

Dust in extreme environments (observational) ICE Summer School "Life Cycle of Dust" 6 July 2023 Ciska Kemper (ICE-CSIC / ICREA / IEEC)

Dust in Supernovae

Tielens et al. 2005

Supernova grains

Dusty supernova remnants

De Looze et al. 2017

Early condensates & amorphous silicates Dust mass ${\sim}0.5~\text{M}_{\odot}$

What do we know about SN dust?

No crystalline silicates observed

Rho et al. 2008

Most prominent feature in Cas A: 21 micron

SN 1987A also shows no crystallinity

Matsuura et al. 2011

Dust in WR stars

 10^{4} LHA 120-S 119 $T_{d} = 108^{+9}_{-0.02} M_{\odot}$ $\beta = 1.03^{+0.45}_{-0.45}$ $\alpha = -1.25 \pm 0.02$ $c = 3.61 \pm 0.02$ $\chi_{f}^{2} = 4.26$ $\chi_{f}^{2} = 4.26$ $\chi_{f}^{2} = 4.26$

18 LBVs produce roughly the same integrated dust mass as 1500 extreme AGB stars

Agliozzo et al. 2021

Composition of LBV dust

R71: amorphous and crystalline silicates; PAHs (Guha Niyogi et al. 2014)

η Car (one of the brightest IR objects in the sky) has similar composition (Morris et al. 2017)

η Car lightcurve

Most dust was ejected in a single event

Relative importance of LBVs

Stellar wind is line driven

Not all LBVs produce dust

Highly energetic environments

Quasars / AGN

Starburst galaxies

Highly energetic environments

Quasars / AGN

Spectral Energy Distributions

• Pier & Krolik 1992, 1993 Nenkova et al. 2002 • Van Bemmel & Dullemond 2003 • Hönig et al. 2006 • Fritz et al. 2006

Pier & Krolik 1992

Early detections of silicates in emission

Hao et al. 2005; Sturm et al. 2005; Siebenmorgen et al. 2005

Silicates in AGN: optical depth, emission & absorption

Shi et al. 2006

A case of extreme emission: host galaxy hardly detected

Extreme silicate emission

Hony et al. 2011

Porosity shifts & weakens 10 micron feature

lati et al. 2001

Li et al. 2008

Porous silicates associated with 3 AGN

1.5 a: porous dust, P=0.5, $a = 5\mu m$ 2-2 $T_2=275 \text{ K}, \text{ m}_2=0.034 \text{ m}_0, \chi^2/N=1.87$ cm. $T_e=40$ K, $m_e=1500$ m_{\odot} T_=3300 K, A_=1.96×10³² cm² s-1 (10⁻¹⁰ erg 0.5 AF_A 0 10 20 30 5 35 M81 Nucleus Silicate Emission cm⁻²) a=0.1µm (T=245 K, m=0.051 mg) 8 1µm (T=237 K, m=0.054 ma) S-1 =4µm (T=264 K, m=0.035 mg) 6 -5µm (T=275 K, m=0.034 m_) erg λF_λ (10⁻¹⁰ ε 4 2 0 10 15 20 24 8 $\lambda (\mu m)$

Li et al. 2008

Smith et al. 2010

Optical depth effects

(Nikutta et al. 2009)

Dust formation in disk wind *(Elvis et al. 2002)*

Dusty disk wind as torus (Elitzur & Schlossman 2008)

Mineralogy: ~5% crystallinity in quasar winds

Markwick-Kemper et al. 2007

Further fits

(Srinivasan et al. 2017)

Results for a small sample

(Srinivasan et al. 2017)

PG sample from Petric et al. (2015)

Herschel or MIPS 70 micron or AKARI 60 micron photometry to constrain continuum

IRS spectra with clear dust emission features

=> 53 objects

Mineralogy: gehlenite (Al-Ca-silicates) or SiC in NGC 1068?

Jaffe et al. 2004

Köhler & Li 2010

Spatial variations in NGC 1068 silicates: sizes and composition

Rhee & Larkin 2006

Poncelet et al. 2006

Spatial variations: Circinus galaxy

Roche et al. 2006

Heavily obscured AGN

0-14% crystallinity in silicates towards ~100 obscured AGN

Tsuchikawa et al. 2022

Highly energetic environments

Starburst galaxies

Starburst galaxies: larger grain size

Dopita et al. 2010

Crystallinity in starburst galaxies

• 77 ULIRGs

- Crystalline silicates in 12
- Crystalline fractions: 6.5 13 %

Explanation: stellar production

Spoon et al. (2006)

Further detections

Stierwalt et al. 2014

Willett et al. 2011

Crystalline silicates in a high redshift absorber (z=0.89)

A search of the Spitzer archive

Spectral analysis revealed that 786 of 3335 galaxies (almost ¼) in the Spitzer archive contained crystalline silicates (Spoon et al. 2022)

Radiative transfer simulations

Measurements

Detections x<5%

Dust budget in a galaxy

- D(t): dust forms in stellar ejecta
- Starburst duration: 10⁸ years
- Kroupa (2001) IMF

	0.109 m + 0.394	for	$1\leqslant m<8$
$w_m = \langle$	1.35	for	$8\leqslant m<25$
	0.1 m	for	$25\leqslant m$

Dust-to-gas ratio:
0.01 for AGB stars
10⁻⁴ - 0.01 for SNe

Results

Initial silicate mass: 10^8 M_{\odot} SFR: 1000 M_{\odot} yr⁻¹ x* = 0.2 Dust-to-gas ratio: 0.01 for SNe \Rightarrow crystallinity ~10 %

Results

Initial silicate mass: $10^8 \text{ M}_{\odot} \rightarrow \text{low}$ SFR: 1000 M_{\odot} yr⁻¹ \rightarrow high x* = 0.2 \rightarrow high Dust-to-gas ratio: 0.01 for SNe \rightarrow high \Rightarrow crystallinity ~10 %

Varying input parameters: the effect of supernovae

Amorphization rates

Dust production efficiency in SNe

Dust in low-metallicity environments

Dust formation in AGB stars in extremely low metallicity environments proceeds once enough C has been dredged up No other dust features! Sloan et al. 2009

Dust budget problem at high z

(Morgan & Edmunds 2003)

z>6: 10^{8-9} M_o dust

Cannot be explained with stellar dust sources

AGB stars Supernovae

(Beelen et al. 2003)

Sampling of cold dust SEDs (Watson et al. 2015)

100.00 Arp220 Total Cold Warm Hot 10.00 Star 1.00 [, [Jy] 0.10 0.01 10 100 1000 Rest wavelength [µm]

(Armus et al. 2007)

Single ALMA photometry point z = 7.5 $M_{dust} = 4x10^7 M_{sun}$