\bullet Could be more abundant than \bullet . The more abundant than \bullet Ultra light dark matter from \mathbf{f} and \mathbf{f} and \mathbf{f} and \mathbf{f} searches with LISA binaries Ultra light dark matter

$\overline{\text{loop}}$ $\frac{0}{\sqrt{1 + 0}}$ BIAS **DIES** *Amplitude of of the* Diego Blas w/ Silvia Gasparotto & Rodrigo Vicente

e-Print: 2410.07330 [hep-ph]

EWTTER BACKGROUND RECEWE **KODULATION** $\frac{1}{2}w$

Dark Matter: where to look?

© Clara Murgui

Similar behaviour at large-scales

 $m\sim 10^{-22}\,\text{eV}$ Scale of ~30 Mpc, Schive et al. 1406.6586

(U)LDM **does not** behaves as CDM at small-scales Description as a particle, as a classical field or as DF?

e.g. Milky way DM halo

i) typical **distance** between particles

ii) typical **size** of particle wavepacket in

particles over

fermions
become degenerate close to this limit

- **a** $m_f \gtrsim \text{keV}$ Tremaine-Gunn bound
- **b** 'condensed dark matter' Bar et al 2102.11522

$$
d \sim n^{-1/3} \sim (M/(mV))^{-1/3} \sim 20 \text{ kpc}/(10^9 \, M_\odot)^{1/3}
$$

\nn the halo $L \gtrsim 1/(m v_{\text{esc}}) \approx 190 \left(\frac{m}{10^{-22} \text{eV}}\right)^{-1} \text{pc}$
\nverlap for $d \lesssim L$
\n \vdots field theory description
\n \vdots
\n \therefore $\mathcal{L} = \frac{1}{2} \left[(\partial_\mu \phi)^2 - m^2 \phi^2 \right] + \text{gravity}$
\n $\text{spin } 0, 1$

Garani et al 2207.06928

MATTER (ULDM)

Number density: $n_{gal} =$ \overline{N} V_{gal} ∼ M_{gal} \overline{m} ×

Dark Matter (DM)

De Broglie Wavelength: λ_{dh} ~ 0.5 kp

Occupation number : $\mathcal{N} = n \lambda_{db}^3$ $\frac{3}{db} \sim 10^{92} \times$

EOM:

Homogeneous solution are given by an oscillating field with frequency $\omega = m$

$$
\frac{1}{V_{gal}} \sim \frac{1}{m} \times \frac{10^{12} M_{\odot}}{(30 \, kpc)^3}
$$

$$
2C \left(\frac{10^{-22} eV}{m}\right) \left(\frac{250 \, km \, s^{-1}}{v}\right)
$$

$$
2C \times \left(\frac{10^{-22} eV}{m}\right)^4
$$

Given $N \gg 1$ for $m \ll O(10) eV$ DM can be described by a classical field with

$$
\Box \phi + m^2 \phi = 0
$$

ULDM summary

ULDM **does not** behaves like CDM at small-scales

Virialized configuration: collection of waves

$$
\phi \propto \int_0^{v_{max}} d^3 v \, e^{-v^2/\sigma_0^2} e^{i\omega_v t} e^{-im\vec{v}\cdot\vec{x}} e^{if\vec{v}} + c.c.
$$
\n
$$
\sigma_0 \sim 10^{-3} c \quad \text{in the MW}
$$
\nThe DM potential has coherent oscillations in λ_{db}

\n
$$
t \sim \frac{10^6}{m} \left(\frac{10^{-6}}{\sigma_0^2} \right)
$$

ULDM **does not** behaves like CDM at small-scales

Virialized configuration: collection of waves

Schive et al.1407.7762

$$
\vec{p} + 3H\rho + \frac{\nabla}{a} (\rho \vec{v}) = 0
$$
\n
$$
\vec{v} + H\vec{v} + (\vec{v} \cdot \frac{\nabla}{a}) \vec{v} = -\frac{\nabla}{a} (\vec{V} - \frac{1}{2m^2 a^2} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}})
$$
\n
$$
\uparrow
$$
\npure CDM part
\nrepulsive term

$$
\phi(x,t) = \frac{M_{pl}}{2\sqrt{2\pi}}e^{-imt}e^{-i\gamma t}\chi(x) + h.c.
$$

Galaxy enology from ULDM noloav from ULDM

$$
\rho_{sol} = \frac{\rho_0}{\left(1 + 0.091 \left(\frac{r}{r_c}\right)^2\right)^8}
$$
 with core radius
$$
r_c \sim 0.2 \ kpc \left(\frac{10^{-22} eV}{m}\right)^2 \left(\frac{10^9 M_{\odot}}{M_{sol}}\right) \sim 0.4 \ \lambda_{db}
$$

FORMATION

Different ideas to test this model \mapsto we focus on the effect of propagation of radiation in this DM environment

the DM halo where it is formed. Schive 1407.7762 $M_{sol} \approx 1.4 \times 10^{9} \left(\frac{10^{-22} eV}{m}\right)$ $m^{}_{dm}$ Mhalo 10^{12} M $_{\odot}$ 3

But some dispersion is observed in the literature

GRAVITATIONAL REDSHIFT

Because of the inhomogeneities of the gravitational background along the line of sight a signal experiences gravitational redshift

The DM background oscillates, then the gravitational potentials also oscillate. The DM background oscillate, their the gravitational potentials also oscillate.

Decomposing $\Psi = \langle \Psi \rangle + \delta \Psi \cos(\omega_{\delta} t)$ as well as for Φ ,

$$
\frac{\Delta \omega_e}{\omega_e} \simeq \Phi|_e^r + n^i \ v_i|_e^r - I_{iSW} \text{ where}
$$

$$
I_{iSW} = (\Phi + \Psi)|_e^r + n^i \int_e^r \partial_i(\Phi + \Psi)
$$

 $\delta \Psi = -\frac{\pi \rho}{m^2}$ $\frac{n\rho}{m^2}$ and $\omega_{\delta} = 2m$ Khmelnitsky & Rubakov 1309.5888

from Einstein equations one finds

Periodic modulation in the time of arrival residuals of millisecond Pulsars

$$
\Delta t \simeq -\int_0^t \frac{\Delta \omega_e(t')}{\omega_e} dt' \simeq -\int_0^t (\Psi_e - \Psi_r)
$$

$$
h_{GW} = A \cos (\omega_e u + \varphi) + A \frac{\omega_e}{\omega_{\delta}} Y|_{e} \sin[(\omega_e)]
$$

CASE OF GRAVITATIONAL WAVES ULDM modulates GWs

The same as for Pulsars will happen for any radiation at a fixed frequency $\omega_e \Rightarrow$ GW will experience frequency modulation. First, let's consider a monochromatic GW:

Signal-to-Noise-Ratio (SNR) of sidebands:

$$
SNR_{\delta} = \frac{1}{\sqrt{2}} \frac{\omega_e}{\omega_{\delta}} \Upsilon(\rho_0, m, x_e) SNR_h
$$

Amplitude of the modulation of the carrier

carrier frequency modulation

- $\pm \omega_{\delta}$) $u + \varphi$]
-
- frequency
- GW emitters could come from inside the soliton (not contaminated by dust in the GC)
- Could be more abundant than Pulsars in PTA
- No limitation on observation time (higher frequency could be reached)
- Signal from other Galaxies

M hich notantial? Which potential?

larger radius

• Minimal coupling: pure gravitational interaction With $\delta \Phi = \Phi_2 \cos(2mt)$ and $V =$ 1 2 $m^2\phi^2(1-\frac{1}{16})$ Solutions are given by 2^{nd} order Einstein equations $\nabla^2 \left[\Psi_2 + \frac{\pi \rho}{m^2} \right]$ $m²$ $= -\frac{\pi}{6.62}$ $\frac{\pi}{6}$ f²m² ρ^2 $\nabla^2 \Phi_2 = 8\pi [5(\Phi) + \gamma - \frac{\rho}{4\pi G^2}]$ $\frac{P}{12 f^2 m^2}$] ρ

•Direct coupling: ULDM directly coupled to SM (e.g. m_χ $\boldsymbol{\phi}$ Λ_1 $\bar{\chi}\chi$ or m_χ ϕ^2 Λ^2_2 $\frac{1}{2}\bar{\chi}\chi$), under a conformal transformation to the Jordan-Fierz metric: $g_{\mu\nu} = A^2(\phi)g_{\mu\nu}$, with $A \simeq 1 + \frac{\phi}{\Lambda}$ Λ_1 or $A \simeq 1 + \frac{\phi^2}{4}$ Λ_2 \Rightarrow Υ = 2 Λ_{1} $\overline{\rho}$ $m²$ 1/2 \int_{e} and $\Upsilon =$ 1 $Λ_2^2$ $\overline{\rho}$ $\frac{P}{m^2}\Big)\big|_e$

- · Astrophysical populations of galactic monochromatic GW sources.
	- OWhite Dwarfs $\bigcup_{n=10^{-20} \text{ eV}} \blacksquare$ $\left(\text{detectole}\right)$ $\left.\right|$ $\left.\right|$ from photometry, Launhardt (2002) ODeformed Spinal College 10⁸ Schodel 2014 Sofue 2009 **Sofue 2012 Sofue 2013** Chatzopoulos 2015 Deguchi 2004 (detectable E^{-107} _c \overline{A} , \overline{A} $10⁶$ Expected/Simul₁₀₅ the sensitivity from an order as 10° populations (N carriers)

$\overline{}$ o $\overline{}$ Galactic sources Galactic sources

2303.04714 1903.10871

SENSITIVITIES TO ULDM IN THE MW

- $OMD (m m) = (10$ other galaxies (more massive soliton). The contract of the contract of the contract of the contract of the con
In the contract of the contract
- \mathbf{w} and \mathbf{v} and \mathbf{v} and \mathbf{v}
- EDIT. VYY 17 0000
€ 106⊙, 60⊙ at Gpc • BBH: GW170608-like event
	- BNS: GW170817-like event

Conclusions experience frequency modulation. First, let's consider a monochromatic GW: $\mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal$

Ultra l'alat bosonic DN *I* \blacksquare \mathbf{C} carrier fraction \mathbf{C}

S2). Here Λ represents the cosmological constant. $T \cap T$ agreement is desired the succession of T **OLDI I UVEI UCI** f_{min} in other \bigcap and and turbulent support and the support and the support and the support and the support and all a Extragalactic (chirping) sources could probe ULDM over densities in other Galaxies

\mathbf{F} $\mathbf{$ α each of thickness 60 pc) shows how α Mouumon the phase of GWs haloes. Distinct solitonic cores with radius ∼ 0.3 − 1.6 kpc are found with λ density shown here spans over $\overline{11}$ to 108 (normalized to the cosmic mean $\overline{11}$ ω _o is a color map scales logarithmically, with corresponding to density ω ω proving unit acceleration, in proving perfor $\mathbf b$ and $\mathbf b$ (see almost two orders of magnitude 21 (see all $\mathbf b$ \mathbf{v} is a virialized object of virialized objects, where the deterministic objects, where the deterministic objects, where the deterministic objects, where the deterministic objects, where \mathbf{v} $\overline{\mathbf{a}}$ $\Omega_{\rm P}$ phase-of GWs ω_e ω_{δ} $\Upsilon(\rho_0, m, x_e) SNR_h\, \sqrt{N})$

 \overline{r} calculations employed, the pattern of \overline{r} aments and voids generated by a conventional Nbody particle ΛCDM simulation is remarkably instanding waves of dark matter in the center of every ℓ almost matrix a flat core with ℓ \blacksquare is the sharp version \blacksquare $\frac{3}{2}$ / 2 / 10-21 aV *art* \leq *d* \leq $10 - 21$ *pV* mass v LISA galactic sources opening $2 \times 10-22$ eV $\le m \le 3 \times 10-21$ eV mass window

e-Print: 2410.07330 [hep-ph]

GWS FROM SPINNING NS

Rotating NS can support long-lived, non-axisymmetric deformations known as mountains \Rightarrow potential sources of continuous GW

$$
h_0 = \frac{4G}{c^4}\frac{\epsilon I_3 \Omega^2}{d} \approx 10^{-25} \left(\frac{10\,\text{kpc}}{d}\right) \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{I_3}{10^{45}\,\text{g}\,\text{cm}^2}\right) \left(\frac{\nu}{500\,\text{Hz}}\right)^2
$$

Ellipticity parameter $\epsilon = (I_2 - I_1)/I_3$

Reviews e.g Gittins 2401.01670, Piccinni 2202.01088

> Average number of detectable sources from 2303.04714

Great uncertainty on the detection prospects

CHIRPING CASE

•Gravitational redshift $\chi = \Phi|_{e}^{r} + n^{i} v_{i}|_{e}^{r} - I_{iSW}$

• Relative phase correction $\eta =$ $\int \omega_{e} \chi$ $\int \omega_e$

•Quadrupolar result for the GW frequency

$$
f_e = \frac{1}{\pi} \left(\frac{2GM}{c^3}\right)^{-\frac{5}{8}} \left(\frac{5}{256\tau}\right)^{3/8}
$$

$$
\eta_{\rm r}(\tau_{\rm r}) = -\frac{|\Upsilon|}{13}\left(13_1F_2\left(\frac{5}{16};\frac{1}{2},\frac{21}{16};-\frac{1}{4}\tau^2\omega_{\delta}^2\right)\text{cct}
$$

$$
+\,5\tau\omega_{\delta}\,{}_{1}F_{2}\left(\frac{13}{16};\frac{3}{2},\frac{29}{16};-\frac{1}{4}\tau^{2}\omega_{\delta}^{2}\right)\sin
$$

New phenomenology from ULDM

A) coherent oscillations

 $\omega \sim m \approx$ 10^{-22} eV

DM halo

m

interactions

0

B) stochastic 'narrow' piece

 $\phi \propto$

 $\int v_{max}$

these fluctuations heat, decorrelate (interf), friction times & 1 day. This mass range is of significant inter- \overline{a} ictuations to 1022 eV and the fund of it is in relate (intert). so-called string "axiverse" extends down to 10³³ eV [31]. f inn the amplitude modulation present over several coherence

 $\omega = 2m$

Bar-Or et al 1809.07673 Marsh, Niemeyer 18 Dalal, Kravtsov 22 Ban-Or et lal 19 riatsu, interneyet to α even have near-zero field and α

$$
\frac{\partial \psi}{\partial \phi}(x, t) \text{ We }\frac{1}{\text{top}} \text{ for all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\phi(x, t) \text{ We }\frac{1}{\text{top}} \text{ for all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\phi(x, t) \text{ We }\frac{1}{\text{top}} \text{ for all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{else } \text{if } \text{if } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \leq 0 \text{ and } t \leq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\text{where all } t \geq 0
$$
\n
$$
\
$$

◆