

Status of the LISA Radiation Monitor

D. Guberman, R. Català, L. Di Venere, A. Espiña, F. Gargano, F. Licciulli, P. Loizzo, L. Martí, J. Mauricio, M. Orta, D. Roma, A. Sanuy, D. Serini, M. Nofrarias

LISA Spain Meeting 2024

dguberman@icc.ub.edu

Institute of Cosmos Sciences Universitat de Barcelona

15/10/2024

- Why a Radiation Monitor?
- Radiation Monitor design $+1$ st prototype
- Preliminary performance
- The Radiation Monitor beyond LISA

Why a Radiation Monitor?

GOAL: Monitor the charging background of the LISA Test Masses (TMs)

- Background radiation can interact with the spacecraft, producing secondary particles
- The Test Masses (TMs) may get charged \rightarrow acceleration noise

What a Radiation Monitor can do:

- Help optimizing our understanding the TM charging nature by:
	- \rightarrow Measuring the background radiation flux
	- \rightarrow Which could be use as input for TM charging simulations
	- \rightarrow And compared with the measurements of the TM charging rate
- Provide a veto for fake GW triggers
- Hopefuly some other stuff beyond looking after the TMs...

Grimani et al., 2024, [https://doi.org/10.1016/j.jheap.2024.03.004](https://doi-org.sire.ub.edu/10.1016/j.jheap.2024.03.004)

The LISA (expected) background flux

Galactic Cosmic rays (GCRs)

- Steady isotropic source of background with slow and dim flux variations:
	- \rightarrow Solar cycle variations (an order of magnitude in \sim 11 yr)
	- \rightarrow Short-term variations (\sim 10% in \sim days)

Solar Energetic Particles (SEPs)

- Sporadic, fast evolving, orders of magnitude more intense than CRs
	- \rightarrow Relevant ones \sim 1/yr (order of magnitude)
	- \rightarrow Timescales: seconds to days
- \cdot ~90% of the particles interacting with the S/C will be protons
- Only those with **E>100 MeV** affect the TMs
	- → Several dedicated simulation studies (e.g., Araujo et al., Grimani et al….)

RM Requirements

Scientific Requirements:

- **TM-driven:** should detect p⁺ at 0.1-10 GeV
- **~1 % statistical error** in the integral **cosmic-ray flux >70 MeV** in **~1 hour**
- Moderate energy resolution at a few hundred MeVs for spectrum reconstruction

Technical Requirements:

- Volume ~ 1 l
- Mass < 1.5 kg
- \cdot Power consumption $< 2W$

LISA Radiation Monitor: design overview

- **Plastic scintillators + SiPMs** for particle detection
- **W absorbers** to "slow down" high-energy protons
- Cu pieces as Low Energy shield for $p+270$ MeV
- SiPM **signals** are **processed** and **digitized** with the **BETA ASIC**
- **FPGA** controls the **trigger** and **reduces** the digitized **data**
	- Maximum trigger rate \sim 10 kHz
	- Different trigger levels to process individual and coincidence events

- Radiation Monitor: D. Mazzanti, et al., https://doi.org/10.22323/1.444.1494
- BETA ASIC: A. Sanmukh et al., https://doi.org/10.1007/s41365-024-01419-z

Preliminary performance

Simulated and optimized the system with Geant4 simulations

- By now we defined 6 integral energy channels
- Expected rates are a few times larger than those of the LPF RM
- Potential to identify alpha particles

7

HECTOR: A CubeSat demonstrator of the LISA RM

High-**E**nergy particle dete**CTOR** (**HECTOR**)

15/10/2024 D. Guberman - LISA Spain Meeting 2024

(a.k.a ILIADA RM) Proof-of-concept prototype of the LISA RM, will fly in a SmallSat as part of the ILIADA consortium (see talk by M. Nofrarias):

"Like the LISA Radiation Monitor, but without the last absorber-scintillator pair"

- GOALS:
	- Testing the technology and analysis algorithms
	- Compare with expectations from simulations
	- ILIADA scientific case
- Expected launch: beginning of 2026

RM images: R. Català

Irish Imperial Pint

A tight schedule, a huge team effort

HECTOR TIMELINE

April 2024

ILIADA is approved

June, 2024

Test-beam characterization

October, 2024

We are here!

December 2024 **Integration in ILIADA**

- Mechanic design
- Electronics
- Software and Firmware
- Simulations
- Prototyping
- Characterization

Special thanks to R. Català, A. Espiña, P. Loizzo, M. Orta, M. Pagès, J. Salvans, A. Sanuy and D. Serini!

HECTOR 1st prototype

Test-beam preliminary results

- Test Beam at CNAO (Pavia, Italy) performed on June 2024
- **p+** beam: **~60 to ~230 MeV**
- Beam intensity tunned to achieve a trigger rate of \sim 100 Hz
- Test-beam prototype had **Cu absorber blocks** (instead of W)

Test beam preliminary results

Scintillator output distributions Coincidence channels trigger rate

Left: Distributions of the signal collected by the SiPMs of each sicntillator for different incident proton energies. **Right:** Normalized detection rate in the coincidence channels C_1 (S₁-S₂) and C_2 (S₁-S₂-S₃)

And beyond...

- We have 3 identical particle detectors...
- \cdot \sim 8 s away from each other (angular resolution!)
- Located in an unexplored region of space
- Sensitive to an energy band that is not typically accesible by other radiation monitors
- \cdot + the information of high-efficient magnetometers

13

\rightarrow Good opportunity to study the high-energy component of SEPs

Radiation Monitor and GRBs?

Journal of High Energy Astrophysics Volume 42, June 2024, Pages 38-51

LISA and LISA-like mission test-mass charging for gamma-ray burst detection

Catia Grimani a b 2 x Mattia Villani a b, Michele Fabi a b, Federico Sabbatini a b

- a University of Urbino Carlo Bo, Via Santa Chiara, 27, Urbino (PU), 61029, Italy
- ^b National Institute for Nuclear Physics (INFN), Section in Florence, Via B. Rossi 1, Florence, 50019, Italy

Received 29 January 2024, Revised 18 March 2024, Accepted 30 March 2024, Available online 2 April 2024, Version of Record 8 April 2024.

C. Grimani, et al., [https://doi.org/10.1016/j.jheap.2024.03.004](https://doi-org.sire.ub.edu/10.1016/j.jheap.2024.03.004)

- Thanks to the W absorbers, the RM should be sensitive to extreme (and rare) GRBs like GRB221009
- Unlikely, but LISA has a long lifetime and more LISA-like missions are expected to follow….
- Towards future missions: scintillators + SiPMs offer compactness and flexibility for the design. Room for compact GRB detectors?

Simulated differential count rates in $S₂$ (dashed) for two GRB spectra (solid), when gamma rays arrive from the side of the RM. In red, the RM effective area of S_2 for gamma rays arriving form the side.

Summary

- We have a mature design and its preliminary performance is whitin requirements
- We built a $1st$ prototype that was characterized in a test beam, showing good afreement with simulations.
- By the end of the year we will have completed HECTOR, the CubeSat prototype with which we will test the proposed technology, analysis methods, etc.
- The Radiation Monitor**s** and scintillation-based detectors can open new opportunities beyond LISA

15

Radiation Monitor: D. Mazzanti, et al., https://doi.org/10.22323/1.444.1494 **BETA ASIC:** A. Sanmukh et al., https://doi.org/10.1007/s41365-024-01419-z