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Observed stellar spectra
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High resolution  
stellar spectra



Stellar spectra formation
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Stellar 
interior Photosphere

Atoms and molecules 
in the photosphere 
absorb light at specific 
wavelengths



Stellar 
spectra
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Different 
absorption 
lines for 
different 
stellar types

Walker 2017



Stellar 
spectra

10

Different 
absorption 
lines for 
different 
stellar types

Royer et al. 2024



• Effective temperature
• Surface gravity
• Metallicity, chemical 

abundances
• Magnetic field
• Radial velocity
• Rotational velocity
• Stellar variability
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There is a wealth of information on a stellar 
spectrum



Radial velocity
• Typical line width: 10 km/s
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Typical line of a 
K0 V star at 
high resolution



Radial velocity
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• Typical line width: 10 km/s
• RV shift
• Binary star: ~ few km/s
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Radial velocity
• Typical line width: 10 km/s
• RV shift
• Binary star: ~ few km/s
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Radial velocity
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• Typical line width: 10 km/s
• RV shift
• Binary star ~ km/s
• Hot Jupiter ~100 m/s
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Radial velocity
• Typical line width: 10 km/s
• RV shift
• Binary star ~ km/s
• Hot Jupiter ~100 m/s
• RV precision ~1m/s
• Earth-Sun ~0.1 m/s
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We are measuring 
very small RV shifts!



Rotational broadening
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Stellar spin

Blueshift Redshift
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Stellar variability

Svetlana Berdyugina

Crass et al. 2021 Extreme Precision 
Radial Velocity Working Group Final 
Report, figure NASA, ESA, SDO/HMI, 
MURaM, Big Bear Solar Observatory, 
solar RV observations from HARPS-N, 
Cegla/Haywood/Watson



Spectroscopic 
observations
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Spectrograph

MPAGS Astrophysical Techinques | Spectroscopy

Aperture Collimator

Dispersive element 
(prism, grating) Focusing 

mirror

Camera
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Aperture Collimator
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mirror

Camera
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Collecting light
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Slit: Mechanical aperture with 2 parallel jaws
• Width can be easily changed
• One spatial direction (along the slit) preserved
• Simultaneous spectrum of the sky
• Typical slit widths: 0.2 – 2.0ʺ

Fibre: Optical guide transmitting light 
through multiple reflections
• Very constant output (↑ stability)
• Instrument can be moved off-telescope (↑ 
stability)
• Additional fibre(s) for sky or calibration source
• Typical fibre diameters: 1.0 – 1.5ʺ (match 
seeing)
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Spectrograph
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Aperture Collimator

Dispersive element 
(prism, grating) Focusing 

mirror

Camera
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Dispersing light: prisms, gratings
Prism
• Uses variable index of refraction 
𝒏(𝝀)	to separate incident photons 
(≠ colours are dispersed at ≠ angles)
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Incident light

• Dispersion increases with path 
(i.e. larger prism ⟹ higher 
resolution)
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Dispersing light: prisms, gratings
Diffraction grating
• Uses diffraction + interference to 

separate incident photons
• Periodic carving in material with 

spacing ~ 𝜆 of light
• Diffraction orders at interference 

maxima
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Incident

Incident

0 th order

2 nd order

0th  order

1st order

2 nd order

Reflection grating
(reflective material)

Transmission grating
(transmissive material)
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Dispersing light: prisms, gratings
Diffraction grating
• Uses diffraction + interference to 

separate incident photons
• Periodic carving in material with 

spacing ~ 𝜆 of light
• Diffraction orders at interference 

maxima
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Dispersing light: prisms, gratings
Diffraction grating
• Uses diffraction + interference to 

separate incident photons
• Periodic carving in material with 

spacing ~ 𝜆 of light
• Diffraction orders at interference 

maxima
• Resolution ↑ with line density
• Resolution ↑ for higher orders 

(but intensity ↓)
• Most of the light goes to the first 

orders
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Incident

Incident

0 th order

2 nd order

0th  order

1st order

2 nd order

Reflection grating
(reflective material)

Transmission grating
(transmissive material)
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1st 
order



Dispersing light: blazed gratings
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• Gratings can be blazed to concentrate light 
away from 0th order and towards higher 
orders
• Reflecting surfaces oriented at a specific 

blaze angle with respect to the surface of 
the grating
• Called echelette if used for low orders or 

echelle if used for high orders (large blaze 
angle, > 45°)

• Order overlap becomes a problem

Blazed grating

Regular (unblazed) grating

1st 
order

1st 
order

2nd  
order

2nd  
order

0th  
order

0th  
orderincident

incident



Dispersing light: cross-dispersion
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Orders separated vertically for clarity

In reality, orders overlap

Order 
99

Order 
100

Order 
101

λ1

λ2

λ3

• The wavelength range of high orders 
strongly overlaps

• Want to measure λ1 in order 99, but 
λ2 in order 100 and λ3 in order 101 
contaminate your spectra



Dispersing light: cross-dispersion
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Orders separated vertically for clarity

In reality, orders overlap

Order 
99

Order 
100

Order 
101

λ1

λ2

λ3

• The wavelength range of high orders 
strongly overlaps

• Want to measure λ1 in order 99, but 
λ2 in order 100 and λ3 in order 101 
contaminate your spectra

• Solutions:
• Bandpass filters to selected desired 

λ range, but lose light

• Cross-dispersion perpendicular to 
the initial spectral dispersion to 
separate the orders



Dispersing light: cross-dispersion
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← from collimator

→ to focusing element & camera

Dispersive 
element 

(echelle grating)

Cross-disperser

Overlapping 
spectral orders

Separated 
spectral orders

Dispersion direction 
of echelle grating

Dispersion 
direction of 

cross-disperser



Spectral resolution: separating spectral lines
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1 FWHM 
separation

Wavelength

36

Houston 
criterion

What is the minimum distance between lines (∆𝜆) to 
be considered spectrally resolved?

• Spectral resolution: ∆𝜆
• Resolving power: R = ⁄𝜆 ∆𝜆

Related to Doppler shift: ∆𝑣	~	 ⁄𝑐 R

   E.g. R = 100 000 ⟹ 
   Resolve 3 km/s in velocity or 
   0.005 nm in wavelength at 500 nm

Resolution increases with density of 
lines in grating & order number
Trade-off between resolution & 
amount of photons!



Spectral resolution
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ESPRESSO HARPS

ESO

CAHACARMENES
38



Extracting the spectrum
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Example of a cross-dispersed spectrum
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Example of a cross-dispersed spectrum
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Example of a cross-dispersed spectrum
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Example of a cross-dispersed spectrum
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Final result after 
full extraction
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Calibrating the detector
• Bias correction
• 0 s exposure time
• Pre-/over-scan region in science observations
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• Flat fielding
• Pixel-to-pixel variations
• Fringing (interference pattern)
• Blaze function from the 

echelle grating
• λ-dependent efficiency of the 

instrument
• Dome flat, sky flat at twilight



Order definition & extraction
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• Identify location and width of the spectrum
• Optimal extraction: weight by a smoothed 2D profile (Horne, 1986), as opposed 

to linear extraction

Pixel

In
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ity



Wavelength calibration: from pixel to λ

MPAGS Astrophysical Techinques | Spectroscopy 4646

• Associate a wavelength to each of the pixels along the spectral direction
• Requires a reference spectrum with known wavelengths

Wavelength

In
te

ns
ity

Sky absorption/emission lines
• Simultaneous, observer reference frame
• Not accurate
• Few lines in optical, more in near-infrared
Stellar spectral lines
• Simultaneous, stellar frame
• Need well characterised star

Pixel



Wavelength calibration: from pixel to λ
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• Associate a wavelength to each of the pixels along the spectral direction
• Requires a reference spectrum with known wavelengths
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Sky absorption/emission lines
• Simultaneous, observer reference frame
• Not accurate
• Few lines in optical, more in near-infrared
Stellar spectral lines
• Simultaneous, stellar frame
• Need well characterised star
Gas absorption cell in optical path
• Simultaneous, observer reference frame
• Reduces amount of photons from source
• Very accurate (m/s)



Wavelength calibration: from pixel to λ
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• Associate a wavelength to each of the pixels along the spectral direction
• Requires a reference spectrum with known wavelengths
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Sp

at
ia

l d
ire

ct
io

n

Simultaneous target and emission lamp 
observation (echelle with 2 fibres)

ht
tp

:/
/w

w
w

.o
bs

-h
p.

fr
/g

ui
de

/s
op

hi
e/

so
ph

ie
-e

ng
.sh

tm
l

Sky absorption/emission lines
• Simultaneous, observer reference frame
• Not accurate
• Few lines in optical, more in near-infrared
Stellar spectral lines
• Simultaneous, stellar frame
• Need well characterised star
Gas absorption cell in optical path
• Simultaneous, observer reference frame
• Reduces amount of photons from source
• Very accurate (m/s)
Emission line lamps (arcs): Ar, Th, He, Ne, Cu…
• Not always simultaneous, observer reference 

frame
• Stable source, very accurate



Wavelength calibration: from pixel to λ
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• Associate a wavelength to each of the pixels along the spectral direction
• Requires a reference spectrum with known wavelengths

Spectral direction
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Fabry-Perot & Laser frequency comb
• Simultaneous, observer reference frame
• Very stable, very accurate

Sky absorption/emission lines
• Simultaneous, observer reference frame
• Not accurate
• Few lines in optical, more in near-infrared
Stellar spectral lines
• Simultaneous, stellar frame
• Need well characterised star
Gas absorption cell in optical path
• Simultaneous, observer reference frame
• Reduces amount of photons from source
• Very accurate (m/s)
Emission line lamps (arcs): Ar, Th, He, Ne, Cu…
• Not always simultaneous, observer reference 

frame
• Stable source, very accurate



Wavelength calibration: from pixel to λ
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• Associate a wavelength to each of the pixels along the spectral direction
• Requires a reference spectrum with known wavelengths

Fabry-Perot & Laser frequency comb
• Simultaneous, observer reference frame
• Very stable, very accurate

Sky absorption/emission lines
• Simultaneous, observer reference frame
• Not accurate
• Few lines in optical, more in near-infrared
Stellar spectral lines
• Simultaneous, stellar frame
• Need well characterised star
Gas absorption cell in optical path
• Simultaneous, observer reference frame
• Reduces amount of photons from source
• Very accurate (m/s)
Emission line lamps (arcs): Ar, Th, He, Ne, Cu…
• Not always simultaneous, observer reference 

frame
• Stable source, very accurate



Wavelength calibration: from pixel to λ
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• Associate a wavelength to each of the pixels along the spectral direction
• Requires a reference spectrum with known wavelengths

Fabry-Perot & Laser frequency comb
• Simultaneous, observer reference frame
• Very stable, very accurate

Sky absorption/emission lines
• Simultaneous, observer reference frame
• Not accurate
• Few lines in optical, more in near-infrared
Stellar spectral lines
• Simultaneous, stellar frame
• Need well characterised star
Gas absorption cell in optical path
• Simultaneous, observer reference frame
• Reduces amount of photons from source
• Very accurate (m/s)
Emission line lamps (arcs): Ar, Th, He, Ne, Cu…
• Not always simultaneous, observer reference 

frame
• Stable source, very accurate

Instrument flexures, seeing/pointing 
variations, temperature and pressure 
changes… all influence the wavelength 
solution



More than the stellar spectrum…
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• High-resolution 
spectrographs are on the 
ground
• We observe stellar light 

through the Earth’s 
atmosphere
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Atmospheric transmission
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• Atmospheric 
transmission strongly 
depends on λ
• Source spectrum will 

be imprinted by 
Earth’s transmission 
spectrum
• At visible 

wavelengths Earth 
atmosphere almost 
transparent
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Smette et al. 2015Earth’s telluric absorption spectrum 



Earth’s 
telluric 
absorption 
spectrum 
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Smette et al. 2015



Earth’s telluric absorption spectrum 
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Sky background: Optical
• Background has contributions from many sources
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Wavelength [Å]
4000 5000 6000 7000 8000 9000
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• Air glow: Strong, discrete 
emission lines (fluorescence 
of atmospheric OH, O, Na, 
& city lights Hg)
• Zodiacal light
• Sun/Moonlight
• Auroare
• Light pollution
• Thermal emission from sky, 

telescope and buildings
• Non-resolved astronomical 

background

OI 5577

OI 6301

OH lines
Na

HgHg Na
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Sky background: Infrared
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• Thermal emission from 
the sky, ground and 
telescope dominates
• Observations become 

very challenging for.   
λ > 5 μm

Wavelength [Å]
10000 20000 30000 40000 50000 60000

In
te

ns
ity

10000 14000 18000 22000
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Atmospheric dispersion

MPAGS Astrophysical Techinques | Spectroscopy 60

Zenith
• Earth’s atmosphere refracts source light ⟹ 

Sky position of the source is λ-dependent!

60



Atmospheric dispersion
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Zenith
• Earth’s atmosphere refracts source light ⟹ 

Sky position of the source is λ-dependent!
• Index of refraction depends on wavelength, 

temperature, pressure, water vapour
• Dispersion happens along the horizon-zenith 

direction (airmass)
• Dispersion larger for shorter wavelengths
• Dispersion direction changes with time

• Affects acquisition
• Atmospheric Dispersion Compensator (ADC)

61



Atmospheric dispersion
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Zenith
• Earth’s atmosphere refracts source light ⟹ 

Sky position of the source is λ-dependent!
• Index of refraction depends on wavelength, 

temperature, pressure, water vapour
• Dispersion happens along the horizon-zenith 

direction (airmass)
• Dispersion larger for shorter wavelengths
• Dispersion direction changes with time

• Affects acquisition
• Atmospheric Dispersion Compensator (ADC)

62



Extracting time-series data 
from the reduced spectra



Measuring RVs
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Cross-correlation function Template matching

e.g.
Queloz 1995
Baranne et al. 1996
Pepe et al. 2002 e.g.

Anglada-Escudé & Butler 2012
Astudillo-Defru et al. 2015
Zechmeister et al. 2018
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Spectrum RV content
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e.g. Connes 1985, Bouchy et al. 2001, Lovis & Fischer 2010

𝜎!"	~
FWHM
𝐶	·	S/N

How does the RV precision depend 
on the spectral line shape?
• Continuum signal-to-noise
• Depth
• Width

à Better RV precision for deep, 
narrow lines with high S/N

à ↑ vsini or ↓ resolution will reduce 
the RV precision

Continuum 
signal-to-noise 

ratio

Line depth
 (contrast = depth / continuum)

Pixel

Fl
ux

Line width



Spectrum RV content
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𝜎12 = 𝑐 *
3

𝜆34	· 𝑑𝐴3/𝑑𝜆 4

𝐴3 +	𝜎54

67/4

𝜎!",	% = 𝑐
𝐴% +	𝜎&'

𝜆% 	· 𝑑𝐴%/𝑑𝜆

RV precision for pixel 𝑖 ∶

Photon noise 𝐴! + 
Detector noise 𝜎" 

RV precision for full spectrum (all pixels):
𝐴#	: Flux in pixel 𝑖
𝜆#: Wavelength in pixel 𝑖
𝑑𝐴#/𝑑𝜆	: Spectrum shape, slope 
𝜎$ : Detector noise

àThe steeper the spectrum, 
the higher the RV content

Spectrum 
slope

Connes 1985, Bouchy et al. 2001

Pixel

Fl
ux Slope 𝑑𝐴!/𝑑𝜆

Flux 𝐴!



Cross-correlation function (CCF)
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Spectrum ⊗ Mask
Cross-correlation 

function

CCF 𝑣 =:
()*

+

:
,)*

-

𝑤(	· 𝑓,	·	Δ,((𝑣)
𝑤'	: Line weight
𝑓(	: Pixel flux
Δ('	: Overlap between line & pixel
𝑣	: Doppler shift of the mask

𝑚	: Number of 
mask lines
𝑛: Number of 
spectrum pixels

Weighted binary mask



CCF binary masks
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Baranne et al. 1979
Spatial filter or mask (negative) used by CORAVEL, derived from Arcturus 
(~3000 lines, size ~70 mm x 14 mm)



Creating weighted binary masks
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Pixel

Fl
ux

Minimum

MaximumMaximum

On a high S/N stellar template, identify lines by finding minima



Creating weighted binary masks
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Pixel

Fl
ux Width

Depth, 
contrast

Asymmetries

Characterise line shape



Creating weighted binary masks
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Select “good” lines based on their shape properties (deep, narrow, symmetric)
Line weight ~ depth (and ~ 1/width)

Lafarga et al. 
2020, line 
selection for an 
M dwarf mask



Creating weighted binary masks
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Different lines “visible” for 
different observations of the 
same star due to different 
shifts
• Earth barycentric movement
• Instrumental shifts
• Different line overlap with 

telluric regions
• Lines “out” of the detector

à Consider line “visibility” 
throughout the observing 
times

Pixel

Fl
ux

Telluric 
region

Detector

Observation 2

Pixel

Fl
ux

Telluric 
region

Detector

Observation 1

In observer reference frame



Creating weighted binary masks
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Chromospheric lines 
(emission)

Schöfer et al. 2019



Creating weighted binary masks
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Different stars show different 
spectral lines

Lafarga et al. 2020, number of lines for M 
dwarf masks of different spectral sub-type



Computing the CCF
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CCF 𝑣 =:
()*

+

:
,)*

-

𝑤(	· 𝑓,	·	Δ,((𝑣)

Some things to consider
•Mask line width ~ 1 pixel
•RV step when shifting mask (CCF RV grid) 
~ average pixel size in velocity units Δ𝑣

Δ𝑣 =
𝑐

𝑅	· 𝑠
Resolving power

Sampling 
(pixels / 
spectral element)

•e.g. HARPS 𝑠=3.2 pix/SE, 𝑅=115 000, Δ𝑣=820 m/s
•Smaller Δ𝑣 “counts” the same photons more than 
once, underestimate RV uncertainties

•CCF computed order-by-order, coadd them to 
obtain a “final” CCF per observation
•Blue orders tend to have lower S/N
•Order edges tend to have lower S/N
•Some orders are heavily affected by tellurics Blue orders Red orders

Blue λ

Red λ



Extracting information from the CCF

76

RV shift

•RV shift = CCF centroid
•Uncertainty from coadded 
photon noise & CCF slope
•Fit e.g. Gaussian to 
measure RV and other 
profile properties
•CCF ~ average spectral 
line, also contains stellar 
variability information
•Typical stellar variability 
proxies: FWHM, contrast, 
bisector

Bisector 
inverse slope

Queloz et al. 2001, Nardetto et al. 2006, Boisse et al. 2011, Figueira et al. 2013, 
Lanza et al. 2018, Simola et al. 2019
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G3 
dwarf

CARMENES 
observation 

S/N~140

The CCF method assumes that stellar lines are well isolated 
and unblended
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G3 
dwarf

CARMENES 
observation 

S/N~140

M4.5 
dwarf

CARMENES 
observation 

S/N~140

Lines are not as “well-defined” in cooler stars
By selecting good lines we lose a lot of the stellar information



Template matching
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G8.5 V M4.0 V

• Least-squares matching of the 
observed spectrum with a high S/N 
template (minimise the difference 
between the observation and the 
template)

• More precise RVs for cool stars than 
CCF approach

𝜒. = :
,)*

-
𝑓, − 𝑔(𝜆#) .

𝜎#.
	 𝑔 𝜆# = 𝑝(𝜆)	· G(λ,𝑣)

Polynomial to account 
for flux variations

Spectrum 
modelFlux uncertainty

Observed flux
Model flux

Anglada-Escudé & Butler 2012, 
Astudillo-Defru et al. 2015, Zechmeister et al. 2018



Building the template
•Synthetic template with similar 
properties to observed star (e.g. 
PHOENIX models, Husser et al. 2013)
•Observation with highest S/N
•Coadded all observations into a high 
S/N
• Compute preliminary RVs using 

observation with highest S/N as 
template

• Shift observations by preliminary RVs 
and coadd them into high S/N 
template

• Re-compute RVs with new template
• Iterative process (usually 1 iteration is 

sufficient)

80

Zechmeister et al. 2018, constructing a 
template from a B-spline fit to 7 observations



RV computation 
Some things to consider
• Minimisation computed order-by-order 

à 1 RV measurement per order 
à Weighted average of the order 
RVs to obtain “final” RV per 
observation
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Blue orders Red orders

Blue λ

Red λ

•Blue orders tend to have lower S/N
•Order edges tend to have lower S/N
•Some orders are affected by tellurics
•Discard heavily-affected orders
•Down-weight/exclude telluric 
affected pixels

Zechmeister et al. 2018



More ways to measure RVs
Many different approaches that include instrumental, telluric and/or 
stellar variability effects at the spectral level
• Forward modelling approaches (e.g. Butler et al. 1996, Hirano et al. 2020, Bedell 

et al. 2019, Gilbertson et al. 2020, Jones et al. 2020)

• Line-by-line approaches (e.g. Dumusque 2018, Cretignier et al. 2020, Artigau et 
al. 2022, Siegel et al. 2022, Lafarga et al. 2023)

• Least squares deconvolution (e.g. Belloti et al. 2022, Lienhard et al. 2022)

• Fourier domain (e.g. Zhao & Tinney 2020)

• Machine learning (e.g. Czekala et al. 2017, Rajpaul et al. 2020, Colwell et al. 
2023)
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Almost done!
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Crass et al. 2021 
Extreme Precision 
Radial Velocity 
Working Group 
Final Report, figure 
by Sam Halverson

& Tellurics



Hands on:
Spectral data extraction



Hands-on: Spectral data extraction
Download data and code from:
https://livewarwickac-
my.sharepoint.com/:f:/g/personal/u2070295_live_warwick_ac_uk/E
gFkwFdfvCpArE6_22uHXl8BNJv66AkrgHBO-Mef_36xqg?e=kKRk92
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