ZTF Cosmo

ZTF Cosmology Science Working Group — Status —

Core group of ~40 peoples

Research: SN Ia for Cosmology

Progenitor-issue | Astro-bias Calibration | Cosmo-Inference

Close connection with "Bright Transient Survey" & "SN physics" Share most spectroscopy ressources

ZTF SN Ia DR2

2.5 years of ZTF 33%

2 Astronomy & Astrophysics Special issue

First Author Short title • Rigault (a, this work) <u>arXiv</u> DR2 overview Smith DR2 data review Lacroix DR2 photometry Johansson DR2 spectra review • Rigault (b) <u>arXiv</u> Light-curve residuals Kenworthy Light-curve modeling DR2 sample simulations Amenouche arXiv Ginolin (a) <u>arXiv</u> Host, stretch & steps Ginolin (b) arXiv Host, color & bias origin Host & color evolution Popovic arXiv Dhawan arXiv SNe Ia siblings SNe Ia in clusters Ruppin <u>arXiv</u> Aubert <u>arXiv</u> SNe Ia in voids Carreres arXiv Velocity systematics Burgaz (a) SN Ia spectral diversity Dimitriadis arXiv Thermonuclear SN diversity Late-time CSM interaction Terwel arXiv Harvey High-velocity features Deckers arXiv Secondary maxima

■ accepted
 ■ responded
 ■ submitted / replying
 ○ to be sub.

Burgaz (b)

Senzel arXiv

SNe Ia in low-mass hosts

Bulge vs. Disk SNe Ia

ZTF SN Ia DR2

A&A Special issue initial realise: Feb. 2025

Lacroix | Photometry

ZTF DR2.5: Towards cosmology-grade scene modeling supernova

L. Lacroix^{1,2}, N. Regnault^{1*}, T. de Jaeger¹, M. Le Jeune³, J. Neveu^{1,4}, M. Betoule¹, S. Bongard¹, D. Kuhn¹, and M.

- Sorbonne Université, Université Paris Cité, CNRS, Laboratoire de Physique Nucléaire et de Hautes Energies, 4 Place Jussieu, 75252 Paris, France
 The Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, Stockholm, SE-106 91, Swe-
- Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France Université Paris-Saclay, CNRS, IJCLab, 91405 Orsay Cede

Received September 15, 1996; accepted March 16, 1997

Context. The Zwicky Transient Facility (ZTF) has been conducting a wide-field survey of the northern sky in three optical bands (g

Context. The Zwicky Transient Facility (ZTF) has been conducting a wide-field survey of the northern sky in three optical bands (g, r, and i) for nearly six years. The ZTF collaboration is currently releasing light-curves for 3628 spectroscopically confirmed type Ia supernovae (SNe Ia) discovered during the first 3 years of this survey (DR2 data release).

Aims. This large sample provides an unprecedented opportunity to anchor the Hubble diagram with a statistical precision of 0.3%. To fully exploit this dataset, we aim to improve the accuracy of the light-curve photometry to the 0.1% level.

Methods. We have assembled a scene modeling photometry pipeline that provides statistically optimal estimates of the supernova flux, effectively separating it from the background of its host galaxy. This pipeline is capable of processing large datasets in a timely manner. The photometry is calibrated against surrounding field stars, with their fluxes measured using the same flux estimator.

Results. Our pipeline can process the full ZTF 3-year dataset (218TB of images) in about two weeks. In this paper, we present preliminary results obtained while producing an internal data release, codenamed DR2.2. Scene modeling light curves of the 3628 SNe Ia in the DR2 release were obtained in the g, r and i bands. During this initial iteration, we mapped the camera non-uniformities, which were found to be better than 2% peak-to-peak, an impressive achievement for such a wide field. The repeatability of the were found to be better than 2% peak-to-peak, an impressive achievement for such a wide field. The repeatability of th vations was measured to be below 1%. However, we identified a sensor effect that distorts the point spread function (PSF) in a flux-dependent manner, leading to non-linearities in the photometry of up to 7%. This effect requires time- and sensor-dependen corrections to be applied at the pixel level. It prevents reaching the target photometric accuracy with the current version of the data eduction and affects all light curves releases produced so far – whether derived from forced photometry (DR2) or scene modeling this work). As a result, these data should not be used for precise cosmological measurements. We briefly discuss the origin of the effect and our plan to correct for it at the pixel level. These corrections are currently being validated, and will be implemented in our next and final processing, codenamed DR2.5.

Key words. Cosmology:dark energy – Supernovae – Technic:Photometry – Surveys

Type Ia supernovae (SNe Ia) are arguably the most statistically efficient luminosity distance estimator. The detection of cosmic of reach given the available statistics.

a ACDM-consensus prevailed, most analyses pointing towards

Johansson | Spectra

ZTF SN la DR2: Spectroscopic properties

Johansson 10, **, M. Smith 0, M. Rigault 0, G. Dimitriadis 0, A. Goobar 0, W. D. Kenworthy, 10, S. Dhawan, 16, Burgaz⁵ , M. Deckers⁵, L. Galbany^{8,9}, M. Ginolin³ , T. de Jaeger¹⁰ , M. M. Kasliwal¹¹ , Y.-L. Kim⁴ , L. o, F. J. Masci¹² o, T. E. Müller-Bravo^{8,9} o, A. Alburai^{8,9}, K. Phan^{8,9}, R. L. Riddle¹³, B. Rusholme¹² o, R. Smith¹³ , J. Sollerman¹⁴ , J. H. Terwel^{5, 15} , and A. Townsend¹⁶ .

- The Oskar Klein Centre, Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden Université Clermont Auvergne, CNRS/IN2P3, LPCA, F-63000 Clermont-Ferrand, France Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, 1921 Lyon/IN2P3, UMR 5822, F-69622, Villeurbanne, France Department of Physics, Lancaster University, Lancs LA1 4YB, UK
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland Aix Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
- Department of Physics, Duke University, Durham, NC 27708, USA
 Institute of Space Sciences (ICE-CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
 Institut estudis Espacials de Catalunya (IEEC), 08860 Castelldefels (Barcelona), Spain
 DEPINE, CNRS/IN2P3, Sorbonne Université, Université Paris-Cité, Laboratoire de Physique Nucléaire et de Hautes Énergies,
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA PAC, California Institute of Technology, Pasadena, CA 91125, USA Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125
- Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova, 10691 Stockholm, Sweden
- Nordic Optical Telescope, Rambla José Ana Fernández Pérez 7, ES-38711 Breña Baja, Spain Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

ABSTRACT

We present the spectroscopic sample of optical spectra of X low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF). This data release corresponds to the DR2 SN Ia sample, and is the current largest spectroscopic dataset from a single un-targeted SN Ia survey. The ZTF DR2 SN Ia data allows for explorations of correlations between spectral, photometric and host galaxy properties. We use an automated, model-independent software, spextractor, to analyse the spectral atures in a reproducible manner. We make available the measurements of the pseudo-equivalent widths and velocities of the Si II 4130, 5972, 6355 Å at $-20\,\mathrm{days} < t_\mathrm{max} < +10\,\mathrm{days}$, to facilitate a statistical analysis of a large sample of SNe Ia up to > 2 weeks before maximum light. To demonstrate the potential of the spectroscopic dataset we present a study of Hubble residuals as a function of spectroscopic properties, and find evidence suggesting that SNe Ia with shallow Si II 6355 in the early spectra are brighter when compared with the general SNIa population, also after standardization based on lightcurve parameters.

Key words. ZTF; Cosmology; Type Ia Supernovae

. Introduction

ties. One of the outstanding astrophysical uncertainties for SNIa science if the lack of full theoretical understanding of their ex-

Smith | Data

ZTF SN Ia DR2: Sample Creation and Derived Data Products

Smith, M.^{1,★}, Rigault, M.^{2,★★}, Dimitriadis, G.^{1,3}, Johansson, J.⁴, Müller-Bravo, T. E.,^{3,5,6}, and the SN Cosmology SWG

(Affiliations can be found after the references)

We present the second major data release of Type Ia supernovae (SNe Ia) discovered by the Zwicky Transient Facility between March 2018 and December 2020. ZTF SN Ia DR2 contains 3628 nearby spectroscopically confirmed SNe Ia. Here we describe the photometric, spectroscopic and ancillary measurements associated with this release. After selection cuts, 2667 events are suitable for a cosmological analysis, 993 of which and ancillary measurements associated with this release. After selection cuts, 2667 events are suitable for a cosmological analysis, 993 of which are unbiased with respect to selection, corresponding to z < 0.06. Comparing the force-photentry light-curves to independent estimates, we show that the relative calibration of this sample is 0.04mag. Combining multiple spectral classification metrics we find that 77% of our sample are cosmologically-normal, with only 4% of events deemed spectroscopically peculiar. Using multi-band imaging from the PanSTARRS survey we identify a host galaxy for 98.1% of our sample (with a mis-association rate of <2%), and find that the mass distribution is preferentially populated by low mass galaxies compared to literature samples. 67% of our sample have precision redshifts derived from emission lines. While the photometric accuracy of ZTF SN Ia DR2 currently precludes cosmological parameter inference, an upcoming re-derivation of our light-curves ("DR2.5") will enable multiple cosmological measurements. Nevertheless, this data release, with 20 companion papers, stringently constrains the standardisation and diversity of SNe Ia, preparing for Hubble Diagram's with $O(10^4)$ ZTF SNe Ia. Key words. ZTF; Cosmology; Type Ia Supernovae

shandard model of cosmology "ACDM", where Λ represents the simplistic case of cosmological constant in Einstein's theory of general relativity (i.e. dark energy with an equation-of-state, w = p/p = -1) complemented with a CDM, or cold dark matter component. The former accounts for $\sim 70\%$ of the current energy content of the Universe, while the latter accounts of $\sim 25\%$ (Planck Collaboration et al. 2020). ick Collaboration et al. 2020).

O(1000) SNe Ia, leading to a measurement of w at the 5% pre-This paper reviews the properties of the ZTF SN la DR2 crision level, and found it compatible with the w = -1 expected if DE indeed is a simple cosmological constant Λ (Aster et al. 2006; Betoule et al. 2014; Scolnic et al. 2018; Brout et al. 2022). Very recently, the advent of large volume, cadenced surveys has enabled the use of photometrically typed SNe Ia(see Vincenzi

In the late 90s, the standardised luminosity of O(100) Type Ia Supernovae (SNe Ia) enabled the discovery of the accelerated expansion of the Universe (Riess et al. 1998; Perlmutter et al. 1999). This acceleration, hypthothesised to arise from an unknown dark energy, (DE) sets the foundation of the medium of 1999). This acceleration, hypthothesised to arise from an un-snown dark energy, (DE) sets the foundation of the modern standard model of cosmology "ACDM" where A prepresents lanck Collaboration et al. 2020).

The next two decades enabled cosmologists to acquire rently not suitable for a cosmological analysis. See Lacroix & Regnault (2024) for details.

This paper reviews the properties of the ZTF SN Ia DR2

First Author

Short title

- Rigault (a, this work) <u>arXiv</u> DR2 overview
- Smith
- Lacroix
- Johansson
- Rigault (b)
- Kenworthy
- Amenouche arXiv
- Ginolin (a) <u>arXiv</u>
- Ginolin (b) arXiv
- Popovic arXiv
- Dhawan arXiv
- Ruppin <u>arXiv</u>
- Aubert arXiv
- Carreres arXiv
- Burgaz (a) <u>arXiv</u>
- Dimitriadis arXiv
- Terwel arXiv
- Harvey
- Deckers arXiv
- Burgaz (b)
- Senzel arXiv

DR2 data review DR2 photometry

DR2 spectra review

Light-curve residuals

Light-curve modeling

DR2 sample simulations

Host, stretch & steps

Host, color & bias origin

Host & color evolution

SNe Ia siblings

SNe Ia in clusters

SNe Ia in voids

Velocity systematics

SN Ia spectral diversity

Thermonuclear SN diversity

Late-time CSM interaction

High-velocity features

Secondary maxima

SNe Ia in low-mass hosts

Bulge vs. Disk SNe Ia

■ submitted / replying ○ to be sub. accepted responded

"Lemaitre"

DR2.5

Summer 2025

DR2 SN Ia (Spectro) SNLS 5yr (Spectro) Subaru (Photo)

~3500 SN Ia → Cosmology

wo, wa: Dark energy

New photometry: ztfimg/ztfin2p3

New simulations: skysurvey

New inference: NaCl → EDRIS

fo8: Peculiar velocities

H₀: Inverse distance ladder

Extensions | to be planned already Lemaitre (ZTF only?) + DES + Pantheon.

Cross calibrations | methodology (BBC?, Salt?) | sample definition

DR3

Fall 2026

This will be the legacy ZTF SN Ia sample

O(10k) SN Ia (Spectro)

O(30k) SN Ia (Photo)

Initial sample (same?) to be defined

SPECTRA

SEDm: Hypergal mostly done Non SEDm spectra: To be gathered

REDSHIFTS

SNID redshift: Automated DESI redshifts: is that all set up?

LIGHTCURVES

Force photometry: Do we need that?
Scene modelling: for when?

HOST

Identification: Code ready? Human? Properties: Include UV & NIR? Prospector?

DR3

Fall 2026

This will be the legacy ZTF SN Ia sample

O(10k) SN Ia (Spectro)

O(30k) SN Ia (Photo)

Initial sample (same?) to be defined

SPECTRA

SEDm & Non SEDm: To be gathered

LIGHTCURVES

photometry: forced & scene

REDSHIFTS

SNID & DESI: that all set up?

HOST

Identification & Properties: who?

Classification:

A.I. for Photo-typing

SNID Automated

Spectra feature based

Sciences (DR3 spectra)

Rates

Bumps and co.

Low-metallicity hosts

Standardisation (twins & correlations)

Sciences

Cosmo

DR3

Fall 2026

This will be the legacy ZTF SN Ia sample

O(10k) SN Ia (Spectro)

O(30k) SN Ia (Photo)

Initial sample (same?) to be defined

SPECTRA

SEDm & Non SEDm: To be gathered

LIGHTCURVES

photometry: forced & scene

REDSHIFTS

SNID & DESI: that all set up?

HOST

Sciences

Cosmo

Identification & Properties: who?

Classification:

A.I. for Photo-typing
SNID Automated
Spectra feature based

Sample defined

Spectra gathered

SNID Ran

Sciences (DR3 spectra)

Rates

Bumps and co.

Low-metallicity hosts

Standardisation

Host matching and Their propertiesDone

Post Cleaning
DR3 spectrum
data study starts

06/2025

01/2025

1∩

DR2.5

DR2 SNe Ia +Subaru SNe Ia & SNLS5yr

ztfin2p3 pipeline

Scene modeling

New Inference New "LC modeling"

D2.5 Steps

Photometry

Marie's Talk

Mathieu's Talk

Nicolas' Talk

Brodie' Talk

Sensors

Pocket Effect (Bright Fatter)

Field #600 validation

Time Scale: Feb 2025

Camera

StarFlats Filters (incl. Gaia)

Aperture photometry

Time Scale: Feb 2025

Ztfimg

No much details

Time Scale: Feb 2025

Ubercal

Self vs. Gaia vs. PS1

What is missing?

Time Scale: march 2025

LC release

PSF modeling
Link with all other
products.

Time Scale: march 2025

ZTF DR2.5
Lightcurves
internal release
Christmas 2024

D2.5 Papers

Simulation

Mickael's tutorial

Madeleine's Talk

Skysurvey

ModelDag
Technical aspect
Examples

Time Scale: Janv 2025

DataChallenges

Concept of work
DC1, DC2, DC3
summaries
(Incl. fs8 modeling)

Time Scale: April 2025

SN Modeling

What we think the Underlying surveys modelling is (DC2/5)

Time Scale: June 2025

Missing 3D in SkySurvey. This is now the top priority for the Sim development. (Help from Paris and Marseille needed)

D2.5 Papers Methods

Mahmoud's tutorial

Dylan's Talk

D'Arcy's Talk

NaCl

DC1: Methodology
Why NaCl
NaCl (simu vs. Fit)
NaCl vs. SALTx

Time Scale: Feb 2025

Selection Functions

U

PeTS (SN selection)
Redshifts
Host Information
Photo-Typing

Time Scale: May 2025

Photo-Typing. To be checked

Host Info uniformity.
Support needed

Edris

How does this work
Why Edris

Demonstrated on DC2

Time Scale: June 2025

Core worry to me

"Lemaitre"

DR2.5

Summer 2025

Extensions to be planned

DR3

DR2 SN Ia (Spectro) SNLS 5yr (Spectro) Subaru (Photo)

~3500 SN Ia $\rightarrow H_0 \mid w_0, w_a \mid f\sigma_8$

New photometry, simulations & inference

O(10k) SN Ia (Spectro)

Hypergal | sub-classifications

A.I. for SN spectro study (e.g. twins)

O(30k) SN Ia (Photo)

Sampled definition

A.I. for Photo-typing

 $f\sigma_8$: Likely the baseline for more than a decade w_0 , w_a : The LSST/Roman era anchoring sample

This will be the legacy ZTF SN Ia sample