

Memory effect in LISA sources: prospects and relevance

Silvia Gasparotto (IFAE)

Linear and Non-linear Memory

o **Linear memory** (Zeldovich & Polnarev'74, Brangisky & Grischchuk '85, Brangisky & Thorne '87)

Motion of unbound objects or radiation to infinity (ex: SN neutrinos, hyperbolic objects etc)

o **Non-linear memory** (Christodoulou '91, Blanchet & Damour '92,Wiseman & Will '91…)

> The GW itself sources GWs! $\partial^{\mu}\partial_{\mu}\bar{h}$ $^{j,k} = 16\pi \Big(T^{jk}_{matter} + T^{jk}_{GW}$ $T_{GW}^{jk} = \frac{1}{R^2}$ R^2 $dE_{\it GW}$ $\frac{aE_{GW}}{dtda} n_j n_k$ $\sim \mathcal{O}(h^2)$

Thorne Formula:

$$
\delta \bar{h}_{ij}^{TT}(T_R) = \frac{4}{R} \int_{-\infty}^{T_R} dt' \left[\int \frac{dE_{GW}}{dt'd\Omega'} \frac{n'_{j}n'_{k}}{|1-n'\cdot N|} d\Omega' \right]^{TT}
$$

 $\times 10^{-20}$ 3

 Ω $^{-1}$

 -2

 -3

Why do we care?

- o Non-linear prediction of GR, still undetected
- o BMS symmetries and the Soft theorem
- o "Displacement memory" related to the super-translation symmetry, but new (subdominant) memories from other symmetries

How do we compute it?

- o Traditional waveforms don't present the memory \rightarrow difficulties in extracting from NR simulations
- o Memory can be computed from the energy flux of GW (GWMemory, BMS flux balance laws); the main (2,0)-mode
- o First Surrogate model with the memory with new Cauchy Characteristics Extraction (CCE) scheme NRHybSur3dq8_CCE. First IMRPhenom model M. Rosselló-Sastre et al (2405.17302)

Earth-based interferometers

o Ligo-Kagra-Virgo: no detection so far.

Estimated O(2000) sources to claim detection (1911.12496,2105.02879,2210.16266,2404.11919)

O Einstein Telescope & Cosmic Explorer: $O(1) yr^{-1}$ (2210.16266)

Space-based interferometers

- o LISA: previous prospects 1906.11936, updates H. Inchauspé & S.Gasparotto et al. 2406.09228
- o TianQin: 2207.13009,2401.11416

PTA: Search for burst-like signal with memory as mergers of SMBH $M \sim 10^8 M_{\odot}$ (0909.0954, 2307.13797)

In ground-based interferometers, we don't observe the persistent off-set, high-passed signal

binaries from BH binaries" 2110.1117

Enhancing parameter estimation with the memory

 \circ Importance of adding the $(2,0)$ -mode to the waveform

$$
h_{+,0PN} = \left[-(1 + \cos^2 t) \cos 2\Phi(t) + \frac{1}{96} \sin^2 t (17 + \cos^2 t) \right] \frac{2\eta M (M\omega(t))^2}{R}
$$

the memory break the
noosity distance.

Can the memory break the luminosity distanceinclination degeneracy?

- Results for LISA: Gasparotto et al. 2301.13228 (Fisher matrix)
- Results for (Advanced) LIGO: Yumeng Xu et al. 2403.00441 (Bayesian)

Common outcome:

• Memory extends the signal at a lower frequency, which helps for short inspiral and almost out-of-band sources

600 500 400

300

 $\mathbf 0$

 D_L (Mpc)

Measuring GW memory with LISA

Based on 2406.09228 H. Inchauspé, SG et al Part of the *Ringdown* collaborative projects of the LISA FPWG.

- *i. Imprint of GW memory*
- *ii. Memory vs non-memory signal*
- *iii. Scientific reach of LISA for the GW memory*

We simulate the full time-domain response of the detector down to the TDI data stream using the new NRHybSur3dq8_CCE (2306.03148), and the GWmemory package (1807.00990)

$$
h^{mem}_+(t) \equiv h^{20}_{+,CCE}(t) - h^{20}_{+,CCE}(t).
$$

TDI imprint of GW memory

the memory, but just its time-variation $X \propto \partial^3 h$

$$
X_{2} = X_{1.5} + D_{13121213}y_{12} + D_{1312121}y_{13} + D_{121313}y_{31}
$$

\n+ D₁₃₁₂₁₂₁₃₃₃y_{12} + D₁₂₁₃₁₃₁₂y_{21}],
\nwith
\nwith
\n
$$
X_{1.5} = y_{13} + D_{13}y_{31} + D_{131}y_{12} + D_{1312}y_{21}
$$

\n- $(y_{12} + D_{12}y_{21} + D_{121}y_{13} + D_{1213}y_{31}).$
\n+
$$
D_{1312121}y_{12} + D_{1312}y_{21}
$$

\n- $(y_{12} + D_{12}y_{21} + D_{121}y_{13} + D_{1213}y_{31}).$
\n
$$
D_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{D}_{ij}\tilde{x}(f) = \tilde{x}(f) e^{-2\pi i f L_{ij}(t)}
$$

\n
$$
D_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{D}_{ij}\tilde{x}(f) = \tilde{x}(f) e^{-2\pi i f L_{ij}(t)}
$$

\n
$$
D_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{D}_{ij}\tilde{x}(f) = \tilde{x}(f) e^{-2\pi i f L_{ij}(t)}
$$

\n
$$
D_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{D}_{ij}\tilde{x}(t) = \tilde{x}(t) e^{-2\pi i f L_{ij}(t)}
$$

\n
$$
D_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{D}_{ij}\tilde{x}(t) = \tilde{x}(t) e^{-2\pi i f L_{ij}(t)}
$$

\n
$$
D_{ij}x(t) = x(t - L_{ij}(t)) \xrightarrow{FT} \tilde{D}_{ij}\tilde{x}(t) = \tilde{x}(t) e^{-2\pi i f L_{ij}(t)}
$$

\n
$$
D_{ij}x(t) = x(t - L_{ij}(t)) e^{-2
$$

Look at the different scale of the y-axis!

Burst-like signal: We don't observe the persistent off-set of the memory, but just its time-variation $X \propto \partial^3 h$

Time domain vs Frequency domain

Fourier Transform of a step like function $FT[\Theta(\tau-\tau_{merger})] = \delta(f) + \frac{1}{i2\pi}$ $i2\pi f$ \rightarrow Extends the signal at lower frequencies

Oscillatory and memory signals have very separate time-frequency representation. Can we use this to separate the two?

Memory is concentrated in time but spread in frequency

$$
M \text{erger with } M = 10^6 M_{\odot}, \iota = \frac{\pi}{3}
$$

We select the pixel corresponding to the average and the best SNR, three baselines:

Baseline			inclination ι [rad]	lat. β [rad]	long. λ [rad]	pixel p
Conservative	$2.5\,$	U.U	.047	$\rm 0.62$	$\rm 0.20$	145
2. Optimistic		0.O	l.571	$_{0.52}$	$3.24\,$	192
3. Opt. $&$ Spin.	1.0	บ.8	l.571	$_{0.52}$	$_{\rm 3.24}$	192

SNR Waterfall: Oscillatory vs Memory

Scientific Reach of LISA: Memory Waterfall Plots

Population from E.Barausse et al. 2020

Astrophysical population models

8 different astrophysical models

- Initial Seed: Light vs Heavy
- SN Feedback: Yes or No
- Different delay model on the SMBH merger

Results for the optimistic baseline scenario

Comparison of the two methods of the memory extraction → residual difference in the spectrum close to the ringdown frequency: physical or not?

- o Extension projects, exploiting the GW memory for
	- Introduce memory component to full Bayesian parameter estimation: mitigate degeneracies, reduce biases... (Jorge's talk)
	- Test of GR and beyond-GR theories in a strong regime: consistency checks between oscillatory and memory components
- o Which kind of modification do we expect in Beyond GR?
	- Probing new channels of radiation?
	- Effect on the propagation?

$$
\delta h_H^{lm}(u,r) = \frac{1}{r} \sqrt{\frac{(l-2)!}{(l+2)!}} \int_{S^2} d^2 \Omega' \bar{Y}^{lm}(\Omega')
$$

$$
\times \int_{-\infty}^u du' r^2 \left\langle |\dot{\hat{h}}_+|^2 + |\dot{\hat{h}}_\times|^2 + \sum_{\lambda=1}^N |\dot{\psi}_\lambda|^2 \right\rangle
$$

L.Heisenberg et al 2303.02021

Growing of the memory 2 $\frac{1}{96}sin^2((17 + cos^2t) + O(x^{1/2})) \frac{2nM(M\omega(t))}{R}$ 3 $h_{+,0PN} = \left[-(1 + cos^2 t) cos 2\Phi + \frac{1}{96} \right]$ $\frac{d(u(t))}{dt}$, orbital frequency evolution: $dE/dt \times 100$ 99% energy radiated Typical step function shape $FT~/f$ 0.3 Support close to merger phase peak energy flux (67% E, 83% J radiated) 0.25 50% energy radiated Sensitive to higher modes 0.2 common AH horizon detected 0.15 coordinate separation reaches light ring **GWMemory package** (C. Talbot, E. Thrane, and P. D. Lasky 0.1 50% angular momentum radiated & F. Lin 1807.00990) 0.05 Energy flux**Merger phase** τ ~60 M 30 $-180 - 150 - 120 - 90$ -30 $\bf{0}$ -60 Credit: Buonanno et al. (t-t

Memory in the Fourier domain

 $h = h_0 + \delta h$ NRHybSur3dq8 (spin-aligned model) to generate $h_0 \Rightarrow \delta h$

Memory in the frequency domain and contribution from different spherical harmonics

Primary vs Memory

Population Forecasts I

N_{th} number of events with detectable memory, i.e. $SNR \ge 1$ (or $SNR \ge 5$), in 4 yeas

How many events are we going to see with LISA?

Barausse & Lapi (2020), Barausse et al (2020)

More optimistic: Heavy Seeds with delays

Distribution of single memory events with $SNR \geq 1$ for **heavy-seeds models**

More pessimistic: Light Seeds

Credit: E. Barausse & A.Lapi

• Lighter binaries [→] **smaller SNR** • More events with **larger mass-ratio** Drop of detectable events with higher mass-ratio q: SN delays noSN delays 1.00 SN short delays noSN short delays $\left[\begin{matrix} 0.75 \\ 0.50 \end{matrix}\right]$ Close to equal-mass 0.50 $q_{max} = 8$ $0.25 0.00 \overline{2}$ 3 8 \boldsymbol{q}

SN feedback has a greater impact for LS models

What's the realistic impact for LISA with gaps in the data?

Q: Can the memory be useful in the presence of **gaps** in the data? The gaps can truncate the signal prior merger…

In the optimistic model (HS SN-short N_{th} ~400) for **only ~ 0.14 events the memory improves** σ_{d_L} **by >** 5%

N**ot likely to help** in standard scenarios, but the model's uncertainty is BIG!

How do we compute it?

Christodoulou '91, Blanchet & Damour '92 Wiseman & Will '91, Marc Favata '09-'11

To compute the waveform we need to solve this equation:

$$
\bar{h}_{ij}^{TT}(t,x) = 4 \int \frac{(-g) \Big[T_{matter}^{jk}(t',x') + T_{GW}^{jk}(t',x') \Big]}{|x - x'|} \delta(t'-t-|x-x'|) dx'^4
$$

The contribution from the energy-momentum tensor of the GW is:

$$
\delta \bar{h}^{TT}_{ij} = \frac{4}{R} \int_{-\infty}^{T_R} dt' \left[\int \frac{dE_{GW}}{dt'd\Omega'} \frac{n'_{j}n'_{k}}{|1 - n' \cdot N|} d\Omega' \right]^{TT}
$$

The memory depends on the whole history of the binary
whole history of the binary

$$
h_{+} = \frac{2\eta Mx}{R} \left[-(1 + \cos^{2}t)\cos 2\Phi + \frac{1}{96} \sin^{2}(17 + \cos^{2}t) + O(x^{1/2}) \right]
$$

The memory is
present only in h_{+}

Mass and mass-ratio dependence

Values of ratio corresponding to $\sigma_{d_1,wm}/\sigma_{d_1} = 0.9$ (10% improvement) \rightarrow do not dependent on the mass-ratio q

