Data analysis efforts at UIB from the ground up

Jorge Valencia on behalf of the UIB Gravitational Wave Group

> LISA Spain Meeting Barcelona, 15 October 2024

Universitat de les Illes Balears

AC3 Institute of Applied Computing & Community Code.

- +25 people, PI Alicia Sintes
- Members of LVK, ET, LISA Consortium, DDPC, Anna Heffernan of LST
- IMRPhenom waveform models:
 - used routinely by LVK for all events detected,
 - LISA data challenges
- Data analysis:

October 15th, 2024

- continuous waves and long transient searches
- lensing searches
- CB parameter estimation

MEMBERS

Faculty

PhD Students

Postdoc Researchers

Jorge Valencia, jorge.valencia@uib.es

Analysis of real events

Towards the routine use of subdominant harmonics in gravitational-wave inference: re-analysis of GW190412 with generation X waveform models

Marta Colleoni,^{1,*} Maite Mateu-Lucena,¹ Héctor Estellés,¹ Cecilio García-Quirós,¹ David Keitel,¹ Geraint Pratten.² Antoni Ramos-Buades.^{3,1} and Sascha Husa¹

A Detailed Analysis of GW190521 with Phenomenological Waveform Models

Héctor Estellés¹⁽⁰⁾, Sascha Husa¹⁽⁰⁾, Marta Colleoni¹⁽⁰⁾, Maite Mateu-Lucena¹⁽⁰⁾, Maria de Lluc Planas¹⁽⁰⁾, Cecilio García-Quirós¹⁽¹⁾, David Keitel¹⁽¹⁾, Antoni Ramos-Buades^{1,2}⁽¹⁾, Ajit Kumar Mehta²⁽¹⁾, Alessandra Buonanno²⁽¹⁾, and Serguei Ossokine²

Parameter estimation with the current generation of phenomenological waveform models applied to the black hole mergers of GWTC-1

Maite Mateu-Lucena [©],¹* Sascha Husa [©],¹* Marta Colleoni [©],¹ Héctor Estellés [©],¹ Cecilio García-Quirós⁽⁶⁾,^{1,2} David Keitel⁽⁶⁾,¹ Maria de Lluc Planas⁽⁶⁾ and Antoni Ramos-Buades⁽⁶⁾,³

Matched-filter study and energy budget suggest no detectable gravitational-wave 'extended emission' from GW170817

Miquel Oliver,¹^{*} David Keitel[®],^{2,3} Andrew L. Miller,^{4,5} Hector Estelles¹ and Alicia M. Sintes¹

What is the nature of GW230529? An exploration of the gravitational lensing hypothesis

Justin Janquart^{1,2,3,4*}, David Keitel^{5,6}[†], Rico K. L. Lo⁷[‡], Juno C. L. Chan⁷, Jose María Ezquiaga⁷, Otto A. Hannuksela⁸, Alvin K. Y. Li^{9,8,10}, Anupreeta More^{11,12}, Hemantakumar Phurailatpam⁸, Neha Singh⁵, Laura E. Uronen⁸, Mick Wright¹³, Naresh Adhikari¹⁴, Sylvia Biscoveanu¹⁵, Tomasz Bulik¹⁶, Amanda M. Farah¹⁷, Anna Heffernan⁵, Prathamesh Joshi^{18,19}, Vincent Juste²⁰, Atul Kedia²¹ Shania A. Nichols²², Geraint Pratten²³, C. Rawcliffe²⁴, Soumen Roy^{4,3,1,2}, Elise M. Sänger²⁵, Hui Tong^{26,27} M. Trevor²⁸, Luka Vujeva⁷, Michael Zevin^{29,15}

Enhancing Gravitational Wave Parameter Estimation with Non-Linear Memory: Breaking the Distance-Inclination Degeneracy

Yumeng Xu^{0,1} Maria Rosselló-Sastre^{0,2} Shubhanshu Tiwari^{0,1} Michael Ebersold^{0,3} Eleanor Z Hamilton[®],^{2,1} Cecilio García-Quirós[®],¹ Héctor Estellés[®],⁴ and Sascha Husa[®],^{5,2}

False positives for

David Keitel^{1,2}

Characteristic Features of Gravitational Wave Lensing as Probe of Lens Mass Model

Paolo Cremonese,* David Fonseca Mota, and Vincenzo Salzano

Ángel Garrón^{2,1} 🕩 and David Keitel¹ 🕩

October 15th, 2024

GW Lensing

gravitational lensing: the gravitational-wave perspective

Waveform systematics in identifying strongly gravitationally lensed gravitational waves: posterior overlap method

Continuous Waves

Application of a hierarchical MCMC follow-up to Advanced LIGO continuous gravitational-wave candidates

Rodrigo Tenorio,* David Keitel, and Alicia M. Sintes

Assessing the Similarity of Continuous Gravitational-Wave Signals to Narrow Instrumental Artifacts

Rafel Jaume * D, Rodrigo Tenorio D and Alicia M. Sintes 💿

Search methods for continuous gravitational-wave signals from unknown sources in the advanced-detector era

Rodrigo Tenorio[®], David Keitel[®] and Alicia M. Sintes[®]

Convolutional neural network search for long-duration transient gravitational waves from glitching pulsars

Luana M. Modafferi[®],* Rodrigo Tenorio[®],[†] and David Keitel[®]

Towards a computationally-efficient follow-up pipeline for blind continuous gravitational-wave searches

Lorenzo Mirasola $\mathbb{O}^{1,*}$ and Rodrigo Tenorio $\mathbb{O}^{2,\dagger}$

Analysis of real events

Towards the routine use of subdominant harmonics in gravitational-wave inference: re-analysis of GW190412 with generation X waveform models

Marta Colleoni,^{1,*} Maite Mateu-Lucena,¹ Héctor Estellés,¹ Cecilio García-Quirós,¹ David Keitel,¹ Geraint Pratten.² Antoni Ramos-Buades.^{3,1} and Sascha Husa¹

A Detailed Analysis of GW190521 with Phenomenological Waveform Models

Héctor Estellés¹⁽⁰⁾, Sascha Husa¹⁽⁰⁾, Marta Colleoni¹⁽⁰⁾, Maite Mateu-Lucena¹⁽⁰⁾, Maria de Lluc Planas¹⁽⁰⁾, Cecilio García-Quirós¹¹, David Keitel¹, Antoni Ramos-Buades^{1,2}, Ajit Kumar Mehta², Alessandra Buonanno², and Serguei Ossokine²

Parameter estimation with the current generation of phenomenological waveform models applied to the black hole mergers of GWTC-1

Maite Mateu-Lucena[®],¹* Sascha Husa[®],¹* Marta Colleoni[®],¹ Héctor Estellés[®],¹ Cecilio García-Quirós [©],^{1,2} David Keitel [©],¹ Maria de Lluc Planas ^{©1} and Antoni Ramos-Buades ^{©1,3}

Matched-filter study and energy budget suggest no detectable gravitational-wave 'extended emission' from GW170817

Miquel Oliver,¹^{*} David Keitel[®],^{2,3} Andrew L. Miller,^{4,5} Hector Estelles¹ and Alicia M. Sintes¹

What is the nature of GW230529? An exploration of the gravitational lensing hypothesis

Justin Janquart^{1,2,3,4*}, David Keitel^{5,6}[†], Rico K. L. Lo⁷[‡], Juno C. L. Chan⁷, Jose María Ezquiaga⁷, Otto A. Hannuksela⁸, Alvin K. Y. Li^{9,8,10}, Anupreeta More^{11,12}, Hemantakumar Phurailatpam⁸, Neha Singh⁵, Laura E. Uronen⁸, Mick Wright¹³, Naresh Adhikari¹⁴, Sylvia Biscoveanu¹⁵, Tomasz Bulik¹⁶, Amanda M. Farah¹⁷, Anna Heffernan⁵, Prathamesh Joshi^{18,19}, Vincent Juste²⁰, Atul Kedia²¹ Shania A. Nichols²², Geraint Pratten²³, C. Rawcliffe²⁴, Soumen Roy^{4,3,1,2}, Elise M. Sänger²⁵, Hui Tong^{26,27} M. Trevor²⁸, Luka Vujeva⁷, Michael Zevin^{29,15}

Enhancing Gravitational Wave Parameter Estimation with Non-Linear Memory: Breaking the Distance-Inclination Degeneracy

Yumeng Xu^{0,1} Maria Rosselló-Sastre^{0,2} Shubhanshu Tiwari^{0,1} Michael Ebersold^{0,3} Eleanor Z Hamilton¹,^{2,1} Cecilio García-Quirós¹,¹ Héctor Estellés¹,⁴ and Sascha Husa^{5,2}

October 15th, 2024

• Periodic data releases after observing periods \longrightarrow same for LISA

Analysis of real events

Towards the routine use of subdominant harmonics in gravitational-wave inference: re-analysis of GW190412 with generation X waveform models

Marta Colleoni,^{1,*} Maite Mateu-Lucena,¹ Héctor Estellés,¹ Cecilio García-Quirós,¹ David Keitel,¹ Geraint Pratten,² Antoni Ramos-Buades,^{3,1} and Sascha Husa¹

A Detailed Analysis of GW190521 with Phenomenological Waveform Models

Héctor Estellés¹⁽⁰⁾, Sascha Husa¹⁽⁰⁾, Marta Colleoni¹⁽⁰⁾, Maite Mateu-Lucena¹⁽⁰⁾, Maria de Lluc Planas¹⁽⁰⁾, Cecilio García-Quirós¹, David Keitel¹, Antoni Ramos-Buades^{1,2}, Ajit Kumar Mehta², Alessandra Buonanno², and Serguei Ossokine²

Parameter estimation with the current generation of phenomenological waveform models applied to the black hole mergers of GWTC-1

Maite Mateu-Lucena[®],¹* Sascha Husa[®],¹* Marta Colleoni[®],¹ Héctor Estellés[®],¹ Cecilio García-Quirós⁽⁰⁾,^{1,2} David Keitel⁽⁰⁾,¹ Maria de Lluc Planas⁽⁰⁾ and Antoni Ramos-Buades^{(0),3}

Matched-filter study and energy budget suggest no detectable gravitational-wave 'extended emission' from GW170817

Miquel Oliver,¹^{*} David Keitel[®],^{2,3} Andrew L. Miller,^{4,5} Hector Estelles¹ and Alicia M. Sintes¹

What is the nature of GW230529? An exploration of the gravitational lensing hypothesis

Justin Janquart^{1,2,3,4*}, David Keitel^{5,6}[†], Rico K. L. Lo⁷[‡], Juno C. L. Chan⁷, Jose María Ezquiaga⁷, Otto A. Hannuksela⁸, Alvin K. Y. Li^{9,8,10}, Anupreeta More^{11,12}, Hemantakumar Phurailatpam⁸, Neha Singh⁵, Laura E. Uronen⁸, Mick Wright¹³, Naresh Adhikari¹⁴, Sylvia Biscoveanu¹⁵, Tomasz Bulik¹⁶, Amanda M. Farah¹⁷, Anna Heffernan⁵, Prathamesh Joshi^{18,19}, Vincent Juste²⁰, Atul Kedia²¹ Shania A. Nichols²², Geraint Pratten²³, C. Rawcliffe²⁴, Soumen Roy^{4,3,1,2}, Elise M. Sänger²⁵, Hui Tong^{26,27} M. Trevor²⁸, Luka Vujeva⁷, Michael Zevin^{29,15}

Enhancing Gravitational Wave Parameter Estimation with Non-Linear Memory Breaking the Distance-Inclination Degeneracy

Yumeng Xu^{0,1} Maria Rosselló-Sastre^{0,2} Shubhanshu Tiwari^{0,1} Michael Ebersold^{0,3} Eleanor Z Hamilton ⁽⁰⁾,^{2,1} Cecilio García-Quirós ⁽⁰⁾,¹ Héctor Estellés ⁽⁰⁾,⁴ and Sascha Husa ⁽⁰⁾,^{5,2}

- During observing periods: • ROTA: PE exploratory runs of detected events • Public alerts in <u>https://gracedb.ligo.org/</u> • PE investigations of specific events • Searches: CWs, lensing.

 - Review of results/catalogs

October 15th, 2024

• Periodic data releases after observing periods \longrightarrow same for LISA

• Waveform code maintenance

Analysis of real events

Towards the routine use of subdominant harmonics in gravitational-wave inference: re-analysis of GW190412 with generation X waveform models

Marta Colleoni,^{1,*} Maite Mateu-Lucena,¹ Héctor Estellés,¹ Cecilio García-Quirós,¹ David Keitel,¹ Geraint Pratten,² Antoni Ramos-Buades,^{3,1} and Sascha Husa¹

A Detailed Analysis of GW190521 with Phenomenological Waveform Models

Héctor Estellés¹⁽⁰⁾, Sascha Husa¹⁽⁰⁾, Marta Colleoni¹⁽⁰⁾, Maite Mateu-Lucena¹⁽⁰⁾, Maria de Lluc Planas¹⁽⁰⁾, Cecilio García-Quirós¹, David Keitel¹, Antoni Ramos-Buades^{1,2}, Ajit Kumar Mehta², Alessandra Buonanno², and Serguei Ossokine²

Parameter estimation with the current generation of phenomenological waveform models applied to the black hole mergers of GWTC-1

Maite Mateu-Lucena⁰,¹^{*} Sascha Husa⁰,¹^{*} Marta Colleoni⁰,¹ Héctor Estellés⁰,¹ Cecilio García-Quirós [©],^{1,2} David Keitel [©],¹ Maria de Lluc Planas ^{©1} and Antoni Ramos-Buades ^{©1,3}

Matched-filter study and energy budget suggest no detectable gravitational-wave 'extended emission' from GW170817

Miquel Oliver,¹^{*} David Keitel[®],^{2,3} Andrew L. Miller,^{4,5} Hector Estelles¹ and Alicia M. Sintes¹

What is the nature of GW230529? An exploration of the gravitational lensing hypothesis

Justin Janquart^{1,2,3,4 *}, David Keitel^{5,6}[†], Rico K. L. Lo⁷[‡], Juno C. L. Chan⁷, Jose María Ezquiaga⁷, Otto A. Hannuksela⁸, Alvin K. Y. Li^{9,8,10}, Anupreeta More^{11,12}, Hemantakumar Phurailatpam⁸, Neha Singh⁵, Laura E. Uronen⁸, Mick Wright¹³, Naresh Adhikari¹⁴, Sylvia Biscoveanu¹⁵, Tomasz Bulik¹⁶, Amanda M. Farah¹⁷, Anna Heffernan⁵, Prathamesh Joshi^{18,19}, Vincent Juste²⁰, Atul Kedia²¹ Shania A. Nichols²², Geraint Pratten²³, C. Rawcliffe²⁴, Soumen Roy^{4,3,1,2}, Elise M. Sänger²⁵, Hui Tong^{26,2} M. Trevor²⁸, Luka Vujeva⁷, Michael Zevin^{29,15}

Enhancing Gravitational Wave Parameter Estimation with Non-Linear Memory Breaking the Distance-Inclination Degeneracy

Yumeng Xu^{0,1} Maria Rosselló-Sastre^{0,2} Shubhanshu Tiwari^{0,1} Michael Ebersold^{0,3} Eleanor Z Hamilton ⁽⁰⁾,^{2,1} Cecilio García-Quirós ⁽⁰⁾,¹ Héctor Estellés ⁽⁰⁾,⁴ and Sascha Husa ⁽⁰⁾,^{5,2}

GW Lensing

• Lensing studies for LISA

False positives for

David Keitel^{1,2}

Characteristic Features of Gravitational Wave Lensing as Probe of Lens Mass Model

Paolo Cremonese,* David Fonseca Mota, and Vincenzo Salzano

Ángel Garrón^{2,1} 🕩 and David Keitel¹ 🕩

October 15th, 2024

GW Lensing

gravitational lensing: the gravitational-wave perspective

Waveform systematics in identifying strongly gravitationally lensed gravitational waves: posterior overlap method

6/13

GW Lensing

• Lensing studies for LISA

Continuous Waves:

• Machine Learning searches

• Galactic binaries • Almost monochromatic signals

False positives for

David Keitel^{1,2}

Characteristic Features of Gravitational Wave Lensing as **Probe of Lens Mass Model**

Paolo Cremonese,* David Fonseca Mota, and Vincenzo Salzano

Ángel Garrón^{2,1} 🕩 and David Keitel¹ 🕩

October 15th, 2024

GW Lensing

gravitational lensing: the gravitational-wave perspective

Waveform systematics in identifying strongly gravitationally lensed gravitational waves: posterior overlap method

Continuous Waves

Application of a hierarchical MCMC follow-up to Advanced LIGO continuous gravitational-wave candidates

Rodrigo Tenorio,* David Keitel, and Alicia M. Sintes

Assessing the Similarity of Continuous Gravitational-Wave Signals to Narrow Instrumental Artifacts

Rafel Jaume * , Rodrigo Tenorio 💿 and Alicia M. Sintes 💿

Search methods for continuous gravitational-wave signals from unknown sources in the advanced-detector era

Rodrigo Tenorio[®]*, David Keitel[®] and Alicia M. Sintes[®]

Convolutional neural network search for long-duration transient gravitational waves from glitching pulsars

Luana M. Modafferi[®],* Rodrigo Tenorio[®],[†] and David Keitel[®]

Towards a computationally-efficient follow-up pipeline for blind continuous gravitational-wave searches

Lorenzo Mirasola $\mathbb{O}^{1,*}$ and Rodrigo Tenorio $\mathbb{O}^{2,\dagger}$

6/13

Previous experience

with LISA

_ISA parameter estimation of supermassive black holes Miquel Trias¹ and Alicia M Sintes^{1,2}

LISA observations of supermassive black holes: parameter estimation using full post-Newtonian inspiral waveforms

Miquel Trias¹ and Alicia M. Sintes^{1,2}

Weak lensing effects in the measurement of the dark energy equation of state with LISA

Chris Van Den Broeck,^{1,2,*} M. Trias,^{3,†} B. S. Sathyaprakash,^{2,‡} and A. M. Sintes^{3,§}

MASTER'S THESIS

TESTING WAVEFORM MODELS FOR THE LISA AND EINSTEIN TELESCOPE GRAVITATIONAL WAVE DETECTORS

Friso Snel

Master's Degree in Advanced Physics and Applied Mathem

Centre for Postgraduate Studie

Academic Year 2019-20

Universitat

A STUDY OF WAVEFORM **REQUIREMENTS FOR THE LISA** SPACE MISSION WITH CURRENT INSPIRAL-MERGER-**RINGDOWN MODELS**

Jorge Valencia Gómez

Master's degree in Advanced Physics and Applied Mathematics Centre for Postgraduate Studie

cademic Year 2022-2

Characteristic Strain

October 15th, 2024

Christopher J. Moore + 2014, <u>http://gwplotter.com/</u>

October 15th, 2024

Image taken from Antoni Ramos-Buades <u>talk</u> in Fundamental Physics Meets Waveforms With LISA

	Aligned spin	Precessing
Quasi-circular	IMRPHENOMTHM [Estellés+(2020)] IMRPHENOMXHM [García-Quirós+(2020)]	IMRPHENOMTP [Estellés+(2021)] IMRPHENOMXP [Pratten+(2021)] IMRPHENOMXC [Thompson,Hamilton+(2021)] IMRPHENOMXP [Colleoni,Hamilton+(in pr
Eccentric	IMRPHENOMTEHM [Planas+(in prep.)] IMRPHENOMXE [Ramos-Buades+(in prep.)]	

October 15th, 2024

Image taken from Antoni Ramos-Buades <u>talk</u> in <u>Fundamental Physics Meets Waveforms With LISA</u>

	Aligned spin	Precessing
Quasi-circular	IMRPHENOMTHM [Estellés+(2020)] IMRPHENOMXHM [García-Quirós+(2020)]	IMRPHENOMTP [Estellés+(2021)] IMRPHENOMXP [Pratten+(2021)] IMRPHENOMXC [Thompson,Hamilton+(20)] IMRPHENOMXP [Colleoni,Hamilton+(in pr
Eccentric	IMRPHENOMTEHM [Planas+(in prep.)] IMRPHENOMXE [Ramos-Buades+(in prep.)]	

October 15th, 2024

РНИ

РНИ

)4A2024)] PNR $\operatorname{rep.})]$

	Aligned spin	Precessing
Quasi-circular	IMRPHENOMTHM [Estellés+(2020)] IMRPHENOMXHM [García-Quirós+(2020)]	IMRPHENOMTP [Estellés+(2021)] IMRPHENOMXP [Pratten+(2021)] IMRPHENOMXC [Thompson,Hamilton+(2021)] IMRPHENOMXP [Colleoni,Hamilton+(in pr
Eccentric	IMRPHENOMTEHM [Planas+(in prep.)] IMRPHENOMXE [Ramos-Buades+(in prep.)]	

New Python infrastructure for Phenom models: phenomxpy (GPUs) [see talk by Cecilio García-Quirós]

October 15th, 2024

in Fundamental Physics Meets Waveforms With LISA

RECENT AND SOME ONGOING MODELLING WORK @ UIB: I

DATA SETS FOR THE ENTIRE PARAMETER SPACE

- Build IMRPhenom models with data from all available NR catalogues.
 - Consistent precessing data: different NR catalogs, NRSurrogate, EMRI waveforms. L. Planas, J. Llobera, S. Husa [Phys. Rev. D 109, 124028]
 - First application: single spin final state model across all mass ratios.
 - Ongoing: systematic approach to build precessing "complete" hybrids from inspiral waveforms + NR: J. Llobera, S. Husa (in prep.)

 $\theta_1 = \pi/2$

RECENT AND SOME ONGOING MODELLING WORK @ UIB: I

DATA SETS FOR THE ENTIRE PARAMETER SPACE

- Build IMRPhenom models with data from all available NR catalogues.
 - Consistent precessing data: different NR catalogs, NRSurrogate, EMRI waveforms. L. Planas, J. Llobera, S. Husa [Phys. Rev. D 109, 124028]
 - First application: single spin final state model across all mass ratios.
 - Ongoing: systematic approach to build precessing "complete" hybrids from inspiral waveforms + NR: J. Llobera, S. Husa (in prep.)

REGULAR ALIGNED SPIN FINAL STATE MODEL

- Singular behaviour for EMRIs + extreme spins has previously not been incorporated into models.
- Solve by appropriate rescaling: R. Santos, P. Mourier, S. Husa, (in prep.)

 $\theta_1 = \pi/2$

RECENT AND SOME ONGOING MODELLING WORK @ UIB: I

DATA SETS FOR THE ENTIRE PARAMETER SPACE

- Build IMRPhenom models with data from all available NR catalogues.
 - Consistent precessing data: different NR catalogs, NRSurrogate, EMRI waveforms. L. Planas, J. Llobera, S. Husa [Phys. Rev. D 109, 124028]
 - First application: single spin final state model across all mass ratios.
 - Ongoing: systematic approach to build precessing "complete" hybrids from inspiral waveforms + NR: J. Llobera, S. Husa (in prep.)

REGULAR ALIGNED SPIN FINAL STATE MODEL

- Singular behaviour for EMRIs + extreme spins has previously not been incorporated into models.
- Solve by appropriate rescaling: R. Santos, P. Mourier, S. Husa, (in prep.) **NR** SIMULATIONS FOR ECCENTRIC WAVEFORMS AND LARGE MASS RATIOS
- Einstein Toolkit code, simulations on MN5.

October 15th, 2024

 $\theta_1 = \pi/2$

RECENT AND SOME ONGOING MODELLING WORK @ UIB: II

GW MEMORY

- Developed IMRPhenom model for the **complete** (2,0) mode: <u>memory + oscillatory</u> part. M. Rosselló-Sastre, S. Husa, S. Bera (2024) [arXiv:2405.17302]
- Fast: implemented in IMRPHENOMTHM (LALSuite + phenomxpy)

RECENT AND SOME ONGOING MODELLING WORK @ UIB: II

GW MEMORY

- Developed IMRPhenom model for the **complete** (2,0) mode: <u>memory + oscillatory</u> part. M. Rosselló-Sastre, S. Husa, S. Bera (2024) [arXiv:2405.17302]
- Fast: implemented in IMRPHENOMTHM (LALSuite + phenomxpy)

DATA ANALYSIS WITH STEP-LIKE FUNCTIONS

• Method to compute FT of data with step-like behaviour

COMPUTING RESOURCES

MareNostrum 5 installed at Barcelona Supercomputing Center

- Excellent resource for LISA Spain community
- <u>First allocation</u> toward role of BSC/MareNostrum for DCC:

"Preparations for the Spanish Contribution to the LISA Distributed Data Processing Centre"

7 active users

Images taken from: <u>https://www.bsc.es/es/noticias/noticias-del-bsc/arranca-marenostrum-5-el-nuevo-supercomputador-europeo-instalado-en-el-bsc</u>

COMPUTING RESOURCES

MareNostrum 5 installed at Barcelona Supercomputing Center

- Excellent resource for LISA Spain community
- <u>First allocation</u> toward role of BSC/MareNostrum for DCC:

"Preparations for the Spanish Contribution to the LISA" Distributed Data Processing Centre"

<u>General</u>	Purpose I	Partition		
• 6192 nodes	$112 \mathrm{\ CPUs}$	$256 \mathrm{GB}$		
• 216 nodes	$112 \mathrm{CPUs}$	$1024 \mathrm{GB}$		
• 72 nodes	$112 \mathrm{CPUs}$	$128 \mathrm{GB}$		
<u>Allocation time</u> : 985 kh				
<u>Currently running</u> :				
• CBC PE				
• High-mass ratio NR simulations				

toward comparison with GSF

Hardware info taken from: <u>https://www.bsc.es/supportkc/docs/intro</u> Images taken from: https://www.bsc.es/es/noticias/noticias-del-bsc/arranca-marenostrum-5-el-nuevo-supercomputador-europeo-instalado-en-el-bsc/

GW MEMORY

• (2,0) mode implemented in IMRPHENOMTHM by M. Rosselló-Sastre, S. Husa, S. Bera (2024) [arXiv:2405.17302]

GW MEMORY

• (2,0) mode implemented in IMRPHENOMTHM by M. Rosselló-Sastre, S. Husa, S. Bera (2024) [arXiv:2405.17302]

LISA PARAMETER ESTIMATION LDC + phenomxpy (GPU)

- Zero noise injection with HMs + (2,0)
- Duration ~70 days, $M = 1.8 \times 10^6 M_{\odot}$, q = 1.25
- SNR ~2500
- $f_{\rm low} = 10^{-4} \,{\rm Hz}$
- Sampler ptemcee with Fisher initialization

October 15th, 2024

Jorge Valencia, jorge.valencia@uib.es

GW MEMORY

• (2,0) mode implemented in IMRPHENOMTHM by M. Rosselló-Sastre, S. Husa, S. Bera (2024) [arXiv:2405.17302]

LISA PARAMETER ESTIMATION LDC + phenomxpy (GPU)

- Zero noise injection with HMs + (2,0)
- Duration ~70 days, $M = 1.8 \times 10^6 M_{\odot}, q = 1.25$
- SNR ~ 2500
- $f_{\rm low} = 10^{-4} \,{\rm Hz}$
- Sampler ptemcee with Fisher initialization

GW MEMORY

• (2,0) mode implemented in IMRPHENOMTHM by M. Rosselló-Sastre, S. Husa, S. Bera (2024) [arXiv:2405.17302]

LISA PARAMETER ESTIMATION LDC + phenomxpy (GPU)

- Zero noise injection with HMs + (2,0)
- Duration ~70 days, $M = 1.8 \times 10^6 M_{\odot}, q = 1.25$
- SNR ~ 2500
- $f_{\rm low} = 10^{-4} \,{\rm Hz}$
- Sampler ptemcee with Fisher initialization

GW MEMORY

• (2,0) mode implemented in IMRPHENOMTHM by M. Rosselló-Sastre, S. Husa, S. Bera (2024) [arXiv:2405.17302]

LISA PARAMETER ESTIMATION LDC + phenomxpy (GPU)

- Zero noise injection with HMs + (2,0)
- Duration ~70 days, $M = 1.8 \times 10^6 M_{\odot}, q = 1.25$
- SNR ~2500
- $f_{\rm low} = 10^{-4} \,{\rm Hz}$
- Sampler ptemcee with Fisher initialization

CONCLUSIONS

- challenging!
- dealing with open data releases, ...
- Cover larger parameter space, increase speed and accuracy.
 - Current development is based on LALSuite and Cecilio's phenomxpy.
 - response.
- **Ongoing:** LISA analyses with the (2,0) mode

• Bring experience with different types of data analysis in the context of ongoing observation campaigns, interpretation of challenging events - interpretation of events in the real world can be

• Bring experience with workflows in a large collaboration: code development, reviews, bylaws,

• Group is committed to further develop IMRPhenom models, including precession + eccentricity.

• How can we make future waveform models run fast, e.g. on GPUs, integrate with fast LISA

ACKNOWLEDGMENTS

Jorge Valencia Gómez is supported by the Spanish Ministry of Universities (FPU22/02211). This work was supported by the Universitat de les Illes Balears (UIB); the Spanish Agencia Estatal de Investigación grants PID2022-138626NB-I00, RED2022-134204-E, RED2022-134411-T, funded by MICIU/AEI/ 10.13039/501100011033, by the ESF+ and ERDF/EU; the MICIU with funding from the European Union NextGenerationEU/PRTR (PRTR-C17.I1); the Comunitat Autònoma de les Illes Balears through the Direcció General de Recerca, Innovació I Transformació Digital with funds from the Tourist Stay Tax Law (PDR2020/11 -ITS2017-006), the Conselleria d'Economia, Hisenda i Innovació grant numbers SINCO2022/18146 and SINCO2022/6719, co-financed by the European Union and FEDER Operational Program 2021-2027 of the Balearic Islands.

de les Illes Balears |AC3 Institute of Applied Computing & Community Code.

Conselleria d'Economia, Hisenda i Innovació

Backup slides

WAVEFORM MODELLING

- gravitational waves (GWs).

$$0 \le \chi_{1,2} \le 1$$
, $M = m_1 + m_2$, $q = \frac{m_1}{m_2} \ge 1$, $\eta = \frac{q}{(1 + q)}$

WAVEFORM MODELLING

Waveform models are essential to understand the GW signals emitted from the coalescence of compact binaries.

- Post-Newtonian (PN) theory: expands Newtonian equations in powers of (v^2/c^2) . Less accurate close to the merger.
- Numerical relativity (NR): crucial to describe the merger and ringdown. Currently the most accurate descriptions of GWs. Catalogs: SXS, ET, BAM ...

Efficient waveform models that cover the full evolution are needed to reconstruct the source parameters.

- into an effective one-body problem.
- numerical waveforms.
- expressions to model the three stages.

October 15th, 2024

• Effective one-body models (EOB): reformulate the two-body problem in GR

• Surrogate models (NRSur): modern interpolation techniques for datasets of

• Phenomenological models (IMRPhenom): use piecewise closed-form analytical

$$\begin{split} \Delta E &= E_{\rm rad}^{\rm prec} \left(\eta, \chi_1, \theta_1\right) - E_{\rm rad}^{\rm AS} \left(\eta, \chi_1 \cos(\theta_1), \chi_2 \cos(\theta_2) = 0\right) \\ \overline{\Delta E} &= \Delta E - \Delta E_{\rm EMR} \\ \overline{\Delta E}(\eta, \chi_1, \theta_1) &= \eta^3 \chi_1 \left[0.759123 \sin(\theta_1) - 2.33392 \sin(2\theta_1) \right] + \\ \eta^3 \chi_1^2 \left[6.51059 \sin(\theta_1) + 7.06906 \sin(2\theta_1) \right] + \\ \eta^4 \chi_1 \left[-11.7873 \sin(\theta_1) + 22.364 \sin(2\theta_1) \right] + \\ \eta^4 \chi_1^2 \left[-37.0594 \sin(\theta_1) - 63.3841 \sin(2\theta_1) \right] + \\ \eta^5 \chi_1 \left[35.0427 \sin(\theta_1) - 51.36 \sin(2\theta_1) \right] + \\ \eta^4 \chi_1^2 \left[-37.0594 \sin(\theta_1) - 63.3841 \sin(2\theta_1) \right] + \\ \end{split}$$

October 15th, 2024

 $\theta_1 = \pi/2$

FIG. 10. Numerical evaluation of ΔE as defined in Eq. (3.1), obtained from the parameterized fit $\overline{\Delta E}$ (3.6) and $\Delta E_{\rm EMR}$, at a fixed spin orientation $\theta_1 = \pi/2$, while varying the mass ratio η and the spin magnitude χ_1 . The figure includes the single spin precessing simulations shown in Fig. 2 that fall into this subspace.

/13