Magnetic field modulation for space:

from MELISA to ILIADA

X. Manyosa V. Jiménez J. Ramos J. Pons J. Estany M. Domínguez

UPC

D. Roma M. Arqué B. Bonastre V. Martín J. Salvans M. Nofrarias

ICE-CSIC

S. Gómez A. Sanuy J. Mauricio D. Gascón

ICCUB

www.ieec.cat

Target specifications of the sensor

- The target is to fulfill the requirements of the LISA diagnostics subsystem:
 - A low-power, miniaturized magnetometer with a very low noise floor:

 \circ 100 nT/\sqrt{Hz} - 10 nT/\sqrt{Hz}

- In the ultra-low frequency range
 - \circ 0.1 mHz 100 mHz

Tunneling Magnetoresistance

Bare-die TMR9001 from Multidimension

1 x 1.5 mm

- TMR are high sensitivity magnetic field sensors.
- Formed by multiple Magnetic Tunneling Junctions (MTJ) in series.

MTJs

- Magnetic Tunneling Junction:
 - Formed by two ferromagnetic layers separated by a thin dielectric.
 - One layer with pinned spins (spins have a permanente orientation)
 - The other layer with free spins (follow the external magnetic field)
 - Spin-dependent tunneling (Julliere's model):
 - o up-spin electrons only tunnel into up-spin states,
 - o down-spin electrons only tunnel into down-spin states.
 - Therefore the resistance will depend on the magnitude and direction of the magnetic field.

TMR noise characterization

- TMR is placed inside a mu-metal chamber in a temperature controlled environment.
- At these low frequencies, 1/f noise (flicker) noise is dominant.
 - Large amplitud fluctuations 'happen' less often.
- The TMR9001 from Multidimension does not fulfill the noise floor requirement...

Magnetic Field Modulation

- We can move (up-convert) the signal to higher frequencies where flicker noise does not appear.
- Modulation with a Movable Magnetic Flux Concentrator (MMFC):
 - a) MMFC is far from the TMR sensor; local magnetic field at TMR almost undisturbed.
 - b) MMFC, which also includes a high-permeability layer, is close enough to the TMR sensor to "remove" most of the magnetic flux away.
- A <u>Microelectromechanical System (MEMS)</u> resonating will **modulate** the local magnetic flux at the TMR.
- Two fixed MFC layers increase field at TMR, and therefore its sensitivity.

Magnetic Field Modulation

• FEM simulations proved that a ~40% of modulation efficiency can be obtained with:

- 300 µm of MEMS displacement
- > 15 µm of MMFC thickness

MEMS resonators

- FEM simulations proved that displacements of that order of magnitude could be achieved with MEMS cantilever beam of 4 x 1 mm.
- And that their resonance frequencies would be around 960 Hz without the high permeability layer and around 250 Hz with it.

MEMS resonators

- PiezoMUMPS technology from MEMSCAP.
- SOI technology with piezoelectric actuation and sensing.
- Three cantilever designs.

MEMS resonators

- Resonant frequencies in the 800-900Hz range.
- Quality factors:
 - Atmospheric pressure: ~ 100.
 - Low pressure: ~ 900.

Electrical model

Deposition of high permeability layer on MEMS

- Mu-foil with a thickness of $23\mu m$ deposited on top of the MEMS structure.
- Resonant frequency decreases: 240-280Hz.

Sensor Alignment and Assembly

TMR PCB

MEMS PCB

- MEMS present residual stress generating curvature.
- Alignement is made monitoring/optimizing modulation depth.
- Quartz rods and epoxy used to permanently fixate the system.

Quartz rods Are used to align and fixate (with epoxy) the TMR and MEMS PCBs

TMR before MEMS assembly

MEMS modulation at TMR

•	Modulation depth is measured comparing a test field at 5Hz.			
	Before MEMS assembly (to avoid MEMS insertion losses) at 5 Hz:			6.16 μT
	MEMS excited at resonant frequency 1st mode:	276.12 Hz		
	After assembly, at the modulated frequency:	276.12 ± 5 Hz:		1.22 μT

Final Sensor Form

Electronic acquisition & control

- MEMS must be excited accurately at its resonant frequency.
- Very low-noise electronic acquisition chain.

System characterization at low pressure

Noise floor reduced by ~ 1 order of magnitude Noise floor fulfills the requirements!

MELISA project Conclusions

- Noise objectives have been achieved.
- This proves that magnetic modulation systems on TMR sensors can be useful in space applications.

Next steps, towards ILIADA

Paper:

X. Manyosa, D. Roma-Dollase, M. Arqué, B. Bonastre, V. Jiménez, J. Ramos-Castro, J. Pons-Nin, V. Martín, J. SalvansTort, S. Gómez, A. Sanuy, J. Mauricio, D. Gascon, M. Nofrarias, M. Domínguez-Pumar. "MEMS miniaturized low-noise magnetic field sensor for the observation of sub-millihertz magnetic fluctuations in space exploration." Measurement 230 (2024): 114489.

Towards ILIADA

• A box has been designed to conceal the sensor inside of ILIADA.

• Main challenge: **Temperature fluctuations**

- Expected to be of ~40°C, with a 90 minute period.
- The TMR sensitivity and the MEMS resonance frequency have a relevant dependency on temperature.

TMR sensitivity solutions

- A concealed coil in the PCB will be used to track the sensitivity of the system.
- On ground calibration of the system will be done.
- The temperature will be monitored using a Pt1000 RTD, to apply a correction if necessary.
- FEM simulations have shown that with the current design of the coil, magnetic fields of 1.5 μ T can be achieved with a current of 5 mA.

- A significant reduction of the magnetic field at 20mm (< 1 nT)
- Uniform magnetic field at the sensor ($\sigma = 0.1 \ \mu T$)

MEMS resonance frequency solution

- A closed loop system will "follow" the resonance frequency of the system by locking the total phase of the system.
 - With the coil on, a periodic sweep of the frequency of excitation will be performed. To obtain f_{res} and ϕ_{res} .
 - The ϕ_{res} will be locked by the close loop, so the $f_{excitation} = f_{res}$.

Preliminary close loop simulations

- Parameters:
 - Using mass-spring dynamics
 - 100 nT AC magnetic field
 - 0.1 Hz/K Temperature dependance

• The system is able to "follow" the resonance frequency, and to obtain a good magnetic field estimation.

Next steps towards ILIADA

- Mount the system with the new PCBs
- Test the close loop control
- Characterize the temperature dependency of the whole system
- Obtain space qualification (outgassing, TVAC...)

Thank you!