

Memory effect in LISA sources: prospects and relevance

Silvia Gasparotto (IFAE)

Linear and Non-linear Memory

 $imes 10^{-20}$

0

 $^{-1}$

-2

-3

-80

O **Linear memory** (Zeldovich & Polnarev'74, Brangisky & Grischchuk '85, Brangisky & Thorne '87)

Motion of <u>unbound objects or radiation to infinity</u> (ex: SN neutrinos, hyperbolic objects etc)

Non-linear memory (Christodoulou '91, Blanchet & Damour '92, Wiseman & Will '91...)

The GW itself sources GWs! $\partial^{\mu}\partial_{\mu}\bar{h}^{j,k} = 16\pi \left(T_{matter}^{jk} + T_{GW}^{jk}\right)$ $T_{GW}^{jk} = \frac{1}{R^2} \frac{dE_{GW}}{dtd\Omega} n_j n_k \sim \mathcal{O}(h^2)$

Thorne Formula:

$$\delta \bar{h}_{ij}^{TT}(T_R) = \frac{4}{R} \int_{-\infty}^{T_R} dt' \left[\int \frac{dE_{GW}}{dt' d\Omega'} \frac{n'_j n'_k}{|1 - n' \cdot N|} d\Omega' \right]^{TT}$$

-20

t[sec]

Oscillatory

-40

signal

-60

Memory

20

0

Why do we care?

- Non-linear prediction of GR, still undetected
- O BMS symmetries and the Soft theorem
- O "Displacement memory" related to the super-translation symmetry, but new (subdominant) memories from other symmetries

How do we compute it?

- Traditional waveforms don't present the memory → difficulties in extracting from NR simulations
- Memory can be computed from the energy flux of GW (GWMemory, BMS flux balance laws); the main (2,0)-mode
- First Surrogate model with the memory with new Cauchy Characteristics Extraction (CCE) scheme NRHybSur3dq8_CCE. First IMRPhenom model M. Rosselló-Sastre et al (2405.17302)

Earth-based interferometers

Ligo-Kagra-Virgo: no detection so far. \bigcirc

> Estimated O(2000) sources to claim detection (1911.12496,2105.02879,2210.16266,2404.11919)

Einstein Telescope & Cosmic Explorer: $O(1) yr^{-1}$ (2210.16266) O

Space-based interferometers

- LISA: previous prospects 1906.11936, updates H. Inchauspé & Ο S.Gasparotto et al. 2406.09228
- TianQin: 2207.13009,2401.11416 \bigcirc

PTA: Search for burst-like signal with memory as mergers of SMBH $M \sim 10^8 M_{\odot}$ (0909.0954, 2307.13797)

In ground-based interferometers, we don't observe the persistent off-set, high-passed signal

binaries from BH binaries" 2110,1117

Others???

Enhancing parameter estimation with the memory

O Importance of adding the (2,0)-mode to the waveform

$$h_{+,0PN} = \left[-(1 + \cos^2 \iota) \cos 2\Phi(t) + \frac{1}{96} \sin^2 \iota (17 + \cos^2 \iota) \right] \frac{2\eta M (M\omega(t))^{2/2}}{R}$$

Can the memory break the luminosity distanceinclination degeneracy?

- Results for LISA: Gasparotto et al. 2301.13228 (Fisher matrix)
- Results for (Advanced) LIGO: Yumeng Xu et al. 2403.00441 (Bayesian)

Common outcome:

• Memory extends the signal at a lower frequency, which helps for short inspiral and almost out-of-band sources

600 500 400

300

300

250 200

150

0

D_L (Mpc)

Measuring GW memory with LISA

Based on 2406.09228 H. Inchauspé, SG et al Part of the *Ringdown* collaborative projects of the LISA FPWG.

- *i.* Imprint of GW memory
- ii. Memory vs non-memory signal
- iii. Scientific reach of LISA for the GW memory

We simulate the full time-domain response of the detector down to the TDI data stream using the new NRHybSur3dq8_CCE (2306.03148), and the GWmemory package (1807.00990)

$$h_{+}^{mem}(t) \equiv h_{+,CCE}^{20}(t) - h_{+,CCE}^{20}(t)$$

TDI imprint of GW memory

the memory, but just its time-variation $X \propto \partial^3 h$

$$X_{2} = X_{1.5} + \mathbf{D}_{13121}y_{12} + \mathbf{D}_{131212}y_{21} + \mathbf{D}_{1312121}y_{13} + \mathbf{D}_{12131}y_{31} + \mathbf{D}_{12131}y_{31} + \mathbf{D}_{121313}y_{31} + \mathbf{D}_{121313}y_{31} + \mathbf{D}_{1213131}y_{12} + \mathbf{D}_{12131312}y_{21}],$$

with
$$X_{1.5} = y_{13} + \mathbf{D}_{13}y_{31} + \mathbf{D}_{131}y_{12} + \mathbf{D}_{1312}y_{21} - (y_{12} + \mathbf{D}_{122}y_{21} + \mathbf{D}_{121}y_{13} + \mathbf{D}_{1213}y_{31}).$$

$$\mathbf{D}_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{\mathbf{D}}_{ij}\tilde{x}(f) = \tilde{x}(f) e^{-2\pi i f L_{ij}(t)} + \frac{1}{2\pi i f L_{ij}(t)} + \frac{1}{2$$

Burst-like signal: We don't observe the persistent off-set of the memory, but just its time-variation $X \propto \partial^3 h$

Look at the different scale of the y-axis!

Time domain vs Frequency domain

Fourier Transform of a step like function $FT[\Theta(\tau - \tau_{merger})] = \delta(f) + \frac{1}{i2\pi f}$ \rightarrow Extends the signal at lower frequencies

Time-Frequency representation

Oscillatory and memory signals have very separate time-frequency representation. Can we use this to separate the two?

Memory is concentrated in time but spread in frequency

Merger with
$$M = 10^6 M_{\odot}$$
, $\iota = \frac{\pi}{3}$

We select the pixel corresponding to the average and the best SNR, three baselines:

Baseline	q	χ	inclination ι [rad]	lat. β [rad]	long. λ [rad]	pixel p
1. Conservative	2.5	0.0	1.047	0.62	0.20	145
2. Optimistic	1.0	0.0	1.571	0.52	3.24	192
3. Opt. & Spin.	1.0	0.8	1.571	0.52	3.24	192

SNR Waterfall: Oscillatory vs Memory

Scientific Reach of LISA: Memory Waterfall Plots

1. Conservative	2.5	0.0	1.047	0.62	0.20	145
2. Optimistic	1.0	0.0	1.571	0.52	3.24	192
3. Opt. & Spin.	1.0	0.8	1.571	0.52	3.24	192

Astrophysical population models

Population from E.Barausse et al. 2020

8 different astrophysical models

- Initial Seed: Light vs Heavy
 - SN Feedback: Yes or No
- Different delay model on the SMBH merger

Results for the optimistic baseline scenario

Comparison of the two methods of the memory extraction → residual difference in the spectrum close to the ringdown frequency: physical or not?

- Extension projects, exploiting the GW memory for
 - Introduce memory component to full Bayesian parameter estimation: mitigate degeneracies, reduce biases... (Jorge's talk)
 - Test of GR and beyond-GR theories in a strong regime: consistency checks between oscillatory and memory components
- Which kind of modification do we expect in Beyond GR?
 - Probing new channels of radiation?
 - Effect on the propagation?

$$\delta h_{H}^{lm}(u,r) = \frac{1}{r} \sqrt{\frac{(l-2)!}{(l+2)!}} \int_{S^{2}} \mathrm{d}^{2} \Omega' \, \bar{Y}^{lm}(\Omega')$$
$$\times \int_{-\infty}^{u} \mathrm{d}u' \, r^{2} \left\langle |\dot{\hat{h}}_{+}|^{2} + |\dot{\hat{h}}_{\times}|^{2} + \sum_{\lambda=1}^{N} |\dot{\hat{\psi}}_{\lambda}|^{2} \right\rangle$$

L.Heisenberg et al 2303.02021

Memory in the Fourier domain

 $h = h_0 + \delta h$ NRHybSur3dq8 (spin-aligned model) to generate $h_0 \Rightarrow \delta h$

Memory in the frequency domain and contribution from different spherical harmonics

Primary vs Memory

Population Forecasts I

N_{th} number of events with detectable memory, i.e. $SNR \ge 1$ (or $SNR \ge 5$), in 4 yeas

	Astrophysic	al Catalogues	
	Light seeds	Heavy seeds	
SN-delays	$N_{\rm tot} = 47$	$N_{ m tot} = 27.3$	-
	$N_{\rm th} = 0.4 (0.1)$	$N_{ m th} = 21.2(10)$	
	$\langle \rho angle = 0.04$	$\langle \rho \rangle = 6$	75-78% of events with
	$ ho_{ m max} = 7$	$\rho_{\rm max} = 97$	\rightarrow
noSN-delay	$N_{\rm tot} = 191$	$N_{\rm tot} = 10$	- detectable memory
	$N_{\rm th} = 6(1)$	$N_{ m th} = 7.5(4)$	
	$\langle \rho angle = 0.17$	$\langle \rho \rangle = 6.9$	
	$\rho_{\rm max} = 11.64$	$\rho_{\rm max} = 68.7$	
SN-short	$N_{\rm tot} = 149$	$N_{\rm tot} = 1245$	
Delays	$N_{\rm th} = 1 (1)$	$N_{\rm th} = 418(33)$	
	$\langle \rho \rangle = 0.04$	$\langle \rho \rangle = 1$	
	$\rho_{\rm max} = 5.01$	$\rho_{\rm max} = 43$	_ 31-33% of events with
noSN-short	$N_{\rm tot} = 1203$	$N_{\rm tot} = 1251$	- detectable memory
Delays	$N_{\rm th} = 12(2)$	$N_{\rm th} = 392(29)$	detectable memory
	$\langle \rho \rangle = 0.06$	$\langle \rho \rangle = 1.1$	
	$\rho_{\rm max} = 17$	$\rho_{\rm max} = 51$	

How many events are we going to see with LISA?

Barausse & Lapi (2020), Barausse et al (2020)

More optimistic: Heavy Seeds with delays

Distribution of single memory events with $SNR \ge 1$ for heavy-seeds models

More pessimistic: Light Seeds

Credit: E. Barausse & A.Lapi

SN feedback has a greater impact for LS models

What's the realistic impact for LISA with gaps in the data?

Q: Can the memory be useful in the presence of **gaps** in the data? The gaps can truncate the signal prior merger...

In the optimistic model (HS SN-short $N_{th} \sim 400$) for only ~ 0.14 events the memory improves σ_{d_L} by > 5%

Not likely to help in standard scenarios, but the model's uncertainty is BIG!

How do we compute it?

Christodoulou '91, Blanchet & Damour '92 Wiseman & Will '91, Marc Favata '09-'11

To compute the waveform we need to solve this equation:

$$\bar{h}_{ij}^{TT}(t, \mathbf{x}) = 4 \int \frac{(-g) \left[T_{matter}^{jk}(t', \mathbf{x}') + T_{GW}^{jk}(t', \mathbf{x}') \right]}{|\mathbf{x} - \mathbf{x}'|} \delta(t' - t - |\mathbf{x} - \mathbf{x}'|) d{x'}^4$$

The contribution from the energy-momentum tensor of the GW is:

$$\delta \bar{h} \stackrel{TT}{ij} = \frac{4}{R} \int_{-\infty}^{T_R} dt' \left[\int \frac{dE_{GW}}{dt' d\Omega'} \frac{n'_j n'_k}{|1 - n' \cdot N|} d\Omega' \right]^{TT}$$
The memory depends on the whole history of the binary
$$T_{GW}^{jk} \sim \frac{1}{R^2} \frac{dE_{GW}}{dt' d\Omega'} = \frac{c^3}{16\pi G} |\dot{h}(t, \Omega)|^2 \text{ Substituting post-Newtonian waveforms one finds:}$$

$$h_+ = \frac{2\eta M x}{R} \left[-(1 + \cos^2 \iota) \cos 2\Phi + \frac{1}{96} \sin^2 \iota (17 + \cos^2 \iota) + O(x^{1/2}) \right]$$
The memory is Oscillatory
Memory

Mass and mass-ratio dependence

Values of ratio corresponding to $\sigma_{d_l,wm}/\sigma_{d_l}~=0.9~(10\%~improvement) \to$ do not dependent on the mass-ratio q

\mathbf{Light}	$h_{0,\mathrm{DM}}$	$h_{0,{ m HM}}$	$\delta h_{\rm DM}$	$\delta h_{ m HM}$
SNR	20.5	20.6	1.9	2.3
	$h_{0,\mathrm{DM}}$	$h_{0,{ m HM}}$	h_{DM}	$h_{ m HM}$
$\sigma_{d_{\rm L}}/d_{\rm L}$	0.56	0.55	0.20	0.18
σ_{ι} [rad]	0.75	0.73	0.27	0.23
Heavy	$h_{0,\mathrm{DM}}$	$h_{0,\mathrm{HM}}$	$\delta h_{ m DM}$	$\delta h_{\rm HM}$
Heavy SNR	$h_{0,\rm DM}$ 1001.4	$h_{0,\rm HM}$ 1006.3	$\delta h_{\rm DM}$ 3.5	$\frac{\delta h_{\rm HM}}{4.3}$
		,		
	1001.4	1006.3	3.5	4.3