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Context: QCD phase diagram/ Quark Gluon Plasma

Complete QCD phase diagram far from being confirmed:

T # 0, ;1 = 0 well-established from lattice: no sharp phase transition,
continuous crossover at T, ~ 154 £ 9 MeV

Goal: more analytical approximations, ultimately in regions not much
accessible on the lattice: large density (chemical potential) due to the
famous “sign problem”

Tool: unconventional RG resummation of perturbative expansions

Very general: relevant both at T =0 or T # 0 (and finite density too)
— in particular addresses well-known problems of unstable +badly
scale-dependent T # 0 perturbative expansions
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Introduction/Motivations

Tool: unconventional 'RG-optimized’ (RGOPT) resummation of
perturbative expansions
lllustrate here T # 0 nonlinear o-model, + QCD (pure glue)

NB some previous results with our approach (T = 0):
estimate of the chiral symmetry breaking order parameter
QCD

Fr(myas = 0)/AEP: Froexp input — A7 — o85(1 = my).

N3LO: Fo=% /N3~ 0.25 + .01 — as(myz) ~ 0.1174 + .001 + .001

(JLK, A.Neveu, PRD88 (2013))
(compares well with as lattice and world average values [PDG2016-17])

Also applied to (gq) at N3LO (using spectral density of Dirac operator):

(Ga)—o(2GeV) ~ —(0.84 £ 0.01)Ags  (JLK, A.Neveu, PRD 92 (2015))

Parameter free determination! (compares well with latest lattice result)



Problems of thermal perturbative expansion (QCD, g¢*, ...)

known problem: poorly convergent and very scale-dependent (ordinary)
perturbative expansions:

Pressure/(Ideal Pressure)

QCD (pure glue) pressure at successive (standard) perturbation orders
shaded regions: scale-dependence for 7T <y < 47T
(illustration from Andersen, Strickland, Su "10)



(Variationally) Optimized Perturbation (OPT)

Trick (T = 0): add and subtract a mass, consider m¢ as interaction:
L(g,m) — L(6g,m(1—9)) (e.g. in QCD g = 4mas)

where 0 < 6 < 1 interpolates between L. and massless Lin:;
— m: arbitrary trial parameter

e Take any standard (renormalized) pert. series, expand in ¢ after:
m—=m(l-9¢);, g—dg
then 6 — 1 (to recover original massless theory):

BUT a dependence in m remains at any finite §%-order:
fixed typically by stationarity prescription: optimization (OPT):
%(physical quantity) = 0 for m = mgp(as) # O:

oT = 0: exhibits dimensional transmutation: Mop:(g) ~ e~ o"st-/8

oT = 0 similar idea: “screened perturbation” (SPT), or resummed "hard
thermal loop (HTLpt)” (QCD): expand around quasi-particle mass.
Does this 'cheap trick’ always work? and why?



Expected behaviour (ideally)

Physical quantity

Exact result
2d order (non-perturbative)

/

OPT 1st order

O(N)

Not quite what happens, except in simple models:
eConvergence of this procedure for D = 1 ¢* oscillator
(cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping' Seznec, Zinn-Justin '79

oQFT multi-loop calculations (specially T # 0) (very) difficult:
— empirical convergence? not clear

eMain pb at higher order: OPT: Op,(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative “insight”??



3. RG compatible OPT (= RGOPT)

Main additional ingredient (JLK, A. Neveu '10):

Consider a physical quantity (perturbatively RG invariant)
e.g. in thermal context the pressure P(m, g, T)):

in addition to: 2= P®*)(m, g,5 = 1)|m=m =0, (OPT)
Require (d-modified!) result at order 6 to satisfy (perturbative)
Renormalization Group (RG) equation:

RG (P(k)(m,g,5 = 1)) =0

with standard RG operator :

d B) B B
RG = Han = Fan + B(g)% — m(8) me

B(g) = —bog® = br1g® + -+ Tm(g) =08 + 8"+

— Additional nontrivial constraint



— If combined with OPT, RG Eq. reduces to massless form:

{ -+ B(E) 5 ]P“)(m g.5=1)=0

Then using OPT AND RG completely fix m=mand g = g.

But Aws(g) satlsfies by def..
[Mau +B8(g) 2 | \ws = 0 (consistently at a given order for 5(g)).

equivalent to:

13} Pk(mg6:1)> 0 (Pk(mgézl)) _
= ~ o7 ) =0; — | —"22" 1) =0 form,
om ( Ns(e) og\ Nus(g) ¢
eOptimal m ~ Ags(g), but true physical result from P(m, g, T)

oAt T = 0 reproduces at first order exact nonperturbative results in
simpler models [e.g. Gross-Neveu model]



OPT 4+ RG = RGOPT main features

eUsual OPT/Screened PT: embarrassing freedom in interpolation trick:
why not m — m(1—46)?7

Most previous works (T = 0, Screened PT, HTLpt T # 0) do

linear interpolation (a = 1) without deep justification

but generally (we have shown) a =1 spoils RG invariance!

eOPT gives multiple m(g, T) solutions at increasing 6-orders

— Our approach restores RG, +requires optimal solution to match
perturbation (i.e. Asymptotic Freedom for QCD (T = 0)):
as — 0 (u — oo): E(M)NW‘F"' . M~ Nocp

— At successive orders AF-compatible optimal solution (often unique)
only appears for universal critical a:

Vi
m%m(lfé)fol (in general ¢ 7 1)
— RG consistency goes beyond simple “add and subtract” trick
and removes any spurious solutions incompatible with AF

eBut does not always avoid complex OPT m solutions
(if these occur, possibly cured by renormalization scheme change)



Problems of thermal perturbation (QCD but generic)
Usual suspect: mix up of hard p ~ T and soft p ~ asT modes.

Thermal 'Debye’ screening mass m3, ~ as T2 gives IR cutoff,
BUT = perturbative expansion in /ag in QCD
— often advocated reason for slower convergence

Yet many interesting QGP physics features happen at not that large
coupling ag(~ 2mT¢) ~ .5, (as(~ 2w T;) ~ 0.3 for pure glue)

Many efforts to improve this (review e.g. Blaizot, lancu, Rebhan '03):

Screened PT (SPT) (Karsch et al '97) ~ Hard Thermal Loop (HTLpt)
resummation (Andersen, Braaten, Strickland '99); Functional RG, 2PI
formalism (Blaizot, lancu, Rebhan '01; Berges, Borsanyi, Reinosa, Serreau '05)

Our RGOPT(T # 0) essentially treats thermal mass 'RG consistently’:
— UV divergences induce mass anomalous dimension.

(NB some qualitative connections with recently advocated “massive scheme”
approach (Blaizot, Wschebor '14))



RGOPT(T # 0 generic example): ¢* (JLk, M.B Pinto, PRL116 '16)
oStart from usual 2-loop PT free energy m # 0, T # 0 (wms scheme):

(47)2F0 = Eo — (34 4In £) — I Jo () + O(g)(2-loop)

m oo 1 1
JO(?) ~ fo dp\/p2+m2 eVP2im?2 _q

oF(T =0) has LO Inu dependence: compensated by & finite
T-independent 'vacuum energy’ subtraction (well-known at T = 0):

&g, m) = —m* (2&+51+52g+-~->

determined such that ,udiﬂé’o cancels the In p dependence:

_ 1 _ 2. _(bi—4v)
%0 = 3(bo—470) 877 51 = 870 (bo—4v) 1

eMissed by SPT, HTLpt (QCD): explains the large scale dependence
observed at higher order in those approaches! (more on this below)

eNext: expand in 6, § — 1 after m?* — m?(1 —0)? ; g — ig
RG only consistent for a = 2vq /by (= 1/3 for ¢* while a =1 in SPT)
NB: 1/g in & automatically cancels in optimized energy F(m).

oAll together lead to a much better RGOPT residual scale dependence
(factor ~ 3 better at 2-loops wrt PT/SPT, much better at 3-loops)



4. Closer to QCD: 2D O(N) nonlinear o model (NLSM)

eShares properties with QCD (asymptotic freedom, mass gap).
oAt T £ 0 the pressure, trace anomaly, etc have QCD-like shapes

eNonperturbative T # 0 results available for comparison:
(lattice (N = 3)[Giacosa et al '12], 1/N-expansion [Andersen et al '04])

g(miom)?  m* i _gﬂ_.2)1/2
2(1—-g77) & ’

Two-loop pressure from: Q (X)

eAdvantage w.r.t. QCD: exact T-dependence at 2-loops:

[:0 = %(67'(',')2 +

N-1 N-3
Ppert 2100p = —(27) [/o(ﬂh T)+ (47)m2gl1(m, T)z} +&o,

Io(m, T) = % <m2(1 —In %) +4T2K0(”T7)>

KO(X) = fooo dzln (1 —e 22+X2)> /1(m, T) = 8/0([)’7, T)/amz



One-loop RGOPT for NLSM pressure

Exact T-dependent mass gap m(g, T) from 0,,P(m) = 0:

m 1 m N—2
n—=-————-2Ki(=), byls™ =

w T e ) 2 )
oExhibits exact (one-loop) scale invariance:
T =0: m(T =0) = pe Fostn = AL1oop
T>m m(T) whyg e

= ) (LT =In )
T 1-— b()g LT AT

N-—-1 X2 _ .
PFLGegi? = —QTQ K()(X)‘Fg (1+4K1(X)) s (XE m/T)

4 T

PRGOPT(T > m)~1— —bog(

with one-loop running g=*(u) = g7 (M) + by In Vo)

— nice RGOPT property: running with T emerges consistently
(for standard perturbation, SPT, HTLpt, pt ~ 27 T 'chosen’)



NLSM pressure [G. Ferrari, JLK, M.B. Pinto, R.0 Ramos, 1709.03457,PRD]

P/Psg(N = 4,g(My) = 1) vs standard perturbation (PT), large N (LN),
and SPT = ignoring RG-induced subtraction; m?> — m?(1 — §):

0.0 05 10 Is 2.0
T/M,
(shaded range: scale-dependence 7T < u=M < 47 T)
— At two-loops a moderate scale-dependence reappears, although less
pronounced than 2-loop standard PT, SPT.

Higher order: RGOPT at O(gk) — m(u) appears at O(g**1) for any m,
but m ~ gT — P~ m?/g + --- has leading ui-dependence at O(gk+?).



NLSM interaction measure (trace anomaly)
(normalized) Ay gm = (€ = P)/T? = Tor (%)

1.00
0.501

0.201/
<
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0.02 ' ' ' '
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T/M,
N =4,g(Mo) =1 (shaded regions: scale-dependence 7T < u=M < 4nT )
e2-loop Aspr: small, monotonic behaviour + sizeable scale dependence.

eRGOPT shape 'qualitatively’ comparable to QCD, showing a peak:
only obtained from interplay between T # 0 and T = 0 nonperturbative
mass gap.

(But no phase transition in 2D NLSM (Mermin-Wagner-Coleman
theorem): just reflects broken conformal invariance (mass gap)).



5. Thermal (pure glue) QCD: hard thermal loop (HTL)

QCD(glue) adaption of OPT — HTLpt [Andersen, Braaten, Strickland '99]:
same trick now operates on a gluon mass term [Braaten-Pisarski "90]:

yy” H 1 By ARyl
W>yGﬁ , Dt =0"—ig A", y" =(1,9)

(effective, explicitly gauge-invariant but nonlocal Lagrangian):

m2
EQCD(gauge)—7 Tr [Gm<

originally describes screening mass m? ~ as T2 + other HTL
contributions [dressing gluon vertices and propagators]
But here m is arbitrary: determined by optimization in RGOPT.

PUTessr = (2 1)

4 o5} d 1 oS}
{6’4”7(Cu—|n%)+/ (2;”3 = 1/ dk K2 (267 — ¢1)
, -

w

T [ 5 _er e w2 T4
fﬁ/o dk k [QIn(lfe T)+In(l—e T)]f ) }

w,_—k

eExact 2-loop? daunting task...

where k? + m? [1 — YL |n( Ltk )} =0; f(wr) =0; ¢r,¢7: complicated.

NB possibly simpler effective gluon mass models/prescriptions exist...
[e.g. Reinosa, Serreau, Tissier, Weschbor '15]



...But HTLpt advantage: calculated up to 3-loops a3 (NNLO)

at two-loops:

[Andersen et al '99-'15] BUT only as m/T expansions
Drawback: HTLpt = high-T approximation (by definition)

HTLpt  _ p
Pl loop,ms = Pideal *
15 45 " 7w
1— a2 +30m° + — it (In L 4+ ye — =+ =
g 30w e n gy TE T2 T )
P T4
M= s0F Pideal = (N = 1)7° 5



Standard HTLpt results
Pure gauge at NNLO (3-loops) [Andersen, Strickland, Su "10]:
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o 00 f eesesecces Lattice Data (Boyd et al)
1 2 3 4 5

T/T,

Reasonable agreement with lattice results (down to T ~ 2 — 3T,) only
emerges at NNLO (3-loop) for low scale p ~ 7T — 27 T.

NB even better agreement with lattice (for central scale choice) when
including quarks.

Main HTLpt issue: drastically increasing scale dependence at NNLO order
Moreover HTLpt mass prescription: m — mge't(as) [rather than
optimizing 9,,P(m), to avoid complex optimized solutions]:

but OPT generally captures “more nonperturbative” information.



RGOPT adaptation of HTLpt =RGOHTL

Main changes:
e Crucial RG invariance-restoring subtractions in Free energy (pressure):

Putipt = PHTipt — m4(§—°5 + 5+ ---): reflects its anomalous dimension.

Jo
e Interpolate with m?(1 — §)% , where gluon mass anomalous dimension
defined from (available) counterterm.

eScale dependence improves at higher orders since RG invariance
maintained at all stages:

-from subtraction terms (prior to interpolation)

-from interpolation keeping RG invariance.

oSPT, HTLpt,... do not fulfill this:

yet harmless (scale dependence moderate) up to 2-loops,
because the (leading order) RG-unmatched term O(m* Inp) is
perturbatively '3-loop” O(a2) from m? ~ as T2.

— But explains why HTLpt scale dependence dramatically resurfaces at
3-loops!



Preliminary RGO(HTL) results (1- and 2-loop, pure glue)

One-loop: exactly scale-invariant pressure (like ¢* and NLSM):

P(T>»m) _ {1 1542 15 23 A6
B =1=-72m" +3m + O(m°)

M(OPT) = G (1+ /1 — 5%), G ‘coupling” = (In ﬁ + const.)™!

eOnce accepting arbitrary m in Ly7y, like in NLSM RGOPT includes
nontrivial P(T = 0) ~ —const N

oPb however: this 'exact’ OPT /i becomes complex for small enough G:
essentially an artefact of ws-scheme +high-T approx
(gives small Im[P]/Re[P])

e Qur attitude: one-loop approximation is not final stage:
Pragmatic: at one-loop we thus take Re[P(g)] in relevant T /T, range.

e Yet consistent with Stefan-Boltzmann limit: P(g — 0) — Pigeas

Alternatively evade this pb if adopting HTLpt prescription: m — mgeTbye
(consistent with standard PT: P/Psg 1 — 15/4(as/m) +--+)

but loose exact 1-loop scale invariance

o 2-loops: RGOPT gives a real unique solution.



RGOPT vs HTLpt: one-loop pressure

S _ HTLpt 1loop

RGOPT lloop(milsgbié

RGOPT 1 loop(m_opt)

bands: n1 T<u<4nT

3 4

T/T,

NB: bending of Prgopt for small T essentially due to

—Preopt(T =0) #0.




2-loop RGOHTL: need new calculations...

Crucial RG-consistent 2-loop subtractions determined by asm* In 11 term
(non-logarithmic terms relevant too).

But these are O(as T* %5 +) of 2-loop HTL contributions, not available in
literature (to best of our knowledge):

give ~ 30 independent integrals, half being (very) complicated, e.g.

i TpTo(p+4q) T _/ doto
5o PPP2RQ2(P + Q)2 P P2+c2

(P? = P2 + p?), ¢ =HTL angle (averaging).

Present status: work under good progress but need to be checked,
specially the difficult non-logarithmic parts (i.e. finite parts in dim.reg.)

NB high T« T=0 correspondance
Coo In? + Grln & 7+ C22T>>m + (oo In? + GCrln & m T C22T 0)

eHowever Leading Log (LL) Cyo determlned stralghtforwardly from RG
from one-loop.

oSimilarly the 2-loop (perturbative) scale invariance is guaranteed by
51 = f[Cyo] independently of precise Cyq value!



(Preliminary!) RGO(HTL) results (2-loop, pure glue)
2-loop illustrated here for simplest LL approx.: Co; = Cop =0
but RG-subtraction s;(Cy; = 0) consistent

Moderate scale-dependence reappears at 2-loops
but sensible improvement wrt HTLpt

1.2

\_HTLpt 2loop

s/ Lattice (Boyd et al 96)
J

; aT<pu<4nT ]
1 2 3 4 5
T/T,
[JLK, M.B Pinto, to appear soon]
NB scale dependence should further improve at 3-loops, generically:

RGOPT at O(ak) — m(u) appears at O(ak™™) for any m, but
m? ~asT? — P~ mk/as + - leading u-dependence at O(ak™).

e Warning: low T ~ T, genuine P(T) shape sensitive to true Co1, Con
(crucially needed before possibly comparing RGOPT vs lattice).



(Very) preliminary RGO(HTL) approximate 3-loop results

3-loops: exact m*a% terms need extra complicated calculations, but
3/ 2/ 4 2 3 2 .
PRGOHTL ~ PRGOHTL + m as(cg,o |n 72:7- =+ C31 |n 727":7- + C32 |n 72:7- =+ C33).

leading logarithms (LL) and next-to-leading (NLL) Csq, C31 fully
determined from lower orders from RG invariance

Within this LL, NLL approximation and in T/T. > 2 range where it is
more trustable:

1.00
rT<p<dnT
0.50}
0.20 N I (preliminary!)
t 3loo)
= 0.10 SR
T 0.05
= . HTLpt 2looy
0.02f “ITeee--TEERUTOP
0.01 RGOPT 2loop
RGOPT 3loop (LL appro) -
5 10 15 20
T/T.

We assume/expect true coefficients will not spoil this improved scale
dependence.



Summary and Outlook

oRGOPT includes 2 major differences w.r.t. previous
OPT/SPT/HTLpt... approaches:

1) OPT +/or RG optimizations fix optimal m and possibly g = 4mas

2) Maintaining RG invariance uniquely fixes the basic interpolation
m — m(1 — §)7/b: discards spurious solutions and accelerates
convergence.

e At T # 0, exhibits improved stability + drastically improved scale
dependence (with respect to standard PT, but also w.r.t. HTLpt)

ePaves the way to extend such RG-compatible methods to full QCD
thermodynamics (work in progress, starting with T # 0 pure
gluodynamics) specially for exploring also finite density



