Chemistry on Dust Surfaces

Albert RIMOLA albert.Rimola@uab.cat

Department of Chemistry

Who am I?

- Chemist (Degree of Chemistry, 2002 UAB)
- Computational chemist (PhD in Theoretical and Computational Chemistry, 2007 UAB)
- Postdoc in Univ. Turin (2007-2009)
- Postdoc + tenure track researcher (2010 2022)
- Professor Dept. Chemistry UAB (Physical Chemistry, Quantum chemistry & spectroscopy)

 Use of computational chemistry to solve chemical problems

Surface phenomena of interstellar grains

Who am I?

PI of Quantum Chemistry on Interstellar Grains (QUANTUMGRAIN)

ERC Consolidator Grant

https://www.quantumgrain.eu

@QuantumGrain

Astrochemistry: Definition

- The Chemistry of the Universe.
- Area of the Astronomy dedicated to **study the chemical species** (atoms, molecules and ions) occurring in celestial bodies (e.g., stars), interstellar space and other **astrophysical environments**.
- Astrochemistry is the study of the composition and reactions of atoms, molecules and ions in space. The topic includes the gathering of spectroscopic information from ground-, air- and space-based **observatories**, **lab-based studies** that replicate the harsh environments of space and **modelling**.

natureresearch

INTERDISCIPLINARITY

Astronomical Observations

Laboratory Experiments

Modeling

INTERSTELLAR CLOUDS OF GAS AND SOLID GRAINS 99% of the 1% of the interstellar interstellar matter matter **Pilars of Creation Horsehead Nebula**

Solar elemental abundances

Element	Abundance	Element	Abundance
Н	1.00	Mg	4.0×10 ⁻⁵
Не	0.085	Al	2.8×10 ⁻⁶
С	2.7×10 ⁻⁴	Si	3.2×10 ⁻⁵
N	6.8×10 ⁻⁵	S	1.3×10 ⁻⁵
0	4.9×10 ⁻⁴	P	2.6×10 ⁻⁷
Na	1.7×10 ⁻⁶	Fe	3.2×10 ⁻⁵

Gas-p	hase	mo	lecu	les
-------	------	----	------	-----

2	3	4	5	6	7	8	9	10	11	12	> 12
àtoms	àtoms	àtoms	àtoms	àtoms	àtoms	àtoms	àtoms	àtoms	àtoms	àtoms	àton
H ₂ AIF	AINC	c-C₃H	C ₅	C₅H C₅N C₅N- C₂H₄ CH₃CN	C ₆ H	C ₇ H	C ₈ H C ₈ H- C ₃ H ₆ (CH ₃) ₂ O CH ₃ C ₄ H	(CH ₃) ₂ CO	C ₂ H ₅ OCHO	C ₆ H ₆ ⁺	HC ₁₁ N
	AIOH	i-C₃H	C₅ C₄H	C ₅ N	C ₆ H-	CH ₃ C ₃ N	C ₈ H-	(CH ₂ OH) ₂	CH₃C ₆ H	n-C ₃ H ₇ CN	HC ₁₁ N HC ₁₀ C
AICI	C ₃	C₃N	C₄H⁻	C ₅ N-	CH₃C₂H	CH ₃ CH ₃	C ₃ H ₆	CH ₃ C ₅ N	HC ₉ N	C ₂ H ₅ OCH ₃	C ₁₄ H ₁
AIO	$egin{array}{c} {f C}_3 \\ {f C}_2 {f H} \\ {f C}_2 {f O} \\ {f C}_2 {f P} \\ {f C}_2 {f S} \\ {f CH}_2 \\ {f CN}_2 \\ {f CO}_2 \\ {f CO}_2^+ \\ {f CS}_2^- \\ {f CS}_2^- \\ \end{array}$	C ₃ Ñ C ₃ N· C ₃ O C ₃ S C ₂ H ₂	C₄H· C₄Si i-C₃H₂ c-C₃H₂	C ₂ H ₄	CH ₃ NH ₂	HC(O)OCH ₃	(CH ₃) ₂ O	CH₃CH₂CHO			C ₆₀
C ₂ CH	C ₂ O	C ₃ O	i-C₃H₂	CH₃CN	CH ₂ CHCN	CH₃COOH Î	CH₃C₄H				C ₇₀
CH	C ₂ P	C₃S	c-C₃H₂	CH₃NC	c-C₂H₄O	CH ₂ CCHCN	CH ₃ CH ₂ CN				
CH ⁺	C ₂ S	C ₂ H ₂	CH₄	CH₃OH	H₂CCHOH	СН₂СНСНО	CH₃CH₂OH				
CF⁺	CH ₂	CH₃¯ HCCN	H ₂ C ₂ N	CH₃SH	HC₅N	CH ₂ OHCHO	CH ₃ C(O)NH ₂				
CN	CN ₂		H₂C₂N H₂C₂O H₂CNH	i-H ₂ C ₄	CH₃CHO	H ₂ C ₆ i-HC ₆ H	HC ₇ N				
CN+	CO ₂	HCNH⁺	H₂CNH	c-H₂C₃O		i-HC ₆ H					
CN-	CO ₂ +	HCNO	H ₂ COH⁺	i-HC₄H		NH ₂ CH ₂ CN					
ю .	CS ₂	HNCO	H ₂ NCN	i-HC₄N							
O ⁺	FeĆN	HNCS	HCCCN	HC ₃ NH⁺							
P	H ₃ ⁺	HOCN	HCCNC	HC ₂ CHO							
cs	H ₂ D⁺	HOCO⁺	НСООН	H ₂ CCNH							
CSi	H ₂ D+ HD ₂ + H ₂ Cl+ H ₂ O H ₂ O+ HDO	HSCN	HC(O)CN	NH ₂ CHO		10 mg 40 mg 9	EO CAC D	IIACE 100 C		andian de	44
FeO	H ₂ CI ⁺	H₂CO	HNC ₃			nore tan 2	50 GAS-P	UHOE IIIO	iecular s	pecies at	etect
HD	H ₂ O	H₂CN	SiH ₄						_		
HCI	H ₂ O⁺	H₂CS				001.4		4 . 11		4	
HF	HDO	H_2O_2				Of Interste	ellar, circu	mstellar a	ına come	tary origi	ın
(CI	H₂S	H₃O⁺					,			· · · · · · · · ·	
NH	H₂S H₂S⁺ HCN	NH ₃									
N₂ ⁺ NO	HCN	$H_3^1O^{\frac{1}{4}}$ NH_3 PH_3 $c\text{-SiC}_3$				Based on	emission	from rotat	tional tra	nsitions	
	HCO	c-SiC₃									
NS	HCO ⁺										
NaCl	HCP					radio/mic	rowave re	aion of th	A FM sne	ctrum	
02	HCS ⁺					radiomilio	Toward It	gioni or th	o Em Spc		
OH	HOC+										
OH⁺	HNC										
PN	HNO										
20	KCN										
S₂ SH	MgCN					ALMA				NOEN	//A
SH	MgNC					ALIVIA				I TOLIN	~~~
SH ⁺	N ₂ H ⁺ N ₂ O NH ₂										
80	N ₂ O										
0⁺	NH ₂										
Q:LI	NaČN							The same of the sa			

MgNC
N₂H⁺
N₂O
NH₂
NaCN
OCN⁻
OCS
SO₂
c-SiC₂
SiCN
SiNC

SiH SiN SiO SiS

Gas-phase molecules: simple molecules

SINC

neutral (closed-shell) molecules

lons (charged species)

Radicals (neutral open-shell species)

Organometallic components (Metal-C bonds)

Gas-phase molecules: interstellar complex organic molecules (iCOMs)

 iCOMs: Molecules between 6-12 atoms in which at least one is C

Most of them contain heteroatoms (N, O, S)

CH₃SH (methanethiol)

 Some of them are of biological potential (prebiotic relevance)

CH₃COOH (acetic acid)

HOCH₂CHO (glycolaldehyde)

Gas-phase molecules: molecules of enhanced complexity

> 12 atoms

HC₁₁N

 $C_{14}H_{10}$

C₆₀

HC₁₁N (cyanodecapentayne)

Cyanopolyynes

(HC_nN, n: 1, 3, 5 ...)

C₁₄H₁₀ (phenanthrene)

Buckyballs

 (C_{60}^+, C_{70})

Gas-phase molecules: "exotic" molecules

HCN

SINC

Observational Measurements of the Gas-Phase Components

- Radiofrequency range
 - e.g., SKA radiotelescope: $\lambda = 6 \text{ m} 1.5 \text{ cm}$
- Microwave (mm/submm) range

e.g., ALMA: $\lambda = 3.6 \text{ mm} - 0.3 \text{ mm}$

e.g., NOEMA: $\lambda = 3 \text{ mm} - 0.8 \text{ mm}$

(source of emission)

Rotational experiments

databases

Tool: Spectroscopic data

data reduction + identification

274.5 274.7 274.9 0.3 SO H

Spectrum of the Source (forest of lines)

Identified species

Chemical evolution in Solar-type planetary formation

Evolution of the molecular complexity goes hand-in-hand with the physical phases involved in the formation of Solar-type planetary systems

Caselli & Ceccarelli, Astron. Astrophys. Rev., 2012, 20, 1

Planetesimal formation

Planet formation

Chemical evolution in Solar-type planetary formation

Chemical Evolution & Grains

Interstellar Grains

Bare DUST grains

Dust grains covered in ICE mantles

Formation of a Solar-type planetary system & Mineralogical Evolution

Observational Measurements of the Solid-Phase Component

- Range of the mid-Infrared (IR) region: 4000 200 cm⁻¹ (2 40 μm)
 - Obs. IR for silicate dust grains

Henning, ARA&A 2010, 48, 21

CHEMICAL COMPOSITION

CO₂ NH₃ Silicate/carbonaceous H₂O CH₄ CO CH₃OH

STRUCTURAL STATE: AMORPHOUS

Need for grains: Key ingredient for Cosmic Reactions

Reaction helper

Product Protector

Grains in Chemical Evolution

Most of the interstellar molecules form through a series of gas-phase reactions. However, in some cases, we need the presence of grains.

- Question: When do we need grains?
- > Answer: When gas-phase reactions cannot justify the large abundances detected by astronomical observations.

In dust we trust!

Grain-dricen reactions In Diffuse Clouds

Reactions occurring on the surfaces of bare dust grains

$$H_2$$
, H_2O , NH_3 , N_xO_y , ...

Grains in Chemical Evolution

Grain-driven reactions in Dense Clouds

Reactions occurring on the **SURFACE** of the ice mantles

H₂, H₂O, H₂CO, CH₃OH, CH₃NH₂, ...

Reactions occurring inside the **BULK** of the ice mantles

COMs

> Reactant concentrator

adsorption + diffusion

> Chemical catalyst

> Reactant supplier

> Third body

> Reactant concentrator

- Important due to the **low densities** of the ISM
- Key parameter: Binding Energy (BE)
 - Adsorption rate constant: $k_{ads} \propto exp\left(\frac{BE}{k_BT}\right)$
 - Diffusion rate constant: $k_{diff} \propto exp\left(\frac{-f \cdot BE}{k_BT}\right)$ $f \approx 0.3 0.6$

E.g., H₂O formation on ices

> Reactant supplier

Essentially on icy mantles (i.e., with H₂O, CO, CO₂, NH₃, CH₃OH, CH₄...)

E.g., CH₃CHO formation on CO-rich ices

UV incidence on the ice mantles gives rise radicals (CH₃, NH₂, HCO, CH₃O,...)

E.g., CH₃CHO formation via radical coupling

> Chemical catalyst

A chemical catalyst is a substance that provides an alternative, less energetic pathway increasing the chemical reaction's speed, but is not included in its end-products

E.g., HNC → HCN isomerization on water ices

Energy units in kcal/mol

> Third body

Exothermic reaction Energy dissipation

- Water ices have been demonstrated to be effective third bodies
- The third body effect in refractory materials is commonly advocated but it has never been unambiguosly determined

E.g., $H + CO \rightarrow HCO$ on water ices

➤ In absence of grains (gas phase)

In the presence of grains (grain surface)

Types of Molecular Processes

Bond formation processes	
Radiative association	$X + Y \rightarrow XY + hv$
Associative detachment	$X^- + Y \rightarrow XY + e$
Grain Surface formation	$[X + Y]:g \rightarrow [XY]:g$

Grain Surface reactions

Coupling reactions $(2 \rightarrow 1)$

Bond destruction processes	
Photodissociation	$XY + hv \rightarrow X + Y$
Dissociative recombination	$XY^+ + e \rightarrow X + Y$
Collisional dissociation	$XY + M \rightarrow X + Y + M$

Bond rearrangement processes	
Ion-molecule Exchange	$X^+ + YZ \rightarrow XY^+ + Z$
Charge-transfer	$X^+ + YZ \rightarrow X + YZ^+$
Neutral-neutral	$X + YZ \rightarrow XY + Z$
	$X + [YZ]:g \rightarrow XY + [Z]:g$

Exchange reaction on a surface $(\Delta E >> 0)$

Chemical Mechanisms on Grains

an adsorbed species on the surface is directly hit by another coming from the gas phase, thereby leading to the reaction

Two adsorbed species diffuse and encounter to react on the surface

A species from the gas phase reacts with and adsorbed one during its transient diffusion before being fully thermalized on the surface.

Chemical Reactions on Grains

H additions (i.e., hydrogenations)

$$H + H \rightarrow H_2$$

mobile + open-shell species

$$O + H \rightarrow OH + H \rightarrow H_2O$$

$$N + H \rightarrow NH + H \rightarrow NH_2 + H \rightarrow NH_3$$

$$\mathsf{CO} + \mathsf{H} \to \mathsf{HCO} + \mathsf{H} \to \mathsf{H}_2\mathsf{CO} + \mathsf{H} \to \mathsf{CH}_3\mathsf{O} + \mathsf{H} \to \mathsf{CH}_3\mathsf{OH}$$

■ Other atom additions (i.e., O > C > N)

$$\begin{array}{c} At \\ \searrow \\ X \longrightarrow At-X \end{array}$$

$$CO + O \rightarrow CO_2$$

$$NH_3 + O \rightarrow NH_2OH$$

$$OH + N \rightarrow HNO$$

open-shell character of the atoms

Radical additions

$$CN + H_2O_{(ice)} \rightarrow NH_2CO + H \rightarrow NH_2CHO$$

$$CCH + H_2O \rightarrow CO_2 + H \rightarrow CH_2 = CHOH$$

open-shell species (one unpaired electron)

(and many other radical-radical couplings)

Investigations on Grain Surface Chemistry

Astron. Observations

Astrochemical Modeling

Laboratory Experiments

Astronomical Observations

Aim: to identify molecular species that have been synthesised in different astrophysical environments

E.g.: Formamide (NH₂CHO) detection

Codella et al. A&A, 2017

- **↑** Detection & Identification
- ♠ Abundances & quantities

Limitations

- No information on the synthetic routes
 - Reactants
 - Mechanisms
 - Gas phase vs on grain

 No information on specific grain structural details (e.g., presence and nature of surface defects)

Astrochemical Models

Numerical (e.g., kinetic) equations that allow us to predict the overall behaviour of the species involved
in a given interstellar chemical process

E.g.: NH₂CHO and CH₃CHO abundance predictions

- Need of ____ Input Data
 - Physical Parameters: initial abundances, size of the grains, ...
 - Energetic Parameters: activation energies, binding/desorption energies, ...

Energetic input data often based on empirical estimates, gas-phase values or even guess values.

Uncertainties on the parameters

Uncertainties on the predictions

Effect of the uncertainties

Source	CH ₃ NH ₂ /NH ₂ CHO
IRAS 16293- 2422B (Obs.)	≤ 0.053
Gas-grain Model	0.2 – 2.3

Laboratory Experiments

Aim: to reproduce reactions of astrochemical interest by simulating astrophysical regimes (low T and UHV) under well controlled conditions (i.e., lab instrumentation).

E.g.: Formamide (NH₂CHO) synthesis

Fedoseev et al., MNRAS, 2016

- ↑ Determination of the newly formed products
- ↑ Macroscopic thermodynamic and kinetic data: BEs, Ea

 (by empirical fiting)

♥ Limitations

- Unable to reproduce truly occurring reactions
 - Grain compositions
 - Individual processes
 - Fluxes
- No information on the reaction mechanisms
 (unless intermediates are identified)

Current Limitation

Limitations

- Observations: no information on the synthetic routes
- Astrochemical models: uncertainties
- **Experiments**: ISM conditions + mechanisms

LACK OF ATOMIC-SCALE INFORMATION

we only have AVERAGE/MACROSCOPIC

data

The chemist

paradox

Chemists deal with molecules: synthesize them, determine their properties, make them to react,... but we have limitations to obtain

How to obtain information at the atomistic level?

□ Spectroscopy

(IR, NMR, UV-Vis, EPR, X-ray.... but not atomic resolution)

Computational Modeling and Simulation

Obtaining Atomic-Scale Information

Molecular Simulations Based on QUANTUM MECHANICAL METHODS

The Schrödinger Equation

$$\hat{H}\Psi = E\Psi$$

"If we can solve this equation we know everything about the systems"

Complementary tool to investigate grain surface chemical phenomena

Information from Computational Simulations

□ Computational Chemistry:

Area of the Chemistry that uses molecular simulations to solve chemical problems.

It covers the use of **theoretical chemistry** methods and **molecular modeling** techniques to calculate the **structure and properties** of chemical systems (molecular, biological, materials) with the goal to obtain unique **atomic scale information**

☐ Atomic Scale Information:

Structure & related properties

Energetics & kinetics

Dynamics

☐ Structure and Related properties

Reaction mechanisms: reactants, products, intermediates & transition states

E.g.:
$$NH_3 + H_2CO \rightarrow NH = CH_2 + H_2O$$

Van der Waal complexes, surface complexes

- Related properties

H₂O ice

Rotational parameters

Frequencies & IR

Elecrostatic potential maps

□ Energetics & kinetics

Binding energies

BE = 18.4 kJ/mol

Potential energy surfaces

Kinetics

Calculation of Rate Constants:

- Classical Transition State Theory (TST)
- Tunneling via:
- Semi-classical approach
- Quiantum approach

□ Relevance of Tunneling in Astrochemistry

Tunnelling is the quantum phenomenon where a chemical process occurs by passing through a potential barrier.

- Play an important role in many chemical transformations:
 - It enables astrochemical reactions that would be **impossible** by thermal transition.
 - It **changes** reaction paths and branching ratios
 - It **influences** biochemical processes
- Experimentally, it can be indirectly detected by:

temperature independent rate constants at low temperature

The influence of tunneling on the reaction rates can be monitored directly through computational investigations

Relevance of Tunneling in Astrochemistry

General conditions

- Low temperatures
- Light species (i.e., particle+wave behaviour), e.g., **H atoms**
- High potential barriers
- Narrow potential barriers (particle wave wider than the barrier width)

Crossover Temperature (T_x)

Temperature below which tunneling becomes dominant and above which becomes negligible.

$$T_X = \frac{\hbar v^{\neq}}{2\pi k_B}$$

$$T_X = \frac{h\nu^{\neq} \Delta U_0^{\neq} / k_B}{2\pi \Delta U_0^{\neq} - h\nu^{\neq} ln2}$$

(derived from different tunneling formalisms)

Rate constant via semi-classical approach

$$k^{SC-TST} = \Gamma^{tun} \times k^{TST}$$

$$k^{SC-TST} = \Gamma^{tun} \times k^{TST}$$
 $k^{TST} = \frac{q^{\neq}}{q^R} \frac{k_B T}{h} e^{\left(-\frac{\Delta E^{\neq}}{k_B T}\right)}$

tunneling transmission coefficient

values of ≥ 1

depends on the transmission probability P(E)

Dynamics

Useful to study non-equilibrium systems: diffusion, reactions, energy dissipation

Molecular Dynamics Simulations

Evolution of the system with time by introducing energy (e.g., T, collisions).

MD evolution for the HCO + $NH_2 \rightarrow NH_2CHO$ reaction at 10 K

Surface modeling of interstellar grains

REAL SYSTEM

dust grains

icy grains

MODEL SYSTEM

- 1. Modeling a suitable structure for the surface
- 2. Simulation of the surface phenomena on the model

Surface modeling of interstellar grains. Top-down approach

Surface modeling of interstellar grains. Top-down approach

Surface modeling of interstellar grains. Top-down approach

Periodic H₂O ice bulk

 Geometry resulting from the cut will change dramatically upon relaxation

• Molecules at the **border** will move to maximize the intermolecular interactions (H-bond) $\approx 7.5~{\rm \AA}$

 Optimized structures are no longer representative of the crystal to which they initially belong (inherent amorphisation!)

Geometry

Optimization

Surface modeling of interstellar grains

REAL SYSTEM

dust grains

icy grains

MODEL SYSTEM

- 1. Modeling a suitable structure for the surface
- 2. Simulation of the surface phenomena on the model

Potential Energy Surface of a grain surface reaction

Structural Information

Energetic Information

- Adsorption energies ($\Delta E_{ads} = -BE$)
- Energy Barriers (∆E≠)
- Reaction Energies (∆E_r)
- Desorption energies (∆E_{des})
- Transition Frequency (v[≠])

Useful in astrochemical modeling studies

Kinetics & Tunneling

- Classical rate constant

$$k^{TST} = \frac{q^{\neq}}{q^R} \frac{k_B T}{h} e^{\left(-\frac{\Delta E^{\neq}}{k_B T}\right)}$$

- Tunneling through semiclassical approach

$$k^{SC-TST} = \Gamma^{tun} \times k^{TST}$$

H₂O formation on silicates

Molpeceres et al., MNRAS, 2019, 482, 5389 i) $O_{(g)} \rightarrow O_{(surf)}$ (O adsorption)

ii) $H_{(surf)} + O_{(surf)} \rightarrow OH_{(surf)}$ (1st H additon)

iii) $H_{(surf)} + OH_{(surf)} \rightarrow H_2O_{(surf)}$ (2nd H additon)

H₂O formation on silicates. O adsorption

Step 1: adsorption of atomic O(3P) on the silicate surface

H₂O formation on silicates. H additions to O

H₂O formation on silicates. Tunneling effects

Fermann & Auerbach (FA) Correction

Eckart Correction

Final semiclassical rate constant

$$k^{SC-TST} = \Gamma(T) \times k^{TST}$$

$$\Gamma^{FA}(T) = \exp\left(\frac{\Delta U_0^{\neq}}{k_B T}\right) \exp\left(\frac{2\pi \Delta U_0^{\neq}}{h \nu^{\neq}}\right) \left(1 + \frac{2\pi k_B T}{h \nu^{\neq}}\right)$$

$$\Gamma^{Eckart}(T) = \exp\left(-\frac{\Delta U_0^{\neq}}{RT}\right) \int_0^{\infty} P(E) \exp\left(-\frac{E}{RT}\right) dE$$

H₂O formation on silicates

Molpeceres et al., MNRAS, 2019, 482, 5389

(O adsorption) i) $O_{(g)} \rightarrow O_{(surf)}$

ii)
$$H_{(surf)} + O_{(surf)} \rightarrow OH_{(surf)}$$
 (1st H additon)

iii)
$$H_{(surf)} + OH_{(surf)} \rightarrow H_2O_{(surf)}$$
 (2nd H additon)

No catalytic effects

ii)
$$H_{(g)} + O_{(g)} \rightarrow OH_{(g)}$$

barrierless processes

ii)
$$H_{(g)} + O_{(g)} \rightarrow OH_{(g)}$$

iii) $H_{(g)} + OH_{(g)} \rightarrow H_2O_{(g)}$

iCOMs formation on Ices

- iCOMs: Interstellar Complex Organic Molecules
 Molecules with 6 12 atoms in which at least one is C
- Prevailing mechanism on the icy grain surfaces:

Radical-radical coupling

(Garrod & Herbst, 2006, A&A, 457, 927)

E.g., CH₃CHO formation

Ice grains as reactant suppliers

Considered to be **barrierles** (like in the gas pase). **BUT** on water ice they **exhibit energy barriers**

(it goes against the role of chemical catalyst!)

Radical pairs	iCOM formation	ΔE≠ (kJ/mol)
CH ₃ + HCO	CH ₃ CHO	2–6
CH ₃ + CH ₃	CH ₃ CH ₃	5
CH ₃ + NH ₂	CH ₃ NH ₂	1–2
CH ₃ + CH ₃ O	CH ₃ OCH ₃	1–3
CH ₃ + CH ₂ OH	CH ₃ CH ₂ OH	2–3
HCO + NH ₂	NH ₂ CHO	2–4
HCO + HCO	НСОНСО	4
HCO + CH ₃ O	HC(=O)CH ₂ OH	4–5
HCO + CH ₂ OH	HC(=O)CH ₂ OH	2
CH ₃ O + CH ₃ O	CH ₃ OOCH ₃	10–20
CH ₂ OH + CH ₂ OH	CH ₂ (OH)CH ₂ OH	3–5

Enrique-Romero et al., Astrophys. J., Suppl. Ser., 259:39 (2022)

Radical/Surface interactions

iCOMs formation on Ices

Limitations of the radical-radical couplings:

- They exhibit energy barriers
- Present competitive reactions: H-abstractions
 e.g., CH₃ + HCO → CH₄ + CO
- Delicate trade-off between the diffusion and desorption of the radicals (T window).
- > Alternative pathway: "radical + ice" reactions

radical

H₂O/CO ice

- It avoids direct competitive reactions
- It avoids the T window
- It DOES NOT avoid the presence of energy barriers

Example: formation of CH₃CH₂OH via "-CCH + H₂O_(ice)"

step i):
$$\cdot$$
CCH + H₂O \rightarrow \cdot CHCHOH (with barrier)

- ✓ Cluster model of 18 H₂O
 (also tested for 33 H₂O)
- ✓ DFT vs CCSD(T) benchmarking study

Perrero et al., ACS Earth Space Chem., 6, 496 (2022)

Ices as catalysts? (III). Formation of COMs via "radical + ice" reactions

Example: formation of CH₃CH₂OH via "-CCH + H₂O_(ice)"

step i): •CCH + H₂O → •CHCHOH

In the gas phase:

 ΔE^{\neq} = 113 kJ/mol (without ZPE)

Ice grains as:
reactant suppliers
+
chemical catalyts

Formation of a hemibonded complex

R: 0.0

TS1: 0.0 (0.7)

Water-assisted proton transfer

ωB97x-D3/6-311++G(d,p)

ZPE-corrected energies (potential energies)
In kJ/mol

I: -10.5 (-12.5)

P: -185.5 (-192.3)

The third body effect

- What is the fate of the nascent reaction energy?
 - Amount of energy excess transferred to the grain (energy dissipation)?
 - Amount of energy excess into **kinetic energy** of the newly formed product?

Ferrero et al., ApJ, 944, 142 (2023)

- Ab Initio Molecular Dynamics (AIMD) simulations
- (NVE), microcanonicle ensemble
 The total Energy is conserved
- Case of study: H + NH₂ → NH₃ on water ice
 - Barrierless reaction & reaction energy ≈-440 kJ/mol
 - Amorphous periodi water ice: 1728 atoms (576)
 - Initial T=10K, time-scale=1ps, time-step=0.2fs
 - DFT PBE-D3/TZVP (CP2K code)

The third body effect

Analysis of the data: energy partitioning and monitoring

Ferrero et al., ApJ, 944, 142 (2023)

NH₃ formation on amorphous water ice surface:

	T _{ice} /T _{TOT}	T _{NH3} /T _{TOT}
H + NH ₂	0.73	0.27

- > energy transfer of ≈210 kJ/mol to the surface
- ightharpoonup BE_{NH3} (22.4) << T_{NH3} (5.2)

NH₃ do not leave the surface

Formation of a transient NH₂-/H₃O+ ion pair

Relevant Bibliography

- Tielens, Rev. Mod. Phys., 85 (3), July-September 2013
- van Dishoek, Faraday Discuss., 2014,168, 9-47
- Ceccarelli, Faraday Discuss., 2023, Advance Article, doi: 10.1039/D3FD00106G
- Caselli & Ceccarelli, Astron. Astrophys. Rev., 2012, 20, 1
- Brett A. McGuire 2022 *ApJS* 259 30
- Henning, ARA&A 2010, 48, 21
- Boogert, ARA&A 2015, 53, 541
- McClure et al., Nature Astron., 2023, 7, 431–443
- Hama & Watanabe, Chem. Rev. 2013, 113, 12, 8783–8839
- Potapov & McCoustra, Int. Rev. Phys. Chem., 2021, 40 (2), 299-364
- Cuppen et al., Space Sci. Rev., 2017, 212, 1–58
- Wakelam et al., Mol. Astrophys., 2017, 9, 1–36
- Rimola et al., Minerals, 2021, 11, 26
- Zamirri et al., ACS Earth Space Chem. 2019, 3, 1499–1523