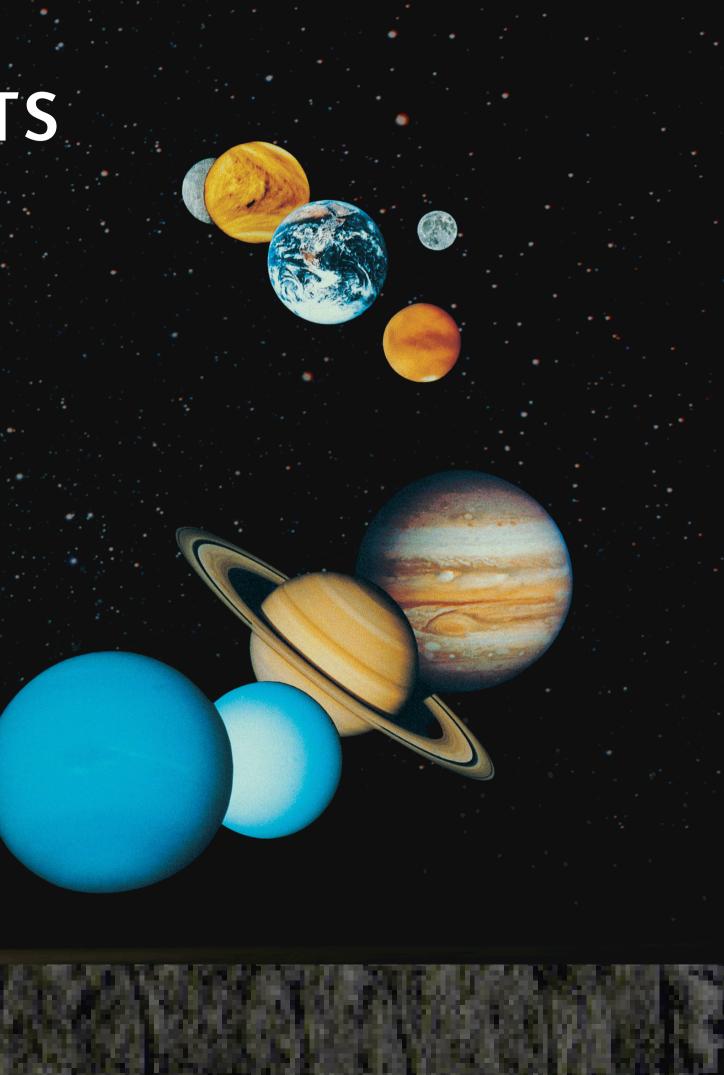
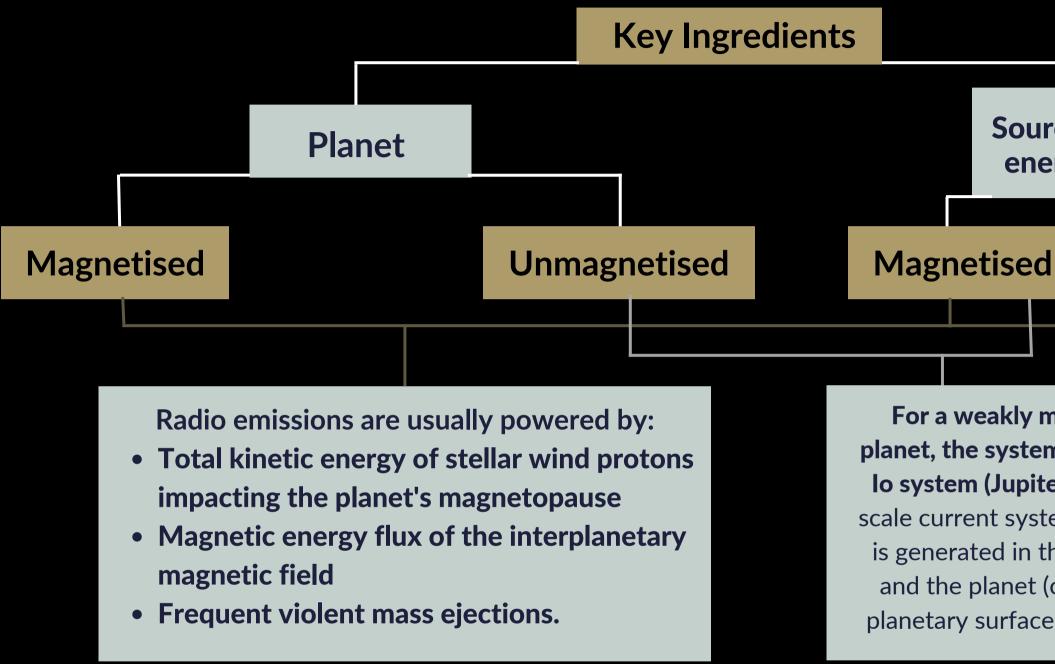
7th Institute of Space Sciences Summer School

Hands-on session


WHAT YOU NEED BEFORE SUBMITTING OBSERVATIONAL **PROPOSALS (RADIO)**

July 09, 2024


Simranpreet Kaur

KEY INGREDIENTS

- Picking out possible candidates for proposals
- Running flux calculations on these targets
- ETC (Exposure time calculators)
 Checking corresponding archival data (VLA, GMRT, other wavelenths)

POSSIBLE MECHANISMS FOR RADIO EMISSION

- In case of an interaction between an unmagnetised stellar wind and an unmagnetised planet, no intense radio emission is possible.
- Jupiter-Io like interaction is possible only if the planet lies in the star's Alfven region.
- In some cases, massive magnetised planets lying far away from their stars can also emit in a way similar to isolated brown dwarfs (plasma density provided by co-rotation breakdown of plasma or by an lo like satellite)

Source of plasma density and energy (usually stellar wind)

Unmagnetised

For a weakly magnetised or an umagnetised planet, the system becomes analogous to Jupiterlo system (Jupiter--> Star, lo --> Planet). A large scale current system is generated and the emission is generated in the stellar wind between the star and the planet (close to stellar surface, close to planetary surface or anywhere between the two).

WHICH PLANET WOULD BE A GOOD CANDIDATE?

WHICH PLANET WOULD BE A GOOD CANDIDATE?

- HIGH MASS?
- SMALL SEPARATION FROM HOST STAR?
- FAST ROTATOR?
- CLOSE TO EARTH?
- YOUNG?

FLUX ESTIMATES

$P_r \propto \dot{M}_*^{2/3} V_{\rm w}^{5/3} M_E^{2/3} A^{-4/3}$

$P_{\rm input,kin} \propto n v_{\rm eff}^3 R_{\rm s}^2$

 $f_{\rm c}^{\rm max} = \frac{eB_{\rm p}^{\rm max}}{2\pi m_{\rm e}} =$

 $P_{\rm input,mag} \propto v_{\rm eff} B_{\perp}^2 R_{\rm s}^2$

 $\Phi = \frac{P_{\text{radio}}}{\Omega s^2 \Delta f} = \frac{4\pi^2 m_{\text{e}} R_{\text{p}}^3 P_{\text{radio}}}{e\mu_0 \Omega s^2 \mathcal{M}}$

$$= \frac{e\mu_0 \mathcal{M}}{4\pi^2 m_{\rm e} R_{\rm p}^3} \approx 24 \text{ MHz} \frac{\widetilde{\mathcal{M}}}{\widetilde{R_{\rm p}}^3}.$$

Grießmeier et al. 2007, Stevens 2005

S	🧿 Goog	e Chrome 🔻									jul 7 18:52 🔸					÷	0 0	♥ \$0 🗎 ▼
Č	🛛 🙂 Hor	ne - Canva	× 🛒	Break-out	t RWII - Pr	esent ×	📕 🔚 Mento	oring programn	ne × 🛛 🕻	🔰 Planetary Sy	rstems × 💽 P	lanetar	y Systems	× 🌀 New Tab	× +			- ª 😣
÷	\rightarrow C	exoplane	tarchive.ipac.ca	ltech.edu/	/cgi-bin/Tb	lView/nph-	-tblView?app	=ExoTbls&config]=PS&constra	int=default_fla	g=1&constraint=disc_facil	ty+like	+%27%25TE	SS%25%27		☆	S Fin	ish update :
NA		EXOP COPLANET S About Us			TE	VE upport	Login											
	Elect Columns Room Download Table View Documentation User Preferences																	
	Planetary Systems																	
	A 7	Planet Name	Host Name		efault meter Set	Number of Stars	Number of Planets	Discovery Method	Discovery Year	Discovery Facility	Solution Type	×	Controversial Flag	Planetary Parameter Reference	Orbital Period [days]	Orbit Semi-Major Axis [au]	Planet Radiu [Earth Radiu	
		2		2	2	2		2		2	2		2	2	2	?		2
	11 Com b		11 Com	0	2		1		2007	Xinglong Station	Published Confirmed	0		Kunitomo et al. 2011		1.21 ^{+0.06} -0.05		
	11 Com b		11 Com	0	2		1	-			Published Confirmed	0		Liu et al. 2008	326.03±0.32	1.29±0.05		
	11 Com b		11 Com	1	2		1	-			Published Confirmed	0		Teng et al. 2023	323.21 ^{+0.06}	1.178±0.000		
	11 UMi b 11 UMi b		11 UMi 11 UMi	1	1		1	-		-	Published Confirmed Published Confirmed	0		Stassun et al. 2017 Kunitomo et al. 2011	516.21997±3.20000	1.53±0.07 1.51 ^{+0.06} -0.05		
	11 UMi b		11 UMi	0	1		1	-		-	Published Confirmed	0		Dollinger et al. 2009	516.22±3.25	1.51 -0.05		
	14 And b		14 And	1	1		1	2		-	Published Confirmed	0		Teng et al. 2023	186.76 +0.11	0.775±0.000		
	14 And b		14 And	0	1		1	Radial Velocity	2008	Okayama Astroph	Published Confirmed	0		Kunitomo et al. 2011		0.68 +0.03 +0.06		
	14 And b		14 And	0	1		1	Radial Velocity	2008	Okayama Astroph	Published Confirmed	0		Sato et al. 2008	185.84±0.23	0.83		
	14 Her b		14 Her	0	1	L	2				Published Confirmed	0		Wittenmyer et al. 2007	1773.4±2.5	2.77±0.05		
	14 Her b		14 Her	0	1		2	,	2002		Published Confirmed	0		Gozdziewski et al. 2008	1766	2.864 2.774 ^{+0.109} -0.120		
	14 Her b 14 Her b		14 Her 14 Her	1	1		2	-			Published Confirmed Published Confirmed	0		Feng et al. 2022 Stassun et al. 2017	1765.03890 ^{+1.67709} -1.87256 1773.40002±2.50000	2.774 _{-0.120} 2.93±0.08		
	14 Her b		14 Her	0	1		2	-			Published Confirmed	0		Naef et al. 2004	1796.4±8.3	2.80		
	14 Her b		14 Her	0	1		2	-			Published Confirmed	0		Rosenthal et al. 2021	1766.41 ^{+0.67} -0.68	2.830±0.041		
	14 Her b		14 Her	0	1	L	2	Radial Velocity	2002	W. M. Keck Obser	Published Confirmed	0		Butler et al. 2003	1724±50	2.82		
	14 Her b		14 Her	0	1		2	Radial Velocity	2002	W. M. Keck Obser	Published Confirmed	0		Gozdziewski et al. 2006		2.730		
	16 Cyg B b		16 Cyg B	0	3		1	-		Multiple Observat	Published Confirmed	0		Rosenthal et al. 2021	799.45±0.15	1.676±0.025		
	16 Cyg B b		16 Cyg B	0	3		1	-			Published Confirmed	0		Butler et al. 2006	798.5±1.0	1.681±0.097		
	16 Cyg B b		16 Cyg B	0	3		1				Published Confirmed	0		Cochran et al. 1997	800.8±11.7	1.6		
	16 Cyg B b 16 Cyg B b		16 Cyg B 16 Cyg B	0	3		1	-			Published Confirmed Published Confirmed	0		Wittenmyer et al. 2007 Wittenmyer et al. 2007	799.5±0.6 799.5±0.6	1.68±0.03 1.68±0.03		
	16 Cyg B b		16 Cyg B 16 Cyg B	1	3		1	-			Published Confirmed	0		Stassun et al. 2017	798.50000±1.00000	1.66±0.03		
	17 Sco b		17 Sco	1	1		1	-			Published Confirmed	0		Tala Pinto et al. 2020	578.38 ^{+2.01} -2.09	1.45±0.02		
	18 Del b		18 Del	0	2		1	-		-	Published Confirmed	0		Sato et al. 2008	993.3±3.2	2.6		
	18 Del b		18 Del	1	2	2	1			Okayama Astroph	Published Confirmed	0		Teng et al. 2023	982.85 ^{+1.06} -0.92	2.476±0.002		
	18 Del b		18 Del	0	2	2	1	Radial Velocity	2008	Okayama Astroph	Published Confirmed	0		Kunitomo et al. 2011		2.54±0.04		
	1RXS J1609	29.1-210524 b	1RXS J160929	.1- 0	1		1	Imaging	2008	Gemini Observato	Published Confirmed	0		Lachapelle et al. 2015		330		
Shov	ving records	1 to 29 of 36092 (3	6092 total) D	OOI 10.2613	33/NEA12										CI	ear Checked Chec	k All R	eset Filters

NASA **EXOPLANET** ARCHIVE

https://exoplanetarchive.ipac.caltech.edu

A SIMPLE TOOL TO ESTIMATE RADIO FLUX FOR PLANETS

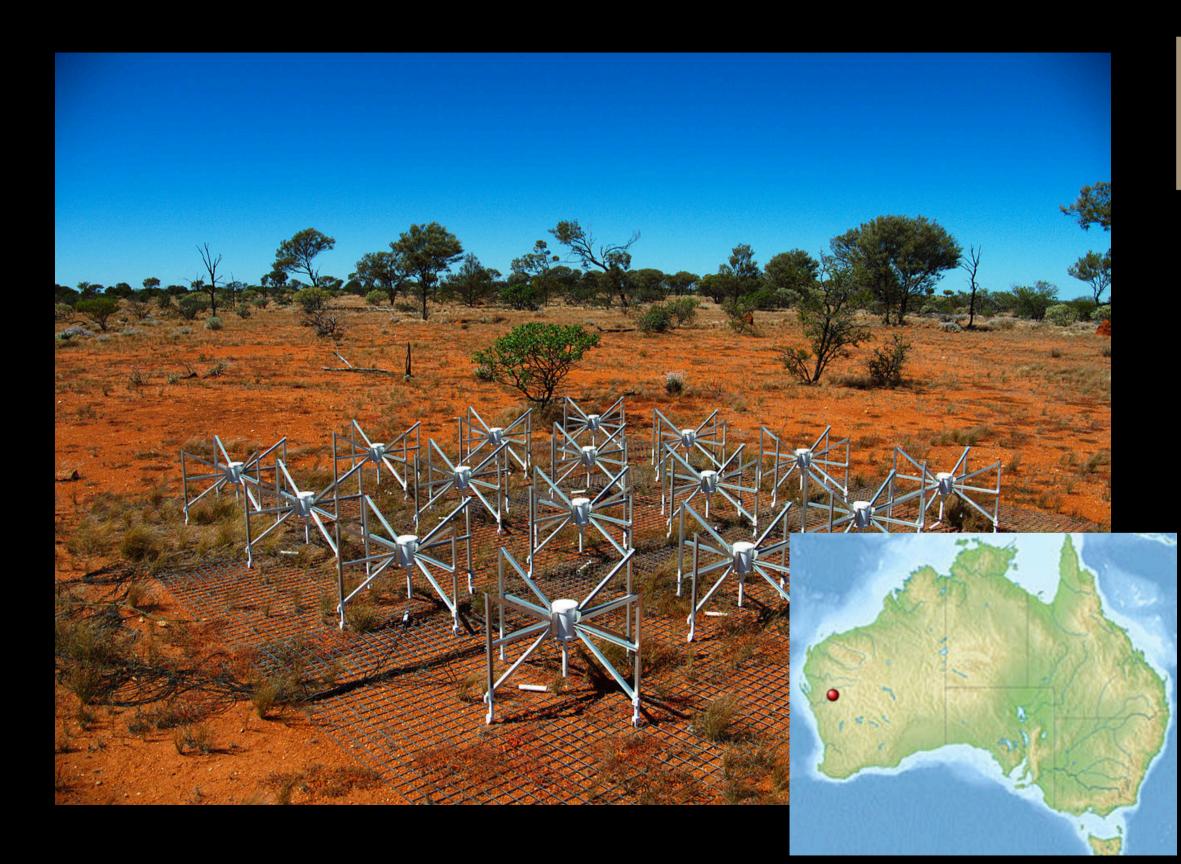
(under development)

https://tinyurl.com/radio-flux-calculator

HOW TO CHOOSE YOUR TELESCOPE?

DEPENDS ON VARIOUS FACTORS:

- Desired sensitivity Suitable Frequency band
- Declination of the source


Upgraded Giant Meterwave Radio Telescope (uGMRT)

- An array of 30 steerable parabolic telescopes, each of 45 m diameter
- Spans over 25 km, provides a total collecting area of about 30,000 sq. m at metre wavelengths, with a fairly
- good angular resolution (~arcsec)

Obseravtional bands

- Band 2: 120MHz-250MHz
- Band 3: 250MHz-500MHz
- Band 4: 550MHz-850MHz
- Band 5: 1050MHz-1450MHz

Murchison Widefield Array (MWA)

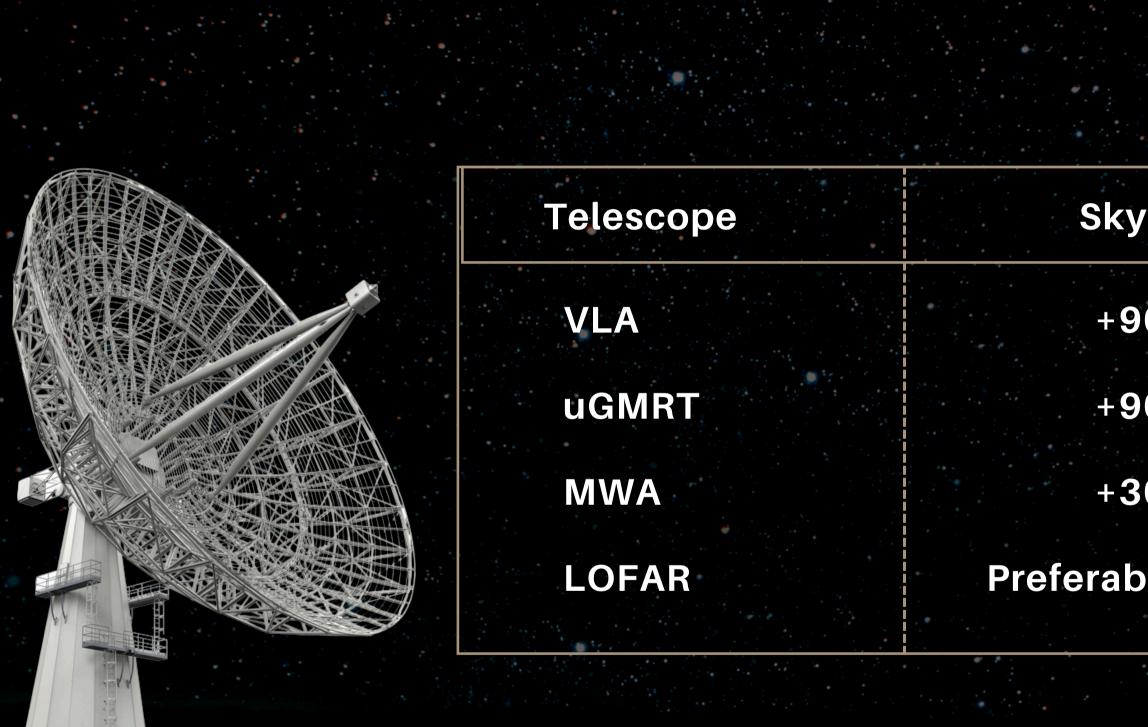
Consists of 4,096 spider-like antennas arranged in 256 regular grids called 'tiles', spread over ~3 Km diameter area.

> Operational frequency: 70-300 MHz, with a bandwidth of 30.72 MHz

Low Frequency Array (LOFAR)

An interferometric array comprising 20,000 small antennas concentrated in 52 stations and still expanding

> **Operational frequency:** LBA: 10-80 Mhz HBA: 120-240 Mhz



Very Large Array (VLA)

A network of 27 antennas arranged in a huge Y pattern up to 36km across

Observational bands

- 4 band: 0.058 0.084GHz
- P band: 0.23 0.47GHz
- L band: 1.0 2.0GHz
- S band: 2.0 4.0GHz
- C band: 4.0 8.0GHz
- X band: 8.0 12.0GHz
- Ku band: 12.0 18.0GHz
- K band: 18.0 26.5GHz
- Ka band: 26.5 40.0GHz
- Q band: 40.0 50.0GHz

Preferably +90° to +10°

+30° to -90°

+90° to -53°

+90° to -40°

Sky covered

ARCHIVAL DATABASES (RADIO)

https://naps.ncra.tifr.res.in/goa/data/search

https://data.nrao.edu/portal/#/

https://www.cv.nrao.edu/nvss/postage.shtml

https://lofar-surveys.org/dr2_release.html

and many more...

ARCHIVAL DATABASES (OTHER WAVELENGTHS)

https://almascience.nrao.edu/aq/

https://vizier.cds.unistra.fr

and many more...

HOW MUCH TIME **TO ASK FOR?**

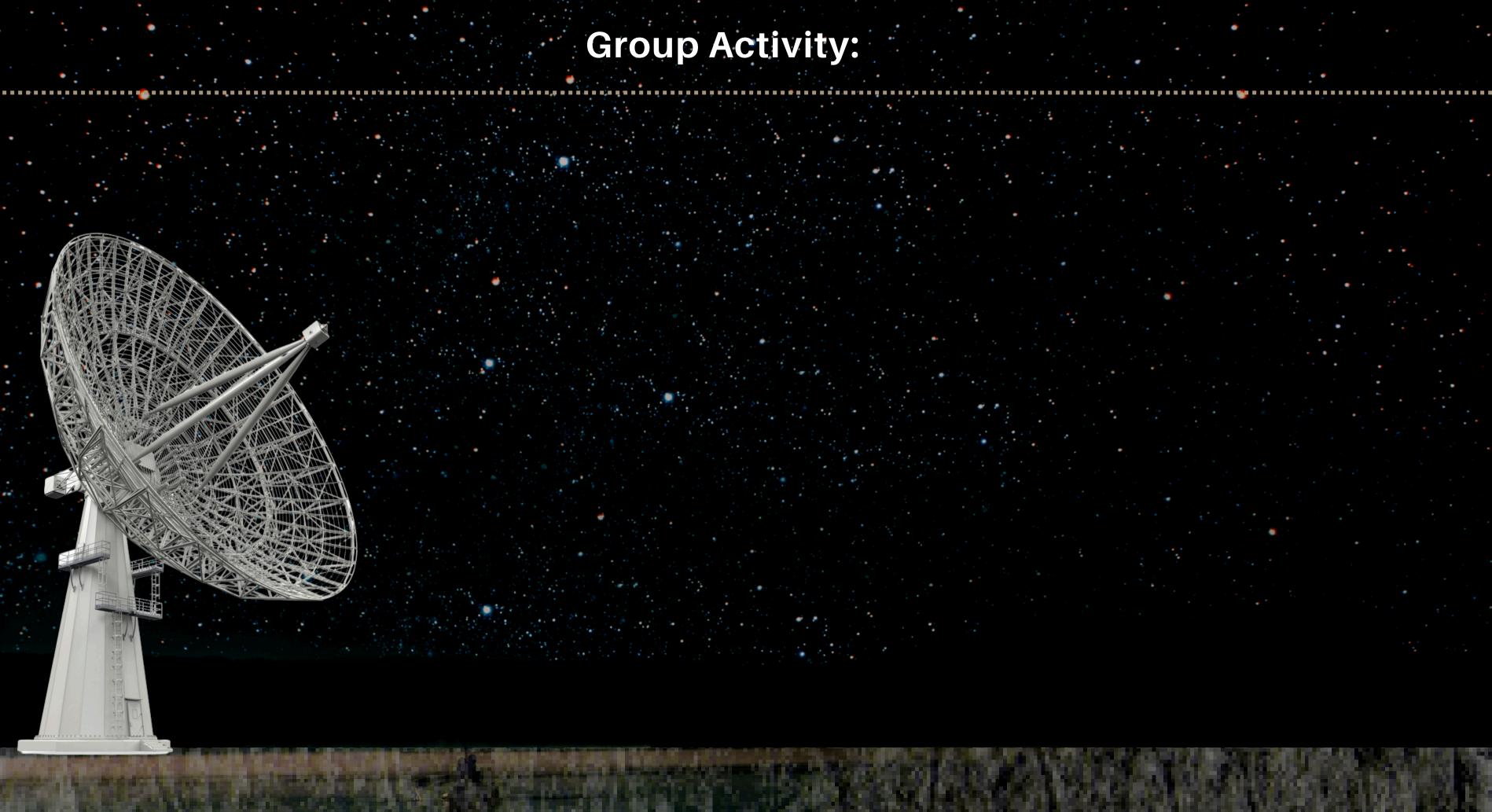
EXPOSURE TIME CALCULATOR

GMRT Exposure Time Calculator (Continuum/Spectral Line)

Help In case of queries, please write to gmrtcalc[at]ncra.tifr.res.in.

Users are advised to run the ETC on the Firefox or Chrome browsers. Problems have been noticed in some versions of Safari.

1	Observation Type	?	Continuum 🗸							
2	Observing Band	?	Band-2 (125-250 MHz) 🗸							
3	Representative Frequency	?	200 MHz 🗸							
4	Number of antennas	?	26 🗸							
5	Bandwidth	?	200 V MHz V							
6	Usable Bandwidth	?	50 MHz ~							
7	Number of Polarizations	?	2 🗸							
8	Image weighting	?	Natural V							
9	Source co-ordinates(J2000)	?	RA 00h 00m 00.00s Dec 00d 00' 00.00"							
10	Sky temperature (T_sky, K)	?	0 auto calculate 🗸							
11	Calculation Type	?	On-Source Time 🗸							
12	RMS noise	?	100 µJy/Bm ✔							
13	On-source Time	?	00h 00m 00s							
14	Fudge Factor	?	1							
15	On-source Time including Fudge Factor	?	00h 00m 00s							
16	Overheads	?	00h 00m 00s auto calculate 🗸							
17	Extra Bandpass/Polarization Time	?	00h 00m 00s							
18	Total Time (15+16+17)	?	00h 00m 00s							
19	Confusion Limit (σ_c*)	?	µJy/Bm ❤							
	Calculate	eset	Save as a PDF							


uGMRT ETC

EXPOSURE TIME CALCULATOR

VLA Exposure Calculator					
Purpose of Calculation					
Array Configuration					
Number of Antennas	25 -				
Polarization Setup	Single O Dual				
Type of Image Weighting	Natural O Robust				
Representative Frequency	0.0000 GHz *				
Receiver Band	Unspecified				
Approximate Beam Size	Unknown				
Digital Samplers	3 bit8 bit				
Elevation	Zenith (90 degrees)				
Average Weather	Winter				
Calculation Type	Time BW Noise/Tb				
Number of Sources	1				
Time on Source (UT)	Oh Om Os				
Total On-Source Time	0h 0m 0s				
Total Time (UT)	0h 0m 0s				

VLA ETC

For feedbacks, you can write to: k.simranpreet@csic.es