# Mechanisms of radio emission from exoplanets



#### J.-M. Grießmeier

jean-mathias.griessmeier@cnrs-orleans.fr

LPC2E/Université d'Orléans/OSUC/CNRS, Orléans, France Observatoire Radioastronomique de Nançay, Observatoire de Paris, France <sub>1</sub>

## Outline

- radio emission in astrophysics (and planets)
- radio emission of solar system planets
- radio emission of exoplanets
- observational methods
- observations (past, present and future)
- why do we do this?

#### **Radio astronomy**

#### From a technical point of view: A different kind of astronomy!



- measurement of E-field instead of photon count
- huge range! 3 orders of magnitude in frequency (techniques very different for different frequencies)

#### **Ground-based radio astronomy**

#### From a technical point of view: A different kind of astronomy!



## **Physics: How to create radio emission**

From a physical point of view: Radio is just some part of the electromagnetic spectrum!

How is electromagnetic emission produced?

## **Physics: How to create radio emission**

From a physical point of view: Radio is just some part of the electromagnetic spectrum!

How is electromagnetic emission produced?

- blackbody radiation
- QM transitions (principal quantum number, angular quantum number, nuclear spin/electron spin, molecular rotation, molecular vibration)
- accelerated charges (synchrotron radiation)

#### **Radio emission from planets?**

#### blackbody radiation

- lightning emission
- synchrotron emission
- magnetospheric emission

low T: blackbody radiation seen in radio (not in visible)



Planck's law: (resultats from quantum mechanics)

$$B_{v}(T) = \frac{2h v^{3}/c^{2}}{\exp(hv/kT) - 1}$$

low T: blackbody radiation seen in radio (not in visible)



low T: blackbody radiation seen in radio (not in visible)



Can be used to determine temperature!

#### **Planetary radio emission**



#### Venus

radio (375 GHz) 700 K IR 225 K

#### Venus

radio (375 GHz)700 K (surface temperature)IR225 K (cloud temperature)

Greenhouse effect (high CO<sub>2</sub>, H<sub>2</sub>O, SO<sub>2</sub>) Emission first measured 1956

## **Radio emission from planets?**

- blackbody radiation
- lightning emission
- synchrotron emission
- magnetospheric emission

## Lightning



# acceleration of charges⇒ electromagnetic radiation

#### **Lightning emission**



## **Planetary lightning**



Radiobursts are:

- weak (no ground detection until 2006)
- short (~15-400 msec)
- broadband (20 kHz-40 MHz)
- transient (OFF since 2011!)

#### Lightning as a radiosource

Radiosource: lightning activity in corotating storm system How do we know?

#### Lightning as a radiosource

Radiosource: lightning activity in corotating storm system How do we know?

> ⇒ episodes repeat after one planetary rotation



⇒ we see the storms in IR (e.g. "Dragon storm", 2004)



## **Radio emission from planets?**

- blackbody radiation
- lightning
- synchrotron emission
- magnetospheric emission

#### **Accelerated charges**

Why should accelerated charged particles create electro-magnetic fields?

A simple experiment (non-relativistic case)



#### **Emitted energy**

Electrodynamics: Radiation of an accelerated electron:

where *a* is the acceleration.  

$$P_{em} = \frac{2e^{2}}{3c^{3}} (a_{\perp}^{2} + \gamma^{2}a_{\parallel}^{2})$$

$$\gamma = 1/\sqrt{(1-\beta^{2})} \qquad \beta = \nu/c$$

$$\Rightarrow cyclotron emission$$

## **Emission from accelerated charges**

# Cyclotron emission: created by non relativistic electrons in a magnetic field

Synchrotron emission: created by relativistic electrons in a magnetic field



Emission of Synchrotron Radiation

#### **Beaming**





Anisotropic beaming:





(results from relativistic electrodynamics)

#### **Emission spectrum of one electron**



after Shu (Fig. 18.2)

The observed time-dependent *E*-Field, E(t), from one electron is a sequence of pulses of width  $\tau$ , separated in time by  $\Delta t$ .

#### **Emission spectrum of one electron**





after Shu (Fig. 18.3)

Derive spectrum by Fourier-transforming E(t)

 $\tau$  small  $\Longrightarrow$  relevant frequency range quite large.

## **Emission spectrum of one electron**



# **Cyclotron vs synchrotron: frequency**

- cyclotron each location: mono-energetic  $f_c = \frac{eB}{m_e}$ multiple locations: broad-band up to f<sub>max</sub>
- synchroton

each location: broad-band much higher frequency ( $\gamma > 1$ )

# **Cyclotron vs synchrotron: intensity**

- cyclotron

   each location: mono-energetic
   → coherent emission possible
- synchrotron
  - high intensity
  - incoherent emission
  - $\rightarrow$  isotropic emission of planetary environment

### **Cylotron MASER emission**

- monochromatic, induced emission
- similar to LASER
- amplifies within active medium



## **Magnetospheric radio emission**

- high latitudes (auroral fieldlines at 2-4 r)
- electrons gyrating in magnetic field
- energy input through stellar wind
- mechanism: cyclotron maser instability





[Ergun et al 2000]

#### **Cyclotron Maser Instability**

#### Imaginary part of wave frequency:

$$\omega_{i} = \frac{\pi^{2}\omega_{p}^{2}}{4\omega_{r}} \int_{-\infty}^{+\infty} dv_{\parallel} \int_{0}^{+\infty} dv_{\perp} v_{\perp}^{2} \delta\left(\omega_{r} - \frac{\omega_{c}}{\Gamma} - k_{\parallel}v_{\parallel}\right) \omega_{c} \frac{\partial f_{0}}{\partial v_{\perp}}$$

condition for growth:

required:

$$egin{aligned} &\omega_i > 0 \ &\ &\omega_r - rac{\omega_c}{\Gamma} - k_{\parallel} v_{\parallel} = 0 \ &\ &rac{\partial f_0}{\partial v_{\perp}} > 0 \end{aligned}$$

[Wu and Lee 1979]

#### **Cyclotron Maser Instability**

#### Imaginary part of wave frequency:

$$\omega_{i} = \frac{\pi^{2}\omega_{p}^{2}}{4\omega_{r}} \int_{-\infty}^{+\infty} dv_{\parallel} \int_{0}^{+\infty} dv_{\perp} v_{\perp}^{2} \delta\left(\omega_{r} - \frac{\omega_{c}}{\Gamma} - k_{\parallel}v_{\parallel}\right) \omega_{c} \frac{\partial f_{0}}{\partial v_{\perp}}$$

 $\Rightarrow ... \Rightarrow$  strong beaming! emission on a hollow cone



# **Cyclotron vs synchrotron: intensity**

• cyclotron

each location: mono-energetic coherent emission possible → strongly beamed

- synchrotron
  - high intensity

incoherent emission (limited by LTE)

 $\rightarrow$  isotropic emission of planetary environment

- both will exist!
- synchrotron "saturates" (opt. thick)
- cyclotron can be "arbitrarily strong"



#### **Planetary radio emission**



#### Jupiter


#### Jupiter



# Jupiter



#### **Magnetospheric emission**



magnetospheric



## **Magnetospheric radio emission**

#### First radio observations:

- Jupiter: DAM 1955 (ground observation)
- Earth: AKR 1965 (Elektron-2)
- Saturn: SKR 1980 (Voyager 1)
- Uranus: UKR 1986 (Voyager 2)
- Neptune: NKR 1989 (Voyager 2)

⇒ all strongly magnetized planets are nonthermal radio emitters!

# **Jupiter's radio emission**

#### Decametric radio emission of Jupiter

JUPITER 1991 Jan1 (Ionospheric conditions : winter - early morning)



- series of intense radio bursts
- f < 40 MHz
- cyclotron maser emission

- $f_c \propto \frac{eB}{m_e}$
- generated in planetary magnetosphere
- timescales: ms (intrinsic) to h (geometry)

#### **Radio emission: Comparison**



magnetospheric emission much brighter than thermal, lightning or synchrotron emission!

flux normalized to 1 AU

#### **Extrasolar planets**



#### **Extrasolar planets**

#### Sounds easy? It isn't!





distance =  $10^{17}$  m rel. signal =  $10^{-10}$ 

#### **Radio emission of exoplanets**



faint ↓ need large telescopes ↓ > 10 MHz (ionospheric cutoff)

flux normalized to 1 AU

#### **Extrasolar planets**

#### astronomical distances:



- blackbody radiation?
- synchrotron emission?
- lightning emission?
- magnetospheric emission?

#### **Extrasolar planets**

#### astronomical distances:



- blackbody radiation?
- synchrotron emission?
- lightning emission?

- → too faint & star too close
- $\rightarrow$  too faint
- $\rightarrow$  too faint
- magnetospheric emission?→ maybe?

| Doppler     | Transit     | Astro-     | Micro-     | Direct   | Second.     |
|-------------|-------------|------------|------------|----------|-------------|
| shift       |             | metry      | lensing    | obs.     | Transit     |
| mmm         |             |            |            | •        |             |
| <b>1995</b> | <b>2000</b> | 2002 ?     | 2003       | 2004     | <b>2004</b> |
| (51 Peg b)  | (HD209458b) | (GI 876 b) | (0235/M53) | (2M1207) | (HD209458b) |
| >1000       | >3000       | 20?        | >200       | >200     | >80         |

Radio emission as additional source of information?



if  $B=0 \rightarrow no emission!$ 

| Superflares                      | [Rubenstein 2000; Schaefer 2000]             |  |  |
|----------------------------------|----------------------------------------------|--|--|
| Planetary migration              | [Lovelace 2008]                              |  |  |
| $H_3^+$ emission                 | [Skholnik 2006]                              |  |  |
| Gas giant mass loss              | [Lammer 2009]                                |  |  |
| Chrom. emission                  | [Saar 2004]                                  |  |  |
| Early ingress                    | [Fossati 2010]                               |  |  |
| Transit profiles (ENAs)          | [Holmström 2008]                             |  |  |
| Radio emission                   |                                              |  |  |
| Atmospheric loss                 | pheric loss [Grießmeier 2010; Driscoll 2013] |  |  |
| Cosmic rays                      | [Grießmeier 2005, 2009]                      |  |  |
| Comet-like exosphere [Mura 2011] |                                              |  |  |



if  $B=0 \rightarrow no emission!$ 

|                         |                 | other effects                                        |  |  |
|-------------------------|-----------------|------------------------------------------------------|--|--|
|                         |                 | have similar<br>signature                            |  |  |
| Observation             | Expected effect | False positives?                                     |  |  |
| Superflares             | Weak or none    | Yes [Maehara 2012; Shibayama 2013]                   |  |  |
| Planetary migration     | Weak            | Yes [Lovelace 2008; Vidotto 2009, 2010]              |  |  |
| $H_3^+$ emission        | Yes?            | Yes [Skholnik 2006]                                  |  |  |
| Gas giant mass loss     | Yes             | Yes [Lammer 2009; Khodachenko 2012, 2015]            |  |  |
| Chrom. emission         | Yes             | Yes [Saar 2004; Preusse 2006; Kopp 2011]             |  |  |
| Early ingress           | Yes             | Yes [Fossati 2010; Lai 2010; Bisikalo 2013a,b]       |  |  |
| Transit profiles (ENAs) | Yes             | No? [Holmström 2008; Ekenbäck 2010; Kislyakova 2014] |  |  |
| Radio emission          | Yes             | No                                                   |  |  |
| Atmospheric loss        | Yes             | Yes [Grießmeier 2010; Driscoll 2013]                 |  |  |
| Cosmic rays             | Yes             | Yes?[Grießmeier 2015; Tabataba-Vakili 2015]          |  |  |
| Comet-like exosphere    | Yes             | No? [Mura 2011; Guenther 2011]                       |  |  |

#### [Grießmeier 2015]

#### radio emission is the most promising way to find exomagnetospheres

- •planetary migration!
- protect against stellar wind + CMEs!
- •protect against cosmic rays!
- •explain observed transit curves!
- •understand solar system planets!
- understand star-planet interaction!

need  $B_s$  (ZDI) and  $B_p$  ( $\rightarrow$ ?)





#### **Atmospheres**



#### ⇒ habitable zone reduced!

[Grießmeier et al. 2004, Khodachenko et al. 2007, Griessmeier et al. 2010]







[Grießmeier et al. 2005, Stadelmann et al. 2010]



[Grießmeier et al. 2015, 2016]

• magnetic field probably weak  $\rightarrow$  large flux of GCR



[Grießmeier et al. 2005; Grenfell et al. 2007; Grießmeier et al. 2009, 2015, 2016; Atri et al. 2013, 2017]

• magnetic field probably weak  $\rightarrow$  large flux of GCR



[Grießmeier et al. 2005; Grenfell et al. 2007; Grießmeier et al. 2009, 2015, 2016; Atri et al. 2013, 2017]

#### **Stellar cosmic rays**

| biol. weighted surface<br>UV [rel. units] | quiescent UV | long UV flare |
|-------------------------------------------|--------------|---------------|
| Earth                                     | 1            |               |
| quiescent M star                          | 0.01         | 1.2           |
| flaring M star                            | 0.2          | 40            |

[Grenfell et al. 2012, Tabataba-Vakili et al. 2016]





- •planetary migration!
- protect against stellar wind + CMEs!
- •protect against cosmic rays!
- •explain observed transit curves!
- •understand solar system planets!
- understand star-planet interaction!

need  $B_s$  (ZDI) and  $B_p$  ( $\rightarrow$ ?)





## **Theoretical sensitivity limit**



- more planets
- $B_s$  (ZDI) and  $B_p$  (young planets)
- exoplanetary ionosphere
- → has to be updated [Mauduit et al. in prep.]

# **Jupiter emission**

 $\tau$  Bootis



2 to 4 orders of magnitude too low...

# **Jupiter emission**

 $\tau$  Bootis



2 to 4 orders of magnitude too low... unless emission can be "boosted"

#### **Power input**

#### Is exoplanetary radio emission observable?



⇒ Strong emission for close-in planets

## **Magnetospheric radio emission**

#### solar wind

# particles enter the planetary magnetic field

## $\mathbf{r}$

electrons spiral around fieldlines

## $\mathbf{r}$

radio emission (gyrofrequency)



#### **Power output**



#### **Exoplanets: Orbital radii**



#### [http://www.exoplanet.eu]

#### **Beyond the solar system**

 $\tau$  Bootis



theoretical studies: intense emission is possible (up to Jupiter x10<sup>5</sup>...10<sup>6</sup>)

#### Tau Bootis A b



#### Not all planets are equal
## **Planetary magnetic fields**

- Radio detection : f > 10 MHz  $\rightarrow$  B<sub>max-surface</sub>  $\geq$  4 G
- Spin-orbit synchronisation (tidal forces)  $\rightarrow \omega \downarrow$
- $M \propto \omega^{\alpha}$  with  $\frac{1}{2} \leq \alpha \leq 1 \rightarrow M \downarrow$
- Young planets? B(t) decay

→ lecture by Daniele

Internal structure + convection models



[Farrell et al. 1999; Sanchez-Lavega, 2004; Grießmeier et al. 2014; Reiners & Christensen, 2010; Yadav & Thorngren, 2017]

## **Stellar magnetic fields**

emission determined by  $B_*$  (ZDI) and  $B_p$  (young planets)

Spectropolarimetry / Zeeman Doppler Imaging  $\rightarrow$  B<sub>\*</sub>

- + Extrapol. magnetic topology up to planetary orbit
- $\rightarrow$  time variability of expected SPI signal

→ lecture by Rim



[Farès et al., 2010; Strugarek et al., 2022]

# **Theory: Condition for radio emission**

- low mass Hot Jupiters → extended atmosphere
   → radio emission not possible
   e.g. HD 209458b, HD 189733b [Weber et al. 2017a, 2017b]
- massive Hot Jupiters → compact atmosphere
   → radio emission is possible
   e.g. τ Bootis b [Weber et al. 2018]
- v Andromedae b  $\rightarrow$  mass unknown! if radio emission is detected, M<sub>p</sub> > 2.25 M<sub>j</sub> [Erkaev et al. 2022]
- A problem for many planets! [Grießmeier 2023]

# **Radio emission: Theoretical studies**

| -        | •   | kinetic interaction           | [Zarka et al 1997, Farrell et al 1999]                                                     |
|----------|-----|-------------------------------|--------------------------------------------------------------------------------------------|
|          | •   | comparison to stellar emi.    | [Zarka et al 1997, Grießmeier et al 2005]                                                  |
| mech-    | •   | magnetic interaction          | [Zarka et al 2001]                                                                         |
| anisms   | •   | unipolar interaction          | [Zarka 2007]                                                                               |
|          | •   | acceleration of electrons     | [Jardine et al 2008]                                                                       |
|          | •   | planets with plasma sources   | [Nichols 2011, 2012, Noyola et al 2014, 2016]                                              |
|          | ŀ   | Dungey-cycle-like interaction | [Nichols et al 2016]                                                                       |
|          | · · | planetary magnetic field      | [Grießmeier et al 2004, Grießmeier 2015]                                                   |
| planet 🗸 | •   | target list                   | [Lazio et al 2004, Griessmeier et al 2007b, 2011,<br>Driscoll et al. 2011, Nichols 2012]   |
| planee   | •   | orbital distance              | [Grießmeier et al 2007a]                                                                   |
|          | •   | orbital inclination           | [Hess et al 2011]                                                                          |
| -        | 7.  | influence of stellar age      | [Stevens 2005, Grießmeier et al 2005]                                                      |
| star     | •   | influence of stellar CMEs     | [Grießmeier et al 2006, 2007a]                                                             |
| Star     | •   | stellar magnetic field        | [Fares et al 2010, Vidotto et al 2012, 2015,<br>See et al 2015, Alvarado-Gómez et al 2016] |
| ab-      | •   | absorption close to star      | [Grießmeier et al 2007b, Hess et al 2011]                                                  |
| sorption | ·   | absorption close to planet    | [Weber et al 2017, Erkaev et al 2022]                                                      |
|          | (.  | white dwarfs                  | [Willes et al 2005]                                                                        |
| special  | •   | evolved stars                 | [Ignace et al 2010, Fujii et al 2016]                                                      |
|          | •   | T Tauri stars                 | [Vidotto et al 2010]                                                                       |
| Lases    | •   | A stars                       | [Katarzyński et al 2016]                                                                   |
|          | ŀ   | rogue planets                 | [Vanhamäki et al 2011]                                                                     |

### **Radio flux estimation**



## **Radio prediction code PALANTIR**



[Mauduit et al. 2023; 2024 in prep.]

## **Expect detectable emission**

 $\tau$  Bootis



# **Radio emission: Observational studies**

| <ul> <li>Clark Lake</li> </ul> | [Yantis et al 1977]                                                                                                                                  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| • VLA                          | [Winglee et al 1986, Bastian et al 2000,<br>Farrell et al 2003,<br>Lazio et al 2004, 2007, 2010a, 2020b]                                             |
| • UTR-2                        | [Zarka et al 1997, Ryabov et al 2004,<br>Zarka 2011]                                                                                                 |
| <ul> <li>Effelsberg</li> </ul> | [Guenther et al 2005]                                                                                                                                |
| <ul> <li>Mizusawa</li> </ul>   | [Shiratori et al 2005]                                                                                                                               |
| • GMRT                         | [Winterhalter et al 2006, Majid et al 2006,<br>George et al 2007,<br>Lecavelier et al 2009, 2011, 2013,<br>Hallinan et al 2013, Sirothia et al 2014] |
| • GBT                          | [Smith et al 2009]                                                                                                                                   |
| • LOFAR                        | [Zarka et al 2011, Turner et al 2021, 2024]                                                                                                          |
| • MWA                          | [Murphy et al 2015]                                                                                                                                  |
| • WSRT                         | [Stroe et al 2012]                                                                                                                                   |
| • Nen <mark>uFAR</mark>        | [Turner et al 2023]                                                                                                                                  |
| • no (fi<br>• sensi<br>→ 0     | rm) detection yet<br>tivity ~ predictions<br>bservations ongoing                                                                                     |

# **Types of observations**

- imaging
  - computationally expensive
  - good for continuous emission or slow variation
  - needs good calibrators
  - + decorrelate RFI if distant telescopes
- stacked images (same target)
- stacked images (different targets)
- beamformed observations
  - computationally cheap
  - + good for bursty emission
  - + fine RFI filtering
  - ionospheric effects
- reconstructed beamformed

## **Radio emission: Observational studies**



#### [Sirothia et al., 2014]





#### [Lecavelier et al., 2013]



#### [Murphy et al., 2015] 85

### **Observing once is not enough**

## **Orbital phase**



- for Jupiter, random observations only give 10-20% detections!

# **Orbital phase**





Right Handed Polarizatio



Longitude du meridien central

- for Jupiter, random observations only give 10-20% detections!
- emission is always on
- emission is strongly beamed



[Imai Lab., Kochi National College of Technology]

# **Orbital phase**





Right Handed Polarizatio





- for Jupiter, random observations only give 10-20% detections!
- emission is always on
- emission is strongly beamed

for exoplanets: have to cover orbit
 else: non-detections meaningless

# Observations: 55 Cnc, υ And, τ Boo



- theoretical prodictions → selection of 3 targets
- 20-45h / target
- distance 12-15 pc
- spread observations to cover orbital period
- multiple tied array beams
   → search for rapid bursts (1s)



- are simple detection limits realistic?
- how were they obtained?

- are simple detection limits realistic?
- how were they obtained?

$$\Delta S = S_{sys} / (N \sqrt{n_{pol} \tau_r b})$$

- how well do we know the telescope?
- how well do we know the emission?

- are simple detection limits realistic?
- how were they obtained?

$$\Delta S = S_{sys} / (N \sqrt{n_{pol} \tau_r b})$$

 $\rightarrow \Delta S = 200 \text{ Jy}$  (per t-f "  $\rightarrow \Delta S = 5 \text{ Jy}$  (rebinne

(per t-f "pixel" of 10 ms x 3 kHz) ...but... (rebinned "pixel" of 1 s x 45 kHz) ...but...



- are simple detection limits realistic?
- how were they obtained?

$$\Delta S = S_{sys} / (N \sqrt{n_{pol} \tau_r b})$$

 $\rightarrow \Delta S = 200 \text{ Jy}$  $\rightarrow \Delta S = 5 \text{ Jy}$  $\rightarrow \Delta S = 0.01 \text{ Jy}$ 







- are simple detection limits realistic?
- how were they obtained?

$$\Delta S = S_{sys} / (N \sqrt{n_{pol} \tau_r b})$$

 $\rightarrow \Delta S = 200 \text{ Jy}$  $\rightarrow \Delta S = 5 \text{ Jy}$  $\rightarrow \Delta S = 0.01 \text{ Jy}$ 







for bursty emission: theoretical detection limit = misleading! → need to benchmark telescope + pipeline





- Jupiter's emission is bursty
- search bursts of 1-10 s duration





## **LOFAR detection limit**

| planet      | rel. signal                         |
|-------------|-------------------------------------|
| Jupiter     | 1                                   |
| exo-Jupiter | <b>10</b> <sup>-10</sup>            |
| Hot Jupiter | 10 <sup>-10</sup> x 10 <sup>5</sup> |

Question: can we detect an emission of Jupiter x10<sup>-5</sup>?

Answer: at least Jupiter x10<sup>-4.5</sup>

| Frequency Range (MHz) | Stokes-I $\alpha$ | Stokes-V a  |
|-----------------------|-------------------|-------------|
| Ob                    | s #2              |             |
| 50 - 60               | $10^{-3.5}$       | $10^{-4.5}$ |
| 40 - 50               | $10^{-3}$         | $10^{-4}$   |
| 30 - 40               | $10^{-3}$         | $10^{-4}$   |
| 20 - 30               | $10^{-2.5}$       | $10^{-3.5}$ |

100









• 2017: A tentative detection (LOFAR)! [Turner et al. 2021]



• 2017: A tentative detection (LOFAR)! [Turner et al. 2021]



are were sure the signal is real?  $\rightarrow 3\sigma$ is it the star? is it the star via SPI?

is it the planet?

 $\rightarrow$  circular pol.

• 2017: A tentative detection (LOFAR)! [Turner et al. 2021]



 $\rightarrow$  circular pol.

"Extraordinary claims require extraordinary evidence"

- $\rightarrow$  try to repeat observation aims:
  - increase significance
  - periodicity? (orbital period, stellar rotation, beat period)

→ lecture by Rim



- confirm origin (planet τ Boötis b)
- → set up follow-up campaign
- multiple telescopes: LOFAR, LWA, UTR-2, NenuFAR
- improved phase coverage



- confirm origin (planet τ Boötis b)
- → set up follow-up campaign
- multiple telescopes: LOFAR, LWA, UTR-2, NenuFAR
- improved phase coverage

2020: Reobservation (LOFAR, NenuFAR) No signal! [Turner et al. 2023, 2024]





- confirm origin (planet τ Boötis b)
- → set up follow-up campaign
- multiple telescopes: LOFAR, LWA, UTR-2, NenuFAR
- improved phase coverage

- 2020: Reobservation (LOFAR, NenuFAR) No signal! [Turner et al. 2023, 2024] Why?
  - original detection false positive?
  - CMI condition not always fulfilled (evapor. atm.)?
  - magnetosphere depleted?
  - variable emission
    - (stellar rotation, stellar magnetic cycle)?

#### • variable emission

#### (stellar rotation, stellar magnetic cycle)?



[See et al. 2015]
### • variable emission

### (stellar rotation, stellar magnetic cycle)?



• If we knew the stellar magnetic field, we could...

### $\rightarrow$ rule this out in case of non-detection!

## $\rightarrow$ nterpret result in case of detection!

all we need is ZDI observations

→ lecture by Rim

• 2023 observations (NenuFAR, TBL)! [Turner et al., in prep.]



TBL observations failed  $\rightarrow$  no magnetic maps

- 2023 observations (NenuFAR, TBL)!
  [Turner et al., in prep.]
  TBL observations failed → no magnetic maps
- 2024 observations (LOFAR, NenuFAR, TBL, CFHT)! [Griessmeier, Fares, Kavanagh, Moutou, Strugarek, Turner, Vidotto, Zarka
   + Callingham, Vedantham, ...] observations just finished! to be continued... (I'll work on this this afternoon, I promise!)

- 2023 observations (NenuFAR, TBL)!
  [Turner et al., in prep.]
  TBL observations failed → no magnetic maps
- 2024 observations (LOFAR, NenuFAR, TBL, CFHT)! [Griessmeier, Fares, Kavanagh, Moutou, Strugarek, Turner, Vidotto, Zarka
   + Callingham, Vedantham, ...] observations just finished! to be continued... (I'll work on this this afternoon, I promise!)
- LOFAR2.0 ("Exloo collaboration", 2026+), SKA (SWG "Cradle of Life", 2030+), observations from the Moon (20??+)