellar medium:

• The broad band energy coverage (0.1–10 keV) encompasses a variety of 
transitions, from neutral to highly ionized gas, of the fundamental metals in 
the Universe: C, N, O, Ne and Fe, among others.

• Provides the possibility to measure hydrogen column densities

• Sensitive to a wide range of column density →
study various regions in the Galaxy

• Absorption and scattering of dust can be simultaneously studied → 
only X-rays can do this

• Easy to determine the depletion from the gas phase
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Exercises

1) Properties of interstellar dust, depletion of gas into dust and 
hydrogen column densities

2) Determine temperature and ionization of gas in the ISM
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