The ztfin2p3 pipeline for DR2.5 & beyond. a.k.a ztfin2p3 : what does this pipeline do.

Marie Aubert @ ZTF SNIA Barcelona – 09/12/24

Marie Aubert @ ZTF SNIA Barcelona - 09/12/24

The ztfin2p3 pipeline

How does it work ? What does it do ?

- Image I/O and handling (e.g WCS) : ztfimg
- Calibration and everything else : ztfin2p3
- 3 Main steps from *Raw* to *Aperture catalogues* :

Pipeline is developed within two dedicated python package :

```
→ ztfin2p3 (Pipes)
→ ztfimg (I/0 + pixel corrections
ztfin2p3 (Pipes) : Made to work @ CC.
ztfimg (Pipes) : Should work on any laptop
```


The ztfin2p3 pipeline

Reading raw images (CCDs)

- Image Input and handling (e.g WCS) : ztfimg
- Image Input is the basis \rightarrow Applies to any raw opened in the pipeline :

Image Input :

ztfimg.RawCCD ztfimg.RawQuadrant

The ztfin2p3 pipeline 2 **Detrending raw images**

- Image I/O and handling (e.g WCS) : ztfimg •
- Calibration ztfin2p3

ztfin2p3.pipe.newpipe class BiasPipe

The ztfin2p3 pipeline 2 **Detrending raw images**

The ztfin2p3 pipeline 2 **Detrending raw images**

- Image I/O and handling (e.g WCS) : ztfimg
- Calibration ztfin2p3

bias)
evel
$$I_{sci} = \frac{I_{bias corr}}{I_{Flat}} \times \frac{N_{fp}}{N_{ccd}}$$

nt → IPAC like sci format.
from there

ztfin2p3.science build_science_image build_science_header

#Output : ztfimg.ScienceQuadrant x4

The ztfin2p3 pipeline Aperture on detrended image 3

- Image I/O and handling (e.g WCS) : ztfimg •
- Calibration ztfin2p3 •

Image I/O)	Aperture (Forced Phot
Detrending	1. 2.	Match Image to source catalo each quad : GAIA DR3 - Ben R.A , Dec to ra,dec with pec-v
	3. 4. 5.	 → (x, y) quadrant coord. sep package aperture Format and store to parquet

Aspects to note

- \rightarrow Masks
- \rightarrow Headers

NOT REPROCESSED. (Using ZTF IPAC masks & header)

 \rightarrow Science images

NOT STORED. Plan is : On the fly computations.

 \rightarrow Cal + Raw

STORED ON DISK : Easy to create re-create image if needed.

Pipeline status

« Ready to run » : Implementation aspects are coded.

Right now the main work is **the data** :

→ Downloading from IPAC which is in progress.

Data	Status
Headers (2018 - 2023)	All good
Masks (2018 - 2023)	Dowloading
Raws sci (2018 - 2023)	Dowloading
Raws flats & bias (2018 - 2023)	Some flats & biases are hiding on disk @ IRSA

So we have a pipeline : What's next +Validation +

- - Starflats fits to aperture catalogues.
 - Ubercal from Ben.
- 2023. → Dec : [-5,35] deg R.A : [345,65] deg in all ZTF bands. (~1 million quadrants to process / band)
- Starflats : 3 starflats sequence were processed as of now (2018, 2019, 2021)

• Pipeline will be tested both ways (in conjunction with Mathieu's work - just after) :

• A toy sample has been devised by Ben on a small region of the sky between 2018 &

Example starflats 2019-03-31 Focal plane residuals with Quadrants normalization

zg

Pipeline validation — **as it is** Focal plane residuals with Focal Plane normalization

zg

Pipeline validation — as it is Focal plane residuals with Focal Plane normalization

[0.1 %,99.9%] [-0.08, 0.003]

[-0.04, 0.04]

Zr

Pipeline validation — **as it is** Focal plane residuals with Focal Plane normalization

Fitted gain / quadrant on the starflat

Fitted gain / Quadrant

Pocket effect correction (appeared in images > 2019-10-22)

ztfin2p3-Near future additions *ztfin2p3 : what will this pipeline do*

- Images from 2020 & on were corrected for fringe effects in the i band.
 - Plan is to include this correction in the pipeline & correct the images prior with that.
 - \rightarrow 1st correction is implemented but needs further validations for some special cases.

ztfin2p3 - Pipeline *ztfin2p3 : what does this pipeline do.*

The ztfin2p3 pipeline is ready to run \rightarrow Modified calibration \rightarrow Some minor additions to be done. First results on the starflats sequence are promising : \rightarrow Uniform focal plane \rightarrow Quadrants variations are mitigated Pipeline validation on a larger scale (toy sample) To be plugged with the Scene Modelling pipeline \rightarrow Dec: [-5,35] deg R.A: [345,65] deg → PSF & Aperture photometry \rightarrow 2018 - 2023 to cover g, r and i bands. (not forced photometry)

Mathieu's talk : Progress on the processing