

The life cycle of dust in galaxies

ICE Summer School "Life Cycle of Dust" 6 July 2023 Ciska Kemper (ICE-CSIC / ICREA / IEEC)

Dust reprocesses starlight and drives galaxy evolution

Dust is a catalyst for chemistry, allowing star formation to proceed

Interstellar dust particles form the building blocks of planets

The life cycle of dust in galaxies

Credit: NASA & the Night Sky Network

The Magellanic Clouds

The Magellanic Clouds with Silhouettes

SAGE and HERITAGE

(Meixner et al. 2006)

Spitzer/IRAC: [3.6]; [4.5]; [5.8]; [8.0] Spitzer/MIPS: [24]; [70]; [160] Herschel: [100]; [160]; [250]; [350]; [450]

SAGE: The Large Magellanic Cloud in the infrared

Meixner et al. 2006

• Global view of nearby galaxy

- Z ~ 0.5 Z_o
- D = 50 kpc
- 8.5 million IR point

sources

- IRAC-[3.6]; [4.5]; [5.8]; [8.0]
- MIPS-[24]; [70]; [160]

SAGE-SMC: The Small Magellanic Cloud in the infrared

Z ~ 0.2 Z_o
D = 60 kpc
~2 million infrared point sources

Gordon et al. 2011

Defining stellar populations in the NIR Blum et al. 2006

Tracing dust in the mid-infrared

Blum et al. 2006

AGB stars: main dust producers

Boyer et al. 2011

Srinivasan et al. 2009

Extreme AGB stars: J-[3.6] > 3.1

Boyer et al. 2011

SAGE-Spectroscopy

Kemper et al. 2010

~200 Spitzer-IRS 5-40 um point sources ~800 archival Spitzer-IRS staring mode targets

23 Spitzer IRS data cubes of ISM regions MIPS SED data of selected regions

Classification quality control with spectroscopy

(Ruffle et al. 2015)

Carbon stars: GRAMS

Representative fit: 12 wt.% SiC (10-16%)
Model grid: 10% SiC, 90% amorphous carbon

Oxygen-rich dust in the LMC

Sargent et al. 2010, 2011

Amorphous silicates \rightarrow GRAMS

Total dust production

For SMC, total dust production a factor of ~15 lower Srinivasan et al. 2016

64.6%

26.0%

9.4%

74.2%

AGB Dust production in other galaxies: M32

Derived DPR: $1.5 \times 10^{-4} M_{\odot}/yr$ 5 most extreme sources: 30% of DPR

(Jones et al. 2015) (Davidge 2014)

AGB Dust production in other galaxies: M33

DPR: $\sim 5 \times 10^{-5} M_{\odot}/yr$ problem: 8 µm excess

(Javadi et al. 2013)

AGB Dust production in the Local Group

AGB dust production in the Solar Neighborhood

- Volume-limited sample (2 kpc)
 - All-sky IR surveys (IRAS, WISE, 2MASS, AKARI)
 - High dynamic range
 - Nearest targets are extended and sometimes saturated
 - Distances and therefore luminosities not well known
 - But: statistics is your friend
 - And: most prolific dust producers are the brightest 60 micron sources
- DPR determination using GRAMS
- Extrapolation to entire Milky Way

DPR < 2 kpc: 4.1x10⁻⁵ M_{sun}/yr Note: preliminary result

(Trejo et al. in prep.)

The Nearby Evolved Stars Survey (NESS)

- Volume-complete sample of nearby mass-losing AGB stars
 - Completeness distance depends on dM/dt bin
- Observations with JCMT and other radio telescopes to get
 - Submm continuum
 - CO line fluxes
- Mapping observations planned for subsample (black squares)

NESS: key questions

- Life cycle: total gas and dust return to the ISM
- Gas-to-dust ratios in stellar outflows
- Mass-loss history through spatially resolved observations
- Constraining submm dust properties
- Tracing nucleosynthesis processes with ¹³CO/¹²CO ratios
- Galactic dust production rates
- Deviations from spherical symmetry

(Dharmawardena et al. 2019)

(Wallström et al. in prep.)

NESS: observations

JCMT+APEX: 39 nearest dusty AGB stars + wedding-cake survey within 2 kpc (852 stars) submm continuum + CO line transitions ~1400 hrs JCMT ~ 100 hrs APEX ~500 hrs Nobeyama ~200 hrs SMA/ALMA-ACA ~30 hrs LMT ~30 hrs IRAM

Astration in the LMC Consumption of dust by the formation of stars

(Whitney et al. 2008)

Astration in the LMC

(Whitney et al. 2008)

Σ dM/dt from all YSOs: 8 x 10⁻⁴ M_o/yr

How to measure ISM dust masses

$$F_{\lambda} = \frac{M_{\rm d} B(\lambda, T_{\rm d}) \kappa_{\lambda}}{D^2}$$
$$\kappa_{\lambda} = \kappa_0 (\lambda/\lambda_0)^{-\beta}$$

Interstellar dust mass of the LMC

Pixel-by-pixel SED fitting to derive M, T and β

ISM dust mass: $(7.3 \pm 1.7) \times 10^5 M_{\odot}$ DPR: (2-4) x 10⁻⁵ M_o/yr SFR: $8 \times 10^{-4} M_{\odot}/yr$ (dust) 0.38 M_o/yr (gas) Replenishment time scale: Few times 10¹⁰ years Astration time scale: 10⁸ years Not taken into account: dust destruction and formation

Interstellar dust mass of the LMC

ISM dust mass: $(7.3 \pm 1.7) \times 10^5 M_{\odot}$ DPR: (2-4) x 10⁻⁵ M_o/yr SFR: 8 x 10⁻⁴ M_o/yr (dust) 0.38 M_o/yr (gas) Replenishment time scale: Few times 10^{10} years Astration time scale: 10^8 years Not taken into account: dust destruction and formation

(Skibba et al. 2012)

Modelling the dust production history in the LMC

Theoretical dust yields of AGB stars of entire SFH of the LMC No interstellar dust destruction

2009)

AGB & ISM dust composition comparison

Table 9Total \dot{M}_d by Population		
Population	Total \dot{M}_d (×10 ⁻⁶ M_{\odot} yr ⁻¹)	Percent of Total
All Sources	21.1 ± 0.6	100.0%
C-rich AGBs	13.64 ± 0.62	64.6%
O-rich AGBs	5.5 ± 0.2	26.0%
RSGs	2.0 ± 0.1	9.4%
Extreme AGBs	15.7 ± 0.6	74.2%

Things don't add up

- The ISM dust mass in the LMC is not explained by AGB dust production alone (if you consider that there is also dust destruction)
- The ISM dust composition in the LMC does not match the composition of AGB dust

Possible solutions

ISM dust formation
SN dust production
Reassessing the ISM dust mass determinations

All of these represent active areas of research

ISM dust destruction

 $T_{ISM} \sim 3 \times 10^9 \text{ yr} \rightarrow \text{residence time scale}$ $T_{SN} \sim 4 \times 10^8 \text{ yr}$ (Si, Mg, Fe) and 2 x 10⁸ yr (C) \rightarrow destruction time scale 11% of silicate and 6% of carbon ISM dust is stardust (Jones & Nuth 2011) The rest must have reformed For the LMC, the τ_{SN} are ~10 times shorter (Temim et al. 2015)

ISM dust formation

Grain growth in dense molecular clouds dominates

Lab experiments show that grain formation occurs at low T (Krasnokutski et al. 2014)

(Zeegers et al. 2023)

(Zhukovska et al. 2008)

SN dust production

Low number statistics: ~77 SNR known (Badenes et al. 2010) $M_d \approx 0.001 - 0.8 M_{\odot}$ per SNR (Seok et al. 2013, for M_d of the SNR) Supernova rate in the LMC not well known

SN 1987A

- Nearest SN since invention of the telescope
- Almost 5000 papers mention this object, ~660 in connection with dust (formation)

• $M_d = 0.5 (\pm 0.1) M_{\odot}$ (Matsuura et al. 2015)

ISM dust mass estimation

Opacities at long wavelengths are not well known, and also not calibrated against IR emission

(Hensley & Draine 2023)

Opacities

- Modified black body
- Opacity: $\kappa_0(\lambda/\lambda_0)^{-\beta}$
- Single (or few) temperature components

Typically, the SED is fitted with T, β and M_{dust} at the same time

If few SED points are available, β and even T may be fixed

(Clark et al. 2016)

(Shetty et al. 2009)

Determining the interstellar dust mass

(Fanciullo et al. 2020)

Overestimation of dust mass

Single-T fits to 2-T synthetic galaxies

 $T_w = 100 \text{ K}, T_c = 30 \text{ K}$ f_w is fraction of warm dust of the total dust mass

Temperature degeneracy

(Shetty et al. 2009)

NESS: anomalous cold dust reservoir

Emission observed at 850 micron exceeds predictions from mid-infrared models

The opacity used at 850 underestimates reality

NESS: anomalous cold dust reservoir

We are in the process of recalibrating the far-IR/submm opacity against the mid-IR opacity (*Kemper et al. in prep.*)

(Scicluna et al. 2022)

Amorphous silicates in the ISM Silicates in the diffuse ISM <1% crystalline

Amorphization time scale

Stellar ejecta: ~15% crystalline

$$k_{am}^{\prime}/k_{destr}^{\prime} = x_{stars}^{\prime}/x_{ISN}^{\prime}$$

$$k_{destr} \sim 2 \times 10^{-9} \text{ yr}^{-1}$$
 (time scale 400 Myr)
 $x_{stars} = 15\% (\pm 4\%)$
 $x_{ISM} = 1\% (\pm 1\%)$

Amorphization time scale: 30 Myr ($k_{am} = 3 \times 10^{-8} \text{ yr}^{-1}$)

Amorphization of silicates

Upon cooling, crystalline silicates retain their structure Amorphization is non-thermal

(Brucato et al. 2004)

Cosmic ray hits: 30-60 kev H/He/Ar

(Bringa et al. 2007)

