Characterizing planetary atmospheres

7th Summer School - Multiwavelength approach to exoplanetary systems

Lisa Nortmann

Why do we care about exoplanet atmospheres?

Putting our Solar System into context

Studying a large population of planets. (Planet formation and evolution in many systems.)

Planets that have **no counterpart in our Solar System**.

Hotter planets allow us to **probe composition that has rained out in our cooler** gas planets.

Super-Earths to mini Neptunes: may be gaseous, rocky or water worlds. Atmosphere is the only way to constrain the nature of these planets.

Habitability

What can we tell about a planet using its atmosphere?

Temperature Composition

3D structure

Winds

Mass loss

 \bigcirc

What can we tell about a planet using its atmosphere?

ဂျိ

Temperature (-pressure profile)

- Composition C/O ratio Metallicity
- \rightarrow Formation
- ightarrow and evolution

- **3D structure**
- → Day-to night side
- \rightarrow Hot spot-(offsets)
- \rightarrow Jets
- \rightarrow Cool poles

Winds →Supersonic Equatorial jets Day-tonightside winds

Atmospheric loss

Evolution

How do we measure exoplanet atmospheres?

Transmission spectroscopy

Transit – Transmission spectroscopy

How do we measure exoplanet atmospheres?

Emitted light / Reflected light

Emitted vs. Reflected light

How large are the signals?

$$\Delta \delta = \frac{(R_{\rm p} + n H_{\rm p})^2}{R_{\star}^2} - \frac{R_{\rm p}^2}{R_{\star}^2} = \frac{2 R_{\rm p} n H_{\rm p} + (n H_{\rm p})^2}{R_{\star}^2}$$
$$H_{\rm p} = \frac{k_b T_{\rm eq}}{\mu g_{\rm p}}$$

~ n * 100-500 ppm

$$TSM = (Scale factor) \times \frac{R_p^3 T_{eq}}{M_p R_*^2} \times 10^{-m_J/5}$$
$$ESM = 4.29 \times 10^6 \times \frac{B_{7.5}(T_{day})}{B_{7.5}(T_*)} \times \left(\frac{R_p}{R_*}\right)^2 \times 10^{-m_K/5}$$
Kempton et al. 2018

Where does the data come from – Low resolution:

Ground-based: FORS2/VLT, OSIRIS/GTC, GMOS/GEMINI-South,

NASA, ESA, CSA, Joseph Olmsted (STScI)

7th Summer School - Multiwavelength approach to exoplanetary systems – 05 July 2024 - Lisa Nortmann

...

What can be measured at which wavelength?

Credit: noaa.gov The atmospheric window

Where does the data come from – High resolution:

How do we measure exoplanet atmospheres?

Transit – Transmission spectroscopy

HAT-P26b, a Neptune mass planet with HST + Spitzer

Wakeford et al. 2022

Kempton & Knutson 2024; adapted from Sing et al 2010

pre JWST era

Spake et al 2019

Kempton & Knutson 2024; adapted from Sing et al 2010

Kempton & Knutson 2024; left: adapted from Sing et al 2010

Kempton & Knutson 2024; left: adapted from Sing et al 2010

JWST vs. Spitzer - CO2 and Sulfur dioxide in WASP-39b

C/O ratio and planet formation

Cont 2023, right panel adapted from Madhusudhan 2019, also see Odberg 2011

Kempton & Knutson 2024; left: adapted from Sing et al 2010

Madhusudhan et al 2024

Dimethyl sulfide (DMS) – a predicted biomarker for Hycean worlds

3D effects during transit in low resolution

Song et al 2021 Also Falco 2024

How do we measure exoplanet atmospheres?

Temperature – pressure profile

In the emission case:

Blackbody spectra

Example Spitzer

Example high resolution

Emitted light spectrum

Emitted light spectrum

Spitzer: (warm Spitzer: 3.6µ and 4.5µ) photometry

Morvan et a 2019

Heat redistribution

2750 3000 μm T_{bright} (K) 2500 2500 2250 4.5 and 2000 3.6 2000 -1750⊢^{ਰੂ} Error Weighted Average of 1500 1500 1250 1000 Efficient Heat Recirculation, A=0 ____ Efficient Heat Recirculation, A=0.3 _____ 1000 Maximum Dayside Temperature, A=0 -----1000 1500 2000 2500 3000 T_{equ} (K)

Roman et al. (2021)

Wallack et al. (2021)

(no) Heat redistribution

Thermal emission spectrum of Trappist 1b

How do we measure exoplanet atmospheres?

How do we measure exoplanet atmospheres?

Emitted and reflected light

Phase Curves

Stevenson et al.

Stevenson et al 2017

Secondary eclipse mapping

ရ

Method pioneered by Snellen et al 2010

Cross-correlation

Cross-correlation technique

Cont, PhD thesis, 2023

Cross-correlation technique

Dynamics

Phase curves at high resolution

3D structure in transmission spectroscopy

Ehrenreich et al 2020 (Fe in WASP-76b)

Also: Ghandi et al 2022

Prinoth et al 2022 (WASP-189b)

3D structure in transmission – WASP-127b

Nortmann et al. in ref at A&A arXiv:2404.12363

3D structure in transmission – WASP-127b

Morning and evening terminator and poles can be resolved and investigated

Nortmann et al. in ref at A&A arXiv:2404.12363

-2

Atmospheric escape - Evolution

Hydrogen: Lyman α GJ436b 121.567 nm [UV] \rightarrow HST only Wavelength (A) 12 1.215.0 1.216.0 1.216.5

Helium: WASP-69b 10833 nm [~ 1µm NIR] → many observatories

Ehrenreich et al. 2015 See also: Vidal-Madjar et al. 2003 for HD209458b Nortmann et al. 2018 See also Spake et al. 2018 WASP-107b with HST Allart et al. 2018 HAT-P-11b

Studying atmospheric escape using helium

Zhang et al. 2023 See also Czelsa et al. 2022

Studying the Helium – XUV connection

Orell-Miquel et al 2024 See also Nortmann et al. 2018 and many more

Atmospheric escape - Evolution

Challenges - cloudy atmospheres

HST WFC3 10 transits of GJ1214b

Potential at high-res!

Kreidberg et al. 2014

Challenges - Long period planets

- $_{xel}$ = Size of detector pixel [km/s]
- P = Orbital Period [s]
- p = Radial velocity semi-amplitude [km/s]

Challenges – Stellar activity (also CLV+RME)

The future:

European

Southern Observatory

THE EXTREMELY LARGE TELESCOPE The World's Biggest Eye on the Sky

The ELT is planned to start operations as an integrated part of the Paranal Observatory in 2025.

METIS

Mid-infrared ELT Imager and Spectrograph

METIS, named after the Greek goddess of wisdom, will b one of the first-generation ELT instruments. It will cover the infrared wavelength range and make full use of the giant, 39-metre main mirror of the telescope to study a wide range of science topics, from objects in our Solar System to distant active galixies.

ANDES

ArmazoNes high Dispersion Echelle Spectrograph

The high-resolution ELT instrument: ANDES, formerly known as HIRES, will allow astronomors to study astronomical objects that require highly sensitive observations, it will be used to search for signs of He in Earth-like exoplanets, find the first stars born in the Universe, test for possible variations of the fundamental constants of physics, and measure the acceleration of th Universe sequencies.

ESO | ELT © 2022

What can we tell about a planet using its atmosphere?

ဂျိ

Temperature (-pressure profile)

- Composition C/O ratio Metallicity
- \rightarrow Formation
- ightarrow and evolution

- **3D structure**
- → Day-to night side
- \rightarrow Hot spot-(offsets)
- \rightarrow Jets
- \rightarrow Cool poles

Winds →Supersonic Equatorial jets Day-tonightside winds

Atmospheric loss

Evolution