Data extraction from high-resolution spectra

Marina Lafarga Magro (she/her)

marina.lafarga-magro@warwick.ac.uk

Multiwavelength Approach to Exoplanetary Systems ICE Summer School 2024

NASA

High resolution stellar spectra

Stellar spectra formation

Stellar interior

Photosphere

Atoms and molecules in the photosphere absorb light at specific wavelengths

Stellar spectra

Different absorption lines for different stellar types

Stellar spectra

Different absorption lines for different stellar types

There is a wealth of information on a stellar spectrum

- Effective temperature
- Surface gravity
- Metallicity, chemical abundances
- Magnetic field
- Radial velocity
- Rotational velocity
- Stellar variability

• Typical line width: 10 km/s

- Typical line width: 10 km/s
- RV shift
 - Binary star ~ km/s
 - Hot Jupiter ~100 m/s

- Typical line width: 10 km/s
- RV shift
 - Binary star ~ km/s
 - Hot Jupiter ~100 m/s

- Typical line width: 10 km/s
- RV shift
 - Binary star ~ km/s
 - Hot Jupiter ~100 m/s
 - RV precision ~1m/s

- Typical line width: 10 km/s
- RV shift
 - Binary star ~ km/s
 - Hot Jupiter ~100 m/s
 - RV precision ~1m/s

- Typical line width: 10 km/s
- RV shift
 - Binary star ~ km/s
 - Hot Jupiter ~100 m/s
 - RV precision ~1m/s
 - Earth-Sun ~0.1 m/s

We are measuring very small RV shifts!

Rotational broadening

Stellar variability

Svetlana Berdyugina

Crass et al. 2021 Extreme Precision Radial Velocity Working Group Final Report, figure NASA, ESA, SDO/HMI, MURaM, Big Bear Solar Observatory, solar RV observations from HARPS-N, Cegla/Haywood/Watson

Spectroscopic observations

Collecting light

Slit: Mechanical aperture with 2 parallel jaws

- Width can be easily changed
- One spatial direction (along the slit) preserved
- Simultaneous spectrum of the sky
- Typical slit widths: 0.2 2.0"

Fibre: Optical guide transmitting light through multiple reflections

- Very constant output (↑ stability)
- Instrument can be moved off-telescope (↑ stability)
- Additional fibre(s) for sky or calibration source
- Typical fibre diameters: 1.0 1.5" (match seeing)

Incident light

Prism

- Uses variable index of refraction
 n(λ) to separate incident photons
 (≠ colours are dispersed at ≠ angles)
- Dispersion increases with path (i.e. larger prism ⇒ higher resolution)

.....

Diffraction grating

- Uses diffraction + interference to separate incident photons
- Periodic carving in material with spacing ~ λ of light
- Diffraction orders at interference maxima

Reflection grating (reflective material)

Transmission grating (transmissive material)

Diffraction grating

•

- Uses **diffraction + interference** to separate incident photons
- Periodic carving in material with

Reflection grating (reflective material)

Transmission grating (transmissive material)

Diffraction grating

- Uses diffraction + interference to separate incident photons
- Periodic carving in material with spacing ~ λ of light
- Diffraction orders at interference maxima
- Resolution \uparrow with line density
- Resolution \uparrow for higher orders (but intensity \downarrow)
- Most of the light goes to the first orders

Reflection grating (reflective material)

Transmission grating (transmissive material)

Dispersing light: blazed gratings

- Gratings can be *blazed* to concentrate light away from 0th order and towards higher orders
- Reflecting surfaces oriented at a specific blaze angle with respect to the surface of the grating
- Called echelette if used for low orders or echelle if used for high orders (large blaze angle, > 45°)
- Order overlap becomes a problem

Dispersing light: cross-dispersion

- The wavelength range of high orders strongly overlaps
- Want to measure λ_1 in order 99, but λ_2 in order 100 and λ_3 in order 101 contaminate your spectra

Orders separated vertically for clarity

In reality, orders overlap

Dispersing light: cross-dispersion

- The wavelength range of high orders strongly overlaps
- Want to measure λ_1 in order 99, but λ_2 in order 100 and λ_3 in order 101 contaminate your spectra
- Solutions:
 - Bandpass filters to selected desired λ range, but lose light
 - Cross-dispersion perpendicular to the initial spectral dispersion to separate the orders

Orders separated vertically for clarity

Dispersing light: cross-dispersion

Spectral resolution: separating spectral lines

What is the minimum distance between lines ($\Delta\lambda$) to be considered spectrally resolved?

- Spectral resolution: $\Delta \lambda$
- Resolving power: $R = \lambda / \Delta \lambda$

Related to **Doppler shift**: $\Delta v \sim c/R$

E.g. R = $100\ 000 \Rightarrow$ Resolve 3 km/s in velocity or 0.005 nm in wavelength at 500 nm

Resolution increases with **density of lines in grating** & **order number**

Trade-off between resolution & amount of photons!

Spectral resolution

Birkby 2018

Extracting the spectrum

40

Calibrating the detector

- Bias correction
 - 0 s exposure time
 - Pre-/over-scan region in science observations
- Flat fielding
 - Pixel-to-pixel variations
 - Fringing (interference pattern)
 - Blaze function from the echelle grating
 - $\label{eq:lambda} \bullet \ \lambda \mbox{-dependent efficiency of the} \\ instrument$
 - Dome flat, sky flat at twilight

Order definition & extraction

- Identify location and width of the spectrum
- Optimal extraction: weight by a smoothed 2D profile (Horne, 1986), as opposed to linear extraction

- Associate a wavelength to each of the pixels along the spectral direction
- Requires a reference spectrum with known wavelengths

Sky absorption/emission lines

- Simultaneous, observer reference frame
- Not accurate
- Few lines in optical, more in near-infrared

Stellar spectral lines

- Simultaneous, stellar frame
- Need well characterised star

Wavelength

Wavelength calibration: from pixel to $\boldsymbol{\lambda}$

- Associate a wavelength to each of the pixels along the spectral direction
- Requires a **reference spectrum** with known wavelengths

Sky absorption/emission lines

- Simultaneous, observer reference frame
- Not accurate
- Few lines in optical, more in near-infrared

Stellar spectral lines

- Simultaneous, stellar frame
- Need well characterised star

Gas absorption cell in optical path

- Simultaneous, observer reference frame
- Reduces amount of photons from source
- Very accurate (m/s)

HARPS lodine cell

direction

- Associate a wavelength to each of the pixels along the spectral direction
- Requires a **reference spectrum** with known wavelengths

Sky absorption/emission lines

- Simultaneous, observer reference frame
- Not accurate
- Few lines in optical, more in near-infrared

Stellar spectral lines

- Simultaneous, stellar frame
- Need well characterised star

Gas absorption cell in optical path

- Simultaneous, observer reference frame
- Reduces amount of photons from source
- Very accurate (m/s)

Spatial Emission line lamps (arcs): Ar, Th, He, Ne, Cu...

- Not always simultaneous, observer reference frame
- Stable source, very accurate

Simultaneous target and emission lamp observation (echelle with 2 fibres) -....

Spectral direction

.

.

48

direction

- Associate a wavelength to each of the pixels along the spectral direction
- Requires a **reference spectrum** with known wavelengths

Sky absorption/emission lines

- Simultaneous, observer reference frame
- Not accurate
- Few lines in optical, more in near-infrared

Stellar spectral lines

- Simultaneous, stellar frame
- Need well characterised star

Gas absorption cell in optical path

- Simultaneous, observer reference frame
- Reduces amount of photons from source
- Very accurate (m/s)

Emission line lamps (arcs): Ar, Th, He, Ne, Cu...

- Not always simultaneous, observer reference frame
- Stable source, very accurate

Fabry-Perot & Laser frequency comb

- Simultaneous, observer reference frame
- Very stable, very accurate

- Associate a wavelength to each of the pixels along the spectral direction
- Requires a **reference spectrum** with known wavelengths

Sky absorption/emission lines

- Simultaneous, observer reference frame
- Not accurate
- Few lines in optical, more in near-infrared

Stellar spectral lines

- Simultaneous, stellar frame
- Need well characterised star

Gas absorption cell in optical path

- Simultaneous, observer reference frame
- Reduces amount of photons from source
- Very accurate (m/s)

Emission line lamps (arcs): Ar, Th, He, Ne, Cu...

- Not always simultaneous, observer reference frame
- Stable source, very accurate

Fabry-Perot & Laser frequency comb

- Simultaneous, observer reference frame
- Very stable, very accurate

Wavelength calibration: from pixel to $\boldsymbol{\lambda}$

- Associate a wavelength to each of the pixels along the spectral direction
- Requires a **reference spectrum** with known wavelengths

Sky absorption/emission lines

- Simultaneous, observer reference frame
- Not accurate
- Few lines in optical, more in near-infrared

Stellar spectral lines

- Simultaneous, stellar frame
- Need well characterised star

Gas absorption cell in optical path

- Simultaneous, observer reference frame
- Reduces amount of photons from source
- Very accurate (m/s)

Emission line lamps (arcs): Ar, Th, He, Ne, Cu...

- Not always simultaneous, observer reference frame
- Stable source, very accurate

Fabry-Perot & Laser frequency comb

- Simultaneous, observer reference frame
- Very stable, very accurate

Instrument flexures, seeing/pointing variations, temperature and pressure changes... all influence the wavelength solution

More than the stellar spectrum...

- High-resolution spectrographs are on the ground
- We observe stellar light through the Earth's atmosphere

Atmospheric transmission

- Atmospheric transmission strongly depends on λ
- Source spectrum will be imprinted by Earth's transmission spectrum
- At visible wavelengths Earth atmosphere almost transparent

Earth's telluric absorption spectrum

Smette et al. 2015

Earth's telluric absorption spectrum

Smette et al. 2015

Earth's telluric absorption spectrum

Sky background: Optical

- Background has contributions from many sources
 - Air glow: Strong, discrete emission lines (fluorescence of atmospheric OH, O, Na, & city lights Hg)
 - Zodiacal light
 - Sun/Moonlight
 - Auroare
 - Light pollution
 - Thermal emission from sky, telescope and buildings
 - Non-resolved astronomical background

Sky background: Infrared

- Thermal emission from the sky, ground and telescope dominates
- Observations become very challenging for.
 λ > 5 μm

Atmospheric dispersion

• Earth's atmosphere refracts source light \Rightarrow Sky position of the source is λ -dependent!

Atmospheric dispersion

- Earth's atmosphere refracts source light \Rightarrow Sky position of the source is λ -dependent!
 - Index of refraction depends on wavelength, temperature, pressure, water vapour
 - Dispersion happens along the horizon-zenith direction (airmass)
 - Dispersion larger for shorter wavelengths
 - Dispersion direction changes with time
- Affects acquisition
- Atmospheric Dispersion Compensator (ADC)

Atmospheric dispersion

- Earth's atmosphere refracts source light \Rightarrow Sky position of the source is λ -dependent!
 - Index of refraction depends on wavelength, temperature, pressure, water vapour
 - Dispersion happens along the horizon-zenith direction (airmass)
 - Dispersion larger for shorter wavelengths
 - Dispersion direction changes with time
- Affects acquisition
- Atmospheric Dispersion Compensator (ADC)

Extracting time-series data from the reduced spectra

Measuring RVs

Cross-correlation function

Template matching

e.g. Anglada-Escudé & Butler 2012 Astudillo-Defru et al. 2015 Zechmeister et al. 2018

Spectrum RV content

How does the RV precision depend on the spectral line shape?

- Continuum signal-to-noise
- Depth
- Width
- → Better RV precision for deep, narrow lines with high S/N
- → \uparrow vsini or \downarrow resolution will reduce the RV precision

Spectrum RV content

RV precision for pixel *i* :

$$\sigma_{\text{RV},i} = c \frac{\sqrt{A_i + \sigma_D^2}}{\lambda_i \cdot |dA_i/d\lambda|} \xrightarrow{\text{Photon noise } \sqrt{A_i} + Detector noise } \sigma_D} \xrightarrow{\text{Flux } A_i} \text{Pixel}$$

Flux

RV precision for full spectrum (all pixels):

$$\sigma_{\rm RV} = c \left(\sum_{i} \frac{\lambda_i^2 \cdot |dA_i/d\lambda|^2}{A_i + \sigma_D^2} \right)^{-1/2}$$

Connes 1985, Bouchy et al. 2001

 A_i : Flux in pixel *i* λ_i : Wavelength in pixel *i* $dA_i/d\lambda$: Spectrum shape, slope σ_D : Detector noise

→ The steeper the spectrum, the higher the RV content

Cross-correlation function (CCF)

CCF binary masks

Baranne et al. 1979 Spatial filter or mask (negative) used by CORAVEL, derived from Arcturus (~3000 lines, size ~70 mm x 14 mm)

On a high S/N stellar template, identify lines by finding minima

Characterise line shape

Select "good" lines based on their shape properties (deep, narrow, symmetric) Line weight ~ depth (and ~ 1/width)

Lafarga et al. 2020, line selection for an M dwarf mask

Different lines "visible" for different observations of the same star due to different shifts

- Earth barycentric movement
- Instrumental shifts
- Different line overlap with telluric regions
- Lines "out" of the detector

→ Consider line "visibility" throughout the observing times

Chromospheric lines (emission)

Schöfer et al. 2019

Lafarga et al. 2020, number of lines for M dwarf masks of different spectral sub-type Number of lines 100 Spectral typ Wavelength [Å]

Different stars show different spectral lines
Computing the CCF

Some things to consider

- Mask line width ~ 1 pixel
- RV step when shifting mask (CCF RV grid)
 - ~ average pixel size in velocity units Δv
 - •e.g. HARPS *s*=3.2 pix/SE, *R*=115 000, Δ*v*=820 m/s
 - Smaller Δv "counts" the same photons more than once, underestimate RV uncertainties
- CCF computed order-by-order, coadd them to obtain a "final" CCF per observation
- Blue orders tend to have lower S/N
- •Order edges tend to have lower S/N
- Some orders are heavily affected by tellurics

Extracting information from the CCF

Bisector inverse slope

- RV shift = CCF centroid
- Uncertainty from coadded photon noise & CCF slope
- Fit e.g. Gaussian to measure RV and other profile properties
- CCF ~ average spectral line, also contains stellar variability information
- Typical stellar variability proxies: FWHM, contrast, bisector

Queloz et al. 2001, Nardetto et al. 2006, Boisse et al. 2011, Figueira et al. 2013, Lanza et al. 2018, Simola et al. 2019

The CCF method assumes that stellar lines are well isolated and unblended

Lines are not as "well-defined" in cooler stars By selecting good lines we lose a lot of the stellar information

Template matching

Anglada-Escudé & Butler 2012, Astudillo-Defru et al. 2015, Zechmeister et al. 2018

- Least-squares matching of the observed spectrum with a high S/N template (minimise the difference between the observation and the template)
- More precise RVs for cool stars than CCF approach

Building the template

- Synthetic template with similar properties to observed star (e.g. PHOENIX models, Husser et al. 2013)
- Observation with highest S/N
- Coadded all observations into a high S/N
 - Compute preliminary RVs using observation with highest S/N as template
 - Shift observations by preliminary RVs and coadd them into high S/N template
 - Re-compute RVs with new template
 - Iterative process (usually 1 iteration is sufficient)

Zechmeister et al. 2018, constructing a template from a B-spline fit to 7 observations

RV computation

Some things to consider

Minimisation computed order-by-order
→ 1 RV measurement per order
→ Weighted average of the order

RVs to obtain "final" RV per observation

- Blue orders tend to have lower S/N
- •Order edges tend to have lower S/N
- Some orders are affected by tellurics
 - Discard heavily-affected orders
 - Down-weight/exclude telluric affected pixels

Zechmeister et al. 2018

More ways to measure RVs

Many different approaches that include instrumental, telluric and/or stellar variability effects at the spectral level

- Forward modelling approaches (e.g. Butler et al. 1996, Hirano et al. 2020, Bedell et al. 2019, Gilbertson et al. 2020, Jones et al. 2020)
- Line-by-line approaches (e.g. Dumusque 2018, Cretignier et al. 2020, Artigau et al. 2022, Siegel et al. 2022, Lafarga et al. 2023)
- Least squares deconvolution (e.g. Belloti et al. 2022, Lienhard et al. 2022)
- Fourier domain (e.g. Zhao & Tinney 2020)
- Machine learning (e.g. Czekala et al. 2017, Rajpaul et al. 2020, Colwell et al. 2023)

Almost done!

Hands on: Spectral data extraction

Hands-on: Spectral data extraction

Download data and code from:

https://livewarwickacmy.sharepoint.com/:f:/g/personal/u2070295_live_warwick_ac_uk/E gFkwFdfvCpArE6_22uHXl8BNJv66AkrgHBO-Mef_36xqg?e=kKRk92