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Introduction and motivation

â Spacetimes with spherical symmetry encompass a wide range of models of
interest, such as Schwarzschild, FLRW, TOV, and others.

â Starting from well-known solutions, complex systems can be studied using
perturbation theory up to a certain level of precision.

â A Hamiltonian formalism constitute the basis for quantum studies.

Objetive

F Apply a perturbative Hamiltonian formalism to spherically symmetric
models, then specialize it for the Schwarzschild case.

F For a quantum treatment of the perturbations, pioneering works in loop
quantum cosmology suggest starting with the black hole interior.
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General framework for perturbations

ψε

M(0) M(ε)

g g̃

Perturbations are defined by the map ψε (its choice is not unique). Hierarchy
is determined by ε. A perturbative quantity, g̃(ε), is defined on M(0) as

ψ∗ε g̃(ε) = g +
∞∑
n=1

εn

n!
∆n
ψ[g], ∆n

ψ[g] =
dnψ∗ε g̃(ε)

dεn

∣∣∣∣
ε=0

. (1)

Remark
Perturbative gauge-invariants do not depend on the map election.
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First-order perturbations: Hamiltonian variables

The perturbed canonical variables, up to first order, for any spherically sym-
metric background, can be expressed as

g = g + εh+O(ε2), P = Π + εp+O(ε2). (2)

We expand them in real (Regge-Wheeler-Zerilli) spherical harmonics and work
with their expansion coefficients. Using a real basis ensures that the phase
space variables remain real.

Depending on their parity, the harmonics distinguish between

Polar: P P−→ (−1)lP, Axial: A P−→ (−1)l+1A, (3)

where the parity transformation acts as P : (θ, φ) 7→ (π − θ, π + φ).

At first order, axial and polar perturbations can be treated independently.
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First-order perturbations: Hamiltonian dynamics

The dynamics of a perturbed system, up to first order, is determined by

S = S0 +
ε2

2
∆2

1[S] +O(ε3), (4)

where S0 is the background action and ∆2
1[S] is given by

1

2
∆2

1[S] =
1

κ

∫
R

dt

∫
σ

d3x

(
hab,tp

ab−C∆[H]−Ba∆[Ha]−N
2

∆2
1[H]−N

a

2
∆2

1[Ha]

)
. (5)

Upon integrating over the two-sphere, for each perturbative mode we have:

Variables Constraints Hamiltonian

Axial
{
hl,mi , pl,mi

}2
i=1

Cl,m0 H l,m
ax

Polar
{
hl,mi , pl,mi

}6
i=3

Cl,m1 , Cl,m2 , Cl,m3 H l,m
po
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First-order perturbations: Gauge invariants

In the Hamiltonian formulation, the first-order perturbative gauge invariants
commute with the constraints under Poisson brackets.

For each perturbative mode consider a (mode- and background-dependent)
canonical transformation,{

hl,mi , pl,mi
}6
i=1
−→

{
Ql,mi , P l,mi

}6
i=1

, (6)

such that the new perturbative variables satisfy

P l,m2 = Cl,m0 , P l,m4 = Cl,m1 , P l,m5 = Cl,m2 , P l,m6 = Cl,m3 . (7)

F By construction, the pairs (Ql,m1 , P l,m1 ) and (Ql,m3 , P l,m3 ) constitute the
physical degrees of freedom for the perturbations.

F After redefining the Lagrange multipliers (background and perturbations),
the Hamiltonian depends only on the two invariant pairs.
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Black hole interior: background framework

The spatial metric g and its conjugate momentum Π are defined as

g =
p2b(t)

L2
o|pc(t)|

dx2 + |pc(t)|(dθ2 + sin2 θdφ2),

Π = −2
L2
o

p2b(t)
Ωb(t)|pc(t)| sin θ∂2x −

Ωb(t) + Ωc(t)

|pc(t)|
(
sin θ∂2θ + csc θ∂2φ

)
,

(8)

where Ωb = bpb/(γLo), Ωc = cpc/(γLo), and Lo is a fiducial length under the
assumption of a compact spatial topology, σo = S1

o × S2.

Following spatial integration and appropriate gauge fixing, the symplectic struc-
ture and dynamics are determined by

{b, pb}B = γ, {c, pc}B = 2γ, H̃B = −Lo
[
Ω2
b +

p2b
L2
o

+ 2ΩbΩc

]
. (9)
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Black hole interior: first-order perturbations

Using n = (n, l,m) to simplify the notation of the mode labels, first-order
perturbations can be expanded as

h =
∑
n,λ

hn,λ6 Y ml Qn,λdx2 +
∑
n,λ

2
[
hn,λ5 Z m

l A − h
n,λ
1 X m

l A

]
Qn,λdxdxA

+
∑
n,λ

[
hn,λ4 Z m

l AB + hn,λ3 Y m
l AB + hn,λ2 X m

l AB

]
Qn,λdxAdxB ,

p

sin θ
=
∑
N0,λ

p4b
L4
op

2
c

pn,λ6 Y ml Qn,λdx2 +
∑
n,λ

p2b
L2
o

[
pn,λ5 Z m

l A − p
n,λ
1 X m

l A

]
× Qn,λ
l(l + 1)

dxdxA +
∑
n,λ

2p2c
(l − 2)!

(l + 2)!

[
pn,λ2 X m

l AB + pn,λ4 Z m
l AB

+
1

4

(l + 2)!

(l − 2)!
pn,λ3 Y m

l AB

]
Qn,λdxAdxB .

(10)
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Black hole interior: gauge invariants

After canonical transformations and redefinition of the Lagrange multipliers,
the dynamics of each perturbative mode is given by

Hn,λ = ba(l̂a)
(

[P n,λ
1 ]2 + [k2a + sa(l̂a)][Qn,λ

1 ]2
)

+ bp(l̂p)
(

[P n,λ
3 ]2 + [k2p + sp(l̂p)][Qn,λ

3 ]2
)
.

(11)

where ba, bp, sa, and sp are background-dependent coefficients that depend
only on the modes labels through

k2a =
4π2

L2
o

n2 + (l + 2)(l − 1),

l̂a =
1

ka

√
(l + 2)(l − 1),

k2p =
l(l + 1)

(l + 2)(l − 1)

(
l2 + l − 6

l2 + l + 2

4π2

L2
o

n2 + l(l + 1)

)
,

l̂p =
1

kp

l(l + 1)√
(l + 2)(l − 1)

.
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Conclusions

â With our method, we can identify and handle the perturbative gauge
invariants for any spacetime with a spherically symmetric background.

â The Hamiltonian formulation of the black hole interior leads to a loop
quantization of the background, combined with a (essentially unique)
Fock representation for the perturbations.

Future results

F We are working on extending these results to the exterior geometry.

F We are aiming to relate our invariants to more conventional ones for black
holes. Starting with the axial modes is the most reasonable approach.

F The final stage of the coalescence of supermassive black holes (ringdown
phase) is a great scenario to apply this study.
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