ULTRA-COMPACT X-RAY BINARIES: DUAL-LINE SOURCES

WHAT ARE THESE SYSTEMS?

- Ultra-compact X-ray binaries are binaries with orbital periods < 1 hr. They involve a compact object (NS,BH) and a low-mass (<< solar mass) companion
- They arise as the (possibly detached) end state of low-mass X-ray binaries, that have gradually compactified through orbital angular-momentum losses due to a combination of magnetic braking (or other persistent outflows), gravitational-wave emission, and mass transfers; see, e.g., Chen & Podsiadlowski 2016
- Companion mass is gradually stripped away, leaving behind a non-degenerate He star or a O/Ne/Mg, C/O, or He white dwarf

Wiki commons

PRIME TARGETS FOR LISA!

- A circular binary will, in general, emit "orbital" gravitational waves which reduce the angular momentum of the system and shrink the orbit.
- The system radiates at twice the orbital frequency; for UCXBs, this lies in the ~mHz range (e.g. Thorne 1980).
- These are almost certainly detectable by LISA!

$$
\rho = \delta(z) \left[m_1 \delta(x - x_1) \delta(y - y_1) + m_2 \delta(x - x_2) \delta(y - y_2) \right]
$$

\n
$$
I^{xx} = \int d^3x \left(\rho x^2 \right) = m_1 x_1^2 + m_2 x_2^2
$$

\n
$$
= \left(\frac{\mu^2 a^2}{m_1^2} m_1 + \frac{\mu^2 a^2}{m_2^2} m_2 \right) \cos^2(\omega t)
$$

\n
$$
= \mu^2 a^2 \left(\frac{1}{m_1} + \frac{1}{m_2} \right) \cos^2(\omega t)
$$

\n
$$
= \mu a^2 \cos^2(\omega t)
$$

\n
$$
= \frac{1}{2} \mu a^2 \left(1 + \cos(2\omega t) \right)
$$

\n
$$
\frac{dE_{gw}}{dt} = \frac{G}{c^5} \frac{1}{5} \left\langle \ddot{I} j_k \ddot{I}^{jk} \right\rangle
$$

 dt

SO WHAT?

- An interesting aspect to these UCXBs is that they sometimes contain a neutron star primary which is rapidly rotating.
- The high X-ray luminosities of most systems also tends to suggest the accretion rate is high, and therefore a significant spin-up torque
- But there is an observational puzzle: NS binaries have a capped spin frequency of around ~700Hz, a factor ≳2 lower than the break-up limit, which you would expect if spun-up indefinitely; Patruno et al. 2017
- So *something* is triggering an excess of spin-down; "centrifugal barrier"?

X-RAY ACCRETION MODES

- Depending on the relationship between the accretion rate (i.e., X-ray luminosity), the spin of the neutron star and its magnetic field strength, the mode of accretion could be either:
- (a) boundary layer accreted; (b) pole-channeled, or (c) propeller.

 $\frac{R_{\rm A}}{R_{\rm co}} \approx 289 \, \xi \frac{R_6^{12/7} B_{14}^{4/7}}{M_{1.4}^{10/21} M_{1.0}^{2/7} P_{14}^{2/3}}$

Matter is force-stopped at the magnetospheric boundary, but if Rco < Rm, the rotating magnetosphere will 'propeller' plasma back beyond the capture radius (Illarionov & Sunyaev 1975)

PILING IT ON

 $\dot{\nu} \approx$

- Suggested already in the early 90s that gravitational-wave induced spindown may also play a role in limiting the spin frequency; especially this makes sense in the context that the observed values are *capped* at $~100$ Hz.
- Other aspects of accretion also: magnetic field may be buried, and a mountain may accrue atop the star.
- Bursts with low recurrence times especially indicative of a mountain or at least "fenced-off" patches of fuel; **Bhattacharyya &** Strohmayer 2006

$$
1.4 \times 10^{-13} \left(\frac{10^{45} \text{ g cm}^2}{I_0} \right) \left[\left(\frac{L_{\text{X}}}{10^{37} \text{ erg s}^{-1}} \right)^{6/7} \times \left(\frac{B_{\star}}{10^8 \text{ G}} \right)^{2/7} \left(\frac{R_{\star}}{10^6 \text{ cm}} \right)^{12/7} \left(\frac{1.6 \text{M}_{\odot}}{M_{\star}} \right)^{3/7} - 106 \left(\frac{Q_{22}^{\text{max}}}{10^{38} \text{ g cm}^2} \right)^2 \left(\frac{v_{\text{spin}}}{500 \text{ Hz}} \right)^5 \right] \text{Hz s}^{-1},
$$

HIDDEN FIELDS?

• Hidden components of the field with large gradients could also produce sizeable GWs!

AGS+Glampedakis 2023

• Could also have current-like quadrupoles from unstable r-modes!

THROWING FUEL ON THE FIRE

- Especially interesting for sources that exhibit thermonuclear activity: apparent emitting area and peak flux achieved during photospheric bursts can be used to independently constrain the mass–radius relationship of the star (van Paradijs 1979).
- LISA: can give a $~1\%$ estimate on the NS mass (Tauris 2018)
- Thermonuclear bursts: ~percent-level estimate on M-R relationship
- Combined with LIGO ~percent estimate on Q22: can get a strong constraint on M-R-B space!

THROWING FUEL ON THE FIRE

- Especially interesting for sources that exhibit thermonuclear activity: apparent emitting area and peak flux achieved during photospheric bursts can be used to independently constrain the mass–radius relationship of the star (van Paradijs 1979).
- LISA: can give a $~1\%$ estimate on the NS mass (Tauris 2018)
- Thermonuclear bursts: ~percent-level estimate on M-R relationship
- Combined with LIGO ~percent estimate on Q22: can get a strong constraint on M-R-B space!

EXTRA EXTRA… READ ALL ABOUT IT

Table 1. Observed and derived properties related to the orbital and accretion dynamics of the UCXBs considered here. Companion masses M_{comp} are quoted either (in order of decreasing robustness) from observational upper-limits (asterisks), or the Rappaport et al. (1987) relation (4) (daggers). X-ray luminosities L_X are determined via the peak flux during outbursts in the case of sources exhibiting type I X-ray bursts.

Source	$P_{\rm orb}$ (s)	$M_{\text{comp}}\ (\times 10^{-2} M_{\odot})$	L_X (×10 ³⁶ erg s ⁻¹)	d (kpc)
4U 1820-30 ^a	685	6.89^{\dagger}	57	7.6
IGR J16597-3704b	2758	1.71^{\dagger}	6.5	9.1
4U 1728-34 ^c	646	7.30^{\dagger}	5.0	5.1
HETE J1900.1-2455 ^d	4995	$8.5*$	3.7	4.3
XB 1916-053 ^e	3005	$10.1*$	6.6	8.4
XTE J1807-294 ^f	2404	$2.2*$	\lesssim 13	~ 8
4U 1915-05g	3027	$\sim 10^*$	~ 6	9.3
$4U~0614+091$ ^h	3060	1.54^{\dagger}	3.4	3.2
$4U$ 0513-40 i	1020	4.63^{\dagger}	7.4	12
4U 1850-087 ^j	1236	3.82^{\dagger}	1.7	8.2
XTE J1751-305 k	2545	$3.5*$	< 18.3	>7
XTE J0929-314 ¹	2615	$\sim 3^*$	< 13	$\gtrsim 7.4$

^a Güver et al. (2010); Revnivtsev et al. (2011); Chen, Liu, & Wang (2020). ^b Sanna et al. (2018). ^c Galloway et al. (2010); Egron et al. (2011) [though cf. Vincentelli et al. (2020)]. ^d Falanga et al. (2007); Elebert et al. (2008). ^e Sometimes called 4U 1916-05; Church et al. (1997); Iaria et al. (2020). ^f Falanga et al. (2005); Riggio et al. (2008). ^g Grindlay et al. (1988); Zhang et al. (2014). ^h Sometimes called H 0614+091; Revnivtsev et al. (2011); Sazonov et al. (2020). ⁱ Revnivtsev et al. (2011); Chen, Liu, & Wang (2020). ^j Homer et al. (1996); Revnivtsev et al. (2011). ^k Markwardt et al. (2002); Gierliński & Poutanen (2005); Riggio et al. (2011). ¹ Galloway et al. (2002); Marino et al. (2017) .

Table 2. Observed and derived properties related to the NSs within the UCXBs considered in Tab. 1 Spin frequencies, listed in the second column, are deduced from (in order of decreasing robustness): pulsar timing (asterisks), type I X-ray burst tracking (daggers), and QPO frequency differentials (hashes). Surface magnetic field strength maxima B_{\star}^{max} are estimated from expression (6). For 4U 0513-40 and 4U 1850-087, where spin frequencies are unavailable, we instead assume $B_{\star}^{\text{max}} = 10^{8.5}$ G and estimate ν_{spin} from (6).

Source	$\nu_{\rm spin}~\rm (Hz)$	$B_{\star}^{\rm max}$ (×10 ⁸ G)	$M_{\star}(M_{\odot})$	R_{\star} (km)
$4U$ 1820-30 ^a	275#	17.1	~ 1.58	~ 9.1
IGR J16597-3704b	$105.2*$	14.0	(1.6)	(10)
4U 1728-34 ^c	$363^{\dagger,\#}$	3.21	$\gtrsim 1.61$	$\gtrsim 9.6$
HETE J1900.1-2455 ^d	$377.3*$	2.38	(1.6)	(10)
XB 1916-053 ^e	270^{\dagger}	5.22	$\lesssim 2.2$	(10)
XTE J1807-294 ^f	190.6*	16.5	$\gtrsim 1.67$	$\gtrsim 8.2$
4U 1915-05g	366#	3.14	(1.6)	(10)
$4U~0614+091$ ^h	477^{\dagger}	1.74	$\lesssim 1.6$	(10)
$4U$ 0513-40 ⁱ	$(\gtrsim 398)$	(3.16)	(1.6)	(10)
4U 1850-087 ^j	(403)	(3.16)	$\gtrsim 1.23$	$\gtrsim 7.16$
XTE J1751-305 k	$435.3*$	4.48	(1.6)	(10)
XTE J0929-314 ¹	$185.1*$	10.3	(1.6)	(10)

^a White & Zhang (1997); Güver et al. (2010). ^b Sanna et al. (2018). ^c Strohmayer, Zhang, & Swank (1997); Shaposhnikov, Titarchuk, & Haberl (2003). ^d Watts et al. (2009). ^e Galloway et al. (2001); Iaria et al. (2015). ^f Riggio et al. (2008); High-mass or large-radius stars preferred (Leahy, Morsink, & Chou 2011). ^g Ziólkowski (1999). ^h Klähn et al. (2006); Sazonov et al. (2020) [though cf. Strohmayer, Markwardt, & Kuulkers (2008) for a slightly different spin-frequency estimate. ⁱ Difficult to measure mass or radius (Güver, Psaltis, & Ozel 2012). Thermonuclear bursts detected at ≈ 1.38 kHz (Bilous & Watts 2019), consistent with rapid rotation. ^j Ray et al. (2004), assuming a strange star based on resonance absorption features. ^k Markwardt et al. (2002); estimates exist for M_{\star} and R_{\star} if the 2002 X-ray outburst is attributable to an r-mode, but considered unlikely by Andersson, Jones, & Ho (2014). ¹ Galloway et al. (2002).

MASS QUADRUPOLES

- Many primaries within UCXBs do not have accurate measurements of their spin frequency *derivatives*, and thus it is hard to know how much they may be spinning down; but could be large!
- Three promising channels for generating a substantial quadrupole moment: mountains and superconducting toroidal fields for mass-type
- Mass type: twice the spin frequency; current-type: inertial mode frequency

$$
u_0 \approx 8.6 \times 10^{-27} \left(\frac{Q_{22}}{10^{38} \text{ g cm}^2} \right) \times \left(\frac{\nu_{\text{spin}}}{500 \text{ Hz}} \right)^2 \left(\frac{10 \text{ kpc}}{d} \right).
$$

"Magnetic Mountain": $Q_{22} = A(M_{\star}, R_{\star}, \mu_i, M, M_a) \times 10^{38}$ g cm², (see, e.g., Suvorov+Melatos 2019)

Superconductor + hidden toroidal field:

$$
Q_{22} \approx 1.88 \times 10^{38} \text{ g cm}^2 \times \left(\frac{\lambda b B_{\star, \text{max}}}{10^{14} \text{ G}}\right) \left(\frac{H_{c1}}{10^{15} \text{ G}}\right) \times \left(\frac{I_0}{10^{45} \text{ g cm}^2}\right) \left(\frac{1.6 M_{\odot}}{M_{\star}}\right)^2 \left(\frac{R_{\star}}{10^6 \text{ cm}}\right)^4,
$$

(see, e.g., Cutler 2002)