

Hand-on session: Machine Learning in radial velocity data

Jordi Blanco Pozo

Target star: Epsilon Eridani

parameter	unit	literature value	Eridani Ref.
Right ascension RA	h:m:s	03:32:55.84±0.12	(1)
Declination Dec	0. ' . ''	-09:27:29.739±0.093	(1)
age	Myr	400 - 800	(2)
distance	pc	3.216 ± 0.002	(1)
μ_{α}	mas a ⁻¹	-974.76 ± 0.16	(1)
μ_{δ}	mas a ⁻¹	20.88±0.12	(1)
v sin i	$\rm kms^{-1}$	2.4±0.5	(3)
magnitude G	mag	3.4658 ± 0.0031	(1)
spectral type SpT	-	K2.0V	(6)
stellar mass M _* v	Mo	0.82 ± 0.05	(7)
	0.000	0.847 ± 0.042	(8)
stellar radius R.	R₀	0.74 ± 0.01	(7)
		0.702 ± 0.035	(8)
effective temperature T_{eff}	K	5076±30	(10)
surface gravity log g	dex	4.30 ± 0.08	(11)
metallicity $[Fe/H]$	_	-0.13 ± 0.04	(12)
inclination i	0	60	(13)
rotation period Prot	day	11.2	(3)
convective blueshift CB*	CB	~0.3	(15,16)
differential rotation $d\Omega^{**}$	$d\Omega_{\odot}$	1.3	(3)
spot temperature difference ΔT	K	1080 ± 670	(14)
minimum mass M sin i	M⊕	210	(22)
orbital period	day	2671	(22)
RV semi-amplitude	$m s^{-1}$	~11	_

Download it here: https://saco.csic.es/s/TZHZLRF2ipRGQaR

Problem Data:

Input:
'problem{i}_indices.npy': (3, 66)

Label: 'problem{i}_radial_velocities.npy': (66)

Time sampling:

'time_observations.npy': (66) (the same for the training data)

(i=1,2,3,4) a planet hidden in each of these problems, sorted from simpler to more complex to detect

to a Fourier periodogram, but for unevenly sampled data. Frequency range should be from 0.5 d⁻¹ to the inverse of the time baseline of the observations **NetGeneral**(kernel, neurons, channels, size, N, num_conv_layers, num_fc_layers) length inputs

Convolutional Neural Network architecture. Modify this very basic architecture as you decide!!

$$\left(\frac{a}{AU}\right)^3 = \frac{M}{M_{\odot}} \left(\frac{P}{yr}\right)^2$$

$$K = \frac{28.4329 \, m \, / \, s}{\sqrt{1 - e^2}} \frac{m_p \sin i}{M_{Jup}} \left(\frac{m_p + m_*}{M_{Sun}}\right)^{-2/3} \left(\frac{P}{1 \, yr}\right)^{-1/3}$$
$$K = \frac{28.4329 \, m \, / \, s}{\sqrt{1 - e^2}} \frac{m_p \sin i}{M_{Jup}} \left(\frac{m_p + m_*}{M_{Sun}}\right)^{-1/2} \left(\frac{a}{1 \, au}\right)^{-1/2}$$

Problem 1:

Problem 2:

Problem 3:

Problem 4:

