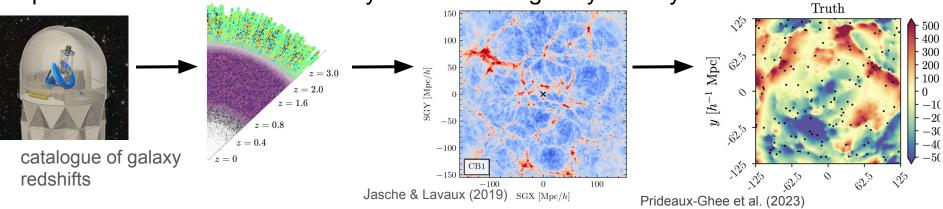


Density-velocity method for $f\sigma_8$

Pauline Zarrouk (CNRS/LPNHE & Sorbonne Université)

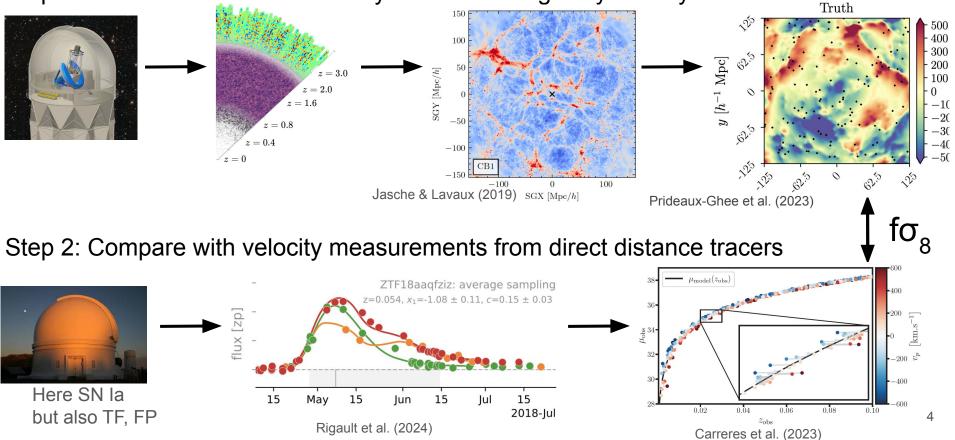
- 1. Methodology
- 2. Density-velocity projects using ZTF DR2.5 SN Ia @LPNHE

Methodology: literature and nomenclature


From A. Hollinger's PhD thesis (2023), see also figure 11 in Carreres et al. (2023)

The following names correspond to the same method:

- density-velocity method/comparison
- velocity-velocity comparison
- reconstruction-and-scaling method


Methodology: example of DESI x ZTF

Step 1: Build a model of the velocity field from the galaxy density field

Methodology: example of DESI x ZTF

Step 1: Build a model of the velocity field from the galaxy density field

Build a linear model of the velocity field from the galaxy density field

linear growth rate of structures

$$v(\boldsymbol{r}) = \frac{H_0 f(\Omega_m)}{4\pi b_g} \int \delta_g(\boldsymbol{r}') \frac{(\boldsymbol{r}' - \boldsymbol{r})}{|\boldsymbol{r}' - \boldsymbol{r}|^3} d^3 \boldsymbol{r}'.$$

Amplitude of mass fluctuations within spheres of R = 8 Mpc/h $\rightarrow \sigma_8$ $\sigma^2(R,z) = \frac{1}{2\pi^2} \int_0^\infty k^2 P_{\rm lin}(K,z) |W(k;R)|^2 dk \,,$

Build a **linear** model of the velocity field from the galaxy density field

linear growth rate of structures

$$v(\boldsymbol{r}) = \frac{H_0 f(\Omega_m)}{4\pi b_g} \int \delta_g(\boldsymbol{r}') \frac{(\boldsymbol{r}' - \boldsymbol{r})}{|\boldsymbol{r}' - \boldsymbol{r}|^3} d^3 \boldsymbol{r}'.$$

 \rightarrow Smooth the density field using a Gaussian kernel of width R_{g} : $W(k) = \exp\left(\frac{-k^2 R_{G}^2}{2}\right)$

Optimal smoothing scale that minimises the variance of the velocity field while ensuring a unbiased reconstruction is $R_G = 3-5$ Mpc/h (Carrick et al. 2015, Hollinger & Hudson 2021)

Build a **linear** model of the velocity field from the galaxy density field

linear growth rate of structures

$$v(\boldsymbol{r}) = \frac{H_0 f(\Omega_m)}{4\pi b_g} \int \delta_g(\boldsymbol{r}') \frac{(\boldsymbol{r}' - \boldsymbol{r})}{|\boldsymbol{r}' - \boldsymbol{r}|^3} d^3 \boldsymbol{r}'.$$

 \rightarrow Smooth the density field using a Gaussian kernel of width R_{g} : $W(k) = \exp\left(\frac{-k^2 R_G^2}{2}\right)$

Optimal smoothing scale that minimises the variance of the velocity field while ensuring a unbiased reconstruction is R_{g} = 3-5 Mpc/h (Carrick et al. 2015, Hollinger & Hudson 2021)

 \rightarrow add an external bulk flow term V_{ext} to account for potential contributions from external sources outside the volume probed

Build a **linear** model of the velocity field from the galaxy density field

linear growth rate of structures

$$v(\boldsymbol{r}) = \frac{H_0 f(\Omega_m)}{4\pi b_g} \int \delta_g(\boldsymbol{r}') \frac{(\boldsymbol{r}' - \boldsymbol{r})}{|\boldsymbol{r}' - \boldsymbol{r}|^3} d^3 \boldsymbol{r}'.$$

 \rightarrow Smooth the density field using a Gaussian kernel of width R_{g} : $W(k) = \exp\left(\frac{-k^2 R_G^2}{2}\right)$

Optimal smoothing scale that minimises the variance of the velocity field while ensuring a unbiased reconstruction is R_{g} = 3-5 Mpc/h (Carrick et al. 2015, Hollinger & Hudson 2021)

 \rightarrow add an external bulk flow term V_{ext} to account for potential contributions from external sources outside the volume probed

 \rightarrow account for galaxy selection effect: luminosity weighting in Carrick et a. 2015, tests of various definitions using simulations in Hollinger & Hudson 2021

Build a **linear** model of the velocity field from the galaxy density field

linear growth rate of structures

$$v(\boldsymbol{r}) = \frac{H_0 f(\Omega_m)}{4\pi b_g} \int \delta_g(\boldsymbol{r}') \frac{(\boldsymbol{r}' - \boldsymbol{r})}{|\boldsymbol{r}' - \boldsymbol{r}|^3} d^3 \boldsymbol{r}'.$$

 \rightarrow Smooth the density field using a Gaussian kernel of width R_{g} : $W(k) = \exp\left(\frac{-k^2 R_G^2}{2}\right)$

Optimal smoothing scale that minimises the variance of the velocity field while ensuring a unbiased reconstruction is R_{g} = 3-5 Mpc/h (Carrick et al. 2015, Hollinger & Hudson 2021)

 \rightarrow add an external bulk flow term V_{ext} to account for potential contributions from external sources outside the volume probed

 \rightarrow account for galaxy selection effect: luminosity weighting in Carrick et a. 2015, tests of various definitions using simulations in Hollinger & Hudson 2021

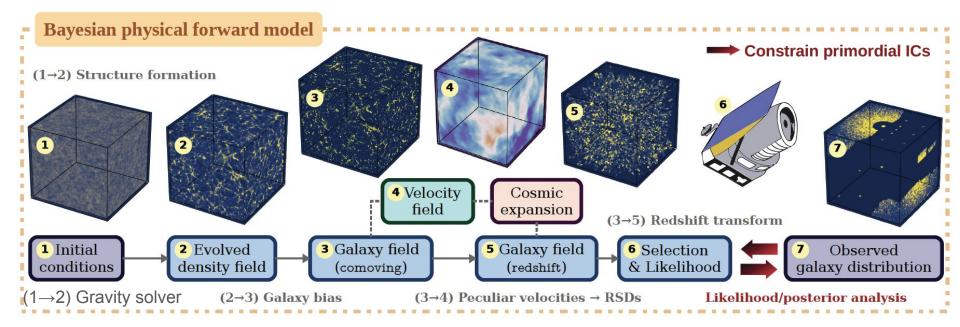
 \rightarrow dominant source of systematics for 2M++: cosmic variance (Holinger & Hudson 2021, Hollinger & Hudson 2023, Blake & Turner 2024) \rightarrow need mock-based covariance

9

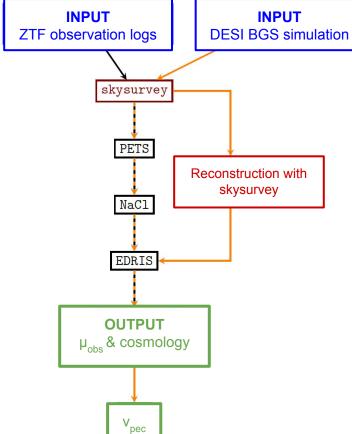
Reconstruction methods for density and velocity fields

Comparison of reconstruction methods against catalogues of direct distance tracers (Stiskalek et al. *in prep*)

Reconstruction methods considered:


- **linear theory 2M++:** luminosity-weighted density field derived from the positions of galaxies in 2M++ assuming linear theory (Carrick et al. 2015)
- neural-network 2M++ from Lilow et al. (2024)
- **CSiBORG (constrained simulations in BORG) 2M++**: obtained by imposing the initial conditions on the density field derived from BORG applied to 2M++. See Jasche & Lavaux (2019), Bartlett et al. (2021), Stopyra et al. (2024)
- constrained realisations Cosmicflows-2: Sorce (2018, 2020)
- HMC forward-modelling Cosmicflows-4: Courtois et al. (2023)

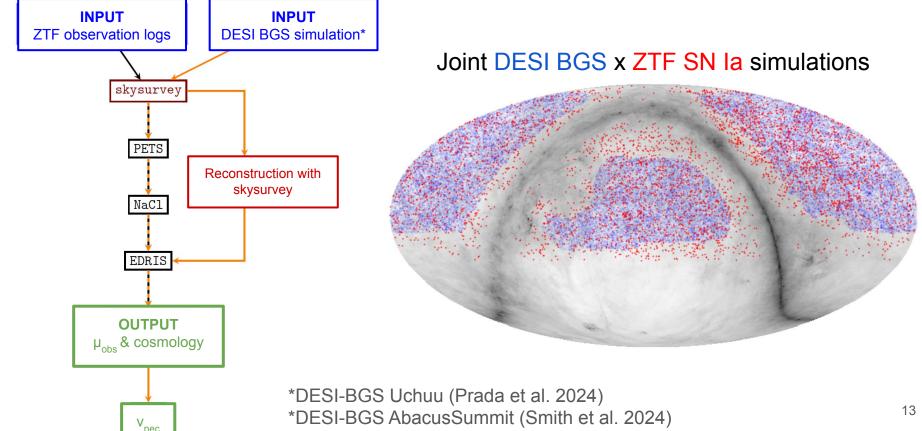
Data considered:


- Tully-Fisher
- **SN Ia**: LOSS, Foundation $\rightarrow M_{SN}$, x0 (stretch), x1 (colour)

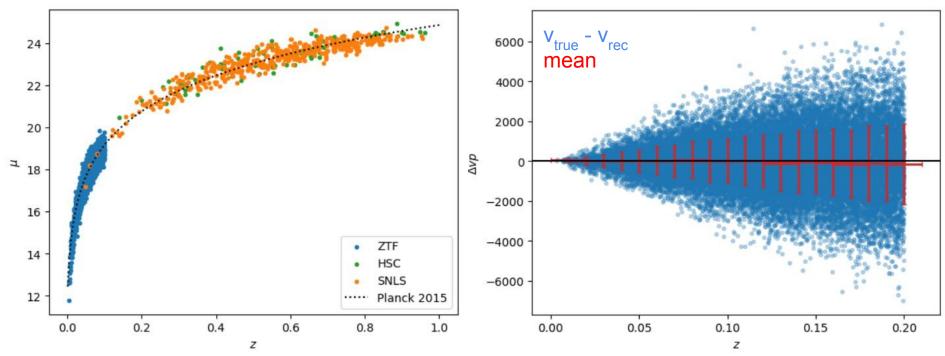
What is BORG?

BORG: Bayesian Origin of Reconstruction Galaxies Jasche & Wandelt (2013), Jasche & Lavaux (2019)

Peculiar velocity measurements from ZTF DR2.5 SN Ia @LPNHE



The goal is twofold:


- Use one single pipeline for all cosmological measurements from ZTF DR2.5 SN Ia, including peculiar velocities
- \rightarrow Lemaitre pipeline
 - Provide unbiased peculiar velocity measurements by first testing the pipeline on simulations

Work led by Antoine Gilles--Lordet, Mahmoud Osman, Pauline Zarrouk and Nicolas Regnault 12

Peculiar velocity measurements from ZTF DR2.5 SN Ia @LPNHE

Peculiar velocity measurements from ZTF DR2.5 SN Ia @LPNHE

Next steps: perform systematic tests of v_{pec} measurements with Lemaitre pipeline following the Data Challenge plan (Mahmoud)

Density-velocity projects @ LPNHE using ZTF DR2.5 SN Ia

Using 2M++ for Step 1

- Use CSiBORG-2M++ for the reconstruction of the density and velocity fields
- compare with peculiar velocities measurements from ZTF DR2.5 SN Ia
- Goal: measure fo₈
 - generate ZTF SN Ia within these constrained simulations using skysurvey
 - use full covariance from CSiBORG 2M++ x ZTF SN Ia
 - timeline: July-Sept 2025

Using DESI BGS for Step 1

- Field-level inference using BORG applied to the DESI BGS at z < 0.2 to reconstruct the initial conditions and the density and velocity fields \rightarrow create CSiBORG-DESI BGS
- compare with peculiar velocities measurements from ZTF DR2.5 SN Ia
- Goal: measure fo₈
 - timeline: posť DR2.5

Next: Towards joint density and velocity field-level inference using BORG

Thanks for your attention!