Scale Invariant Hard Thermal Loop resummation

Jean-Loïc Kneur (Lab. Charles Coulomb, Montpellier, France)

Strong and Electroweak Matter 2018, Barcelona, June 28, 2018

Context: QCD phase diagram/ Quark Gluon Plasma

Complete QCD phase diagram far from being confirmed:

 $T \neq 0, \mu = 0$ well-established from lattice: no sharp phase transition, continuous crossover at $T_c \simeq 154 \pm 9$ MeV

Goal: more analytical approximations, ultimately in regions not much accessible on the lattice: large density (chemical potential) due to the famous "sign problem"

Tool: unconventional RG resummation of perturbative expansions

Very general: relevant both at T = 0 or $T \neq 0$ (and finite density too) \rightarrow in particular addresses well-known problems of unstable +badly scale-dependent $T \neq 0$ perturbative expansions

Content

Introduction / Motivation

- Optimized (or 'screened') perturbation (OPT \sim SPT)
- RG-compatible OPT \equiv RGOPT
- Application: thermal nonlinear sigma model (many similarities with QCD but simpler)
- ► Application: thermal (pure gauge) QCD: hard thermal loops
- Conclusions

Introduction/Motivations

Tool: unconventional 'RG-optimized' (RGOPT) resummation of perturbative expansions Illustrate here $T \neq 0$ nonlinear σ -model, + QCD (pure glue)

NB some previous results with our approach (T = 0): estimate of the chiral symmetry breaking order parameter $F_{\pi}(m_{u,d,s} = 0) / \Lambda_{\overline{MS}}^{\text{QCD}}$: F_{π} exp input $\rightarrow \Lambda_{\overline{MS}}^{n_f=3} \rightarrow \alpha_{\overline{S}}^{\overline{MS}}(\mu = m_Z)$.

 $\begin{array}{l} N^{3}LO: \ F_{\pi}^{m_{q}=0}/\Lambda_{\overline{\text{Ms}}}^{n_{f}=3}\simeq 0.25\pm.01 \rightarrow \alpha_{S}(m_{Z})\simeq 0.1174\pm.001\pm.001\\ (\text{JLK, A.Neveu, PRD88 (2013)})\\ (\text{compares well with }\alpha_{S} \ \text{lattice and world average values [PDG2016-17]}) \end{array}$

Also applied to $\langle \bar{q}q \rangle$ at $N^3 LO$ (using spectral density of Dirac operator): $\langle \bar{q}q \rangle_{m_q=0}^{1/3} (2 \text{ GeV}) \simeq -(0.84 \pm 0.01) \Lambda_{\overline{\text{Ms}}}$ (JLK, A.Neveu, PRD 92 (2015)) Parameter free determination! (compares well with latest lattice result) Problems of thermal perturbative expansion (QCD, $g\phi^4$, ...)

known problem: poorly convergent and very scale-dependent (ordinary) perturbative expansions:

QCD (pure glue) pressure at successive (standard) perturbation orders shaded regions: scale-dependence for $\pi T < \mu < 4\pi T$ (illustration from Andersen, Strickland, Su '10)

2. (Variationally) Optimized Perturbation (OPT)

Trick (T = 0): add and subtract a mass, consider $m \delta$ as interaction:

$$\mathcal{L}(g,m)
ightarrow \mathcal{L}(\delta \, g, m(1-\delta))$$
 (e.g. in QCD $g \equiv 4\pi lpha_{\mathsf{S}})$

where $0 < \delta < 1$ interpolates between \mathcal{L}_{free} and massless \mathcal{L}_{int} ; $\rightarrow m$: arbitrary trial parameter

• Take any standard (renormalized) pert. series, expand in δ after: $m \rightarrow m (1 - \delta); \quad g \rightarrow \delta g$ then $\delta \rightarrow 1$ (to recover original massless theory):

BUT a dependence in *m* remains at any finite δ^k -order: fixed typically by stationarity prescription: optimization (OPT): $\frac{\partial}{\partial m}$ (physical quantity) = 0 for $m = \bar{m}_{opt}(\alpha_S) \neq 0$:

• T = 0: exhibits dimensional transmutation: $\bar{m}_{opt}(g) \sim \mu e^{-const./g}$

• $T \neq 0$ similar idea: "screened perturbation" (SPT), or *resummed* "hard thermal loop (HTLpt)" (QCD): expand around quasi-particle mass. Does this 'cheap trick' always work? and why?

Expected behaviour (ideally)

Not quite what happens, except in simple models: •Convergence of this procedure for $D = 1 \phi^4$ oscillator (cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping' Seznec, Zinn-Justin '79

•QFT multi-loop calculations (specially $T \neq 0$) (very) difficult: \rightarrow empirical convergence? not clear

•Main pb at higher order: OPT: $\partial_m(...) = 0$ has multi-solutions (some complex!), how to choose right one, if no nonperturbative "insight"??

3. RG compatible OPT (\equiv RGOPT)

Main additional ingredient (JLK, A. Neveu '10):

Consider a *physical* quantity (perturbatively RG invariant) e.g. in thermal context the pressure P(m, g, T)):

in addition to: $\frac{\partial}{\partial m} P^{(k)}(m, g, \delta = 1)|_{m \equiv \tilde{m}} \equiv 0$, (OPT) Require (δ -modified!) result at order δ^k to satisfy (perturbative) Renormalization Group (RG) equation:

$$\operatorname{RG}\left(P^{(k)}(m,g,\delta=1)\right)=0$$

with standard RG operator :

в

$$\mathsf{RG} \equiv \mu \frac{d}{d \, \mu} = \mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g} - \gamma_m(g) \, m \frac{\partial}{\partial m}$$
$$(g) \equiv -b_0 g^2 - b_1 g^3 + \cdots, \ \gamma_m(g) \equiv \gamma_0 g + \gamma_1 g^2 + \cdots$$
$$\Rightarrow \mathsf{Additional nontrivial constraint}$$

 \rightarrow If combined with OPT, RG Eq. reduces to massless form:

$$\left[\mu\frac{\partial}{\partial\mu}+\beta(g)\frac{\partial}{\partial g}\right]P^{(k)}(m,g,\delta=1)=0$$

Then using OPT AND RG completely fix $m \equiv \overline{m}$ and $g \equiv \overline{g}$.

But $\Lambda_{\overline{MS}}(g)$ satisfies by def.: $\left[\mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g}\right] \Lambda_{\overline{MS}} \equiv 0$ (consistently at a given order for $\beta(g)$). equivalent to:

$$\frac{\partial}{\partial m} \left(\frac{P^k(m, g, \delta = 1)}{\Lambda_{\overline{\text{MS}}}(g)} \right) = 0; \quad \frac{\partial}{\partial g} \left(\frac{P^k(m, g, \delta = 1)}{\Lambda_{\overline{\text{MS}}}(g)} \right) = 0 \text{ for } \bar{m}, \bar{g}$$

•Optimal $\bar{m} \sim \Lambda_{\overline{MS}}(g)$, but true physical result from $P(\bar{m}, \bar{g}, T)$

•At T = 0 reproduces at first order exact nonperturbative results in simpler models [e.g. Gross-Neveu model]

OPT + RG = RGOPT main features

•Usual OPT/Screened PT: embarrassing freedom in interpolation trick: why not $m \to m (1 - \delta)^a$? Most previous works (T = 0, Screened PT, HTLpt $T \neq 0$) do linear interpolation (a = 1) without deep justification but generally (we have shown) a = 1 spoils RG invariance!

•OPT gives multiple $\bar{m}(g, T)$ solutions at increasing δ^{k} -orders

→ Our approach restores RG, +requires optimal solution to match perturbation (i.e. Asymptotic Freedom for QCD (T = 0)): $\alpha_S \rightarrow 0 \ (\mu \rightarrow \infty)$: $\bar{g}(\mu) \sim \frac{1}{2b_0 \ln \frac{\mu}{m}} + \cdots$, $\bar{m} \sim \Lambda_{QCD}$

 \rightarrow At successive orders AF-compatible optimal solution (often unique) only appears for universal critical *a*:

 $m o m (1-\delta)^{\frac{\gamma_0}{b_0}}$ (in general $\frac{\gamma_0}{b_0} \neq 1$)

 \rightarrow RG consistency goes beyond simple "add and subtract" trick

and removes any spurious solutions incompatible with AF

•But does not always avoid complex OPT \bar{m} solutions (if these occur, possibly cured by renormalization scheme change)

Problems of thermal perturbation (QCD but generic)

Usual suspect: mix up of hard $p \sim T$ and soft $p \sim \alpha_s T$ modes.

Thermal 'Debye' screening mass $m_D^2 \sim \alpha_S T^2$ gives IR cutoff, BUT \Rightarrow perturbative expansion in $\sqrt{\alpha_S}$ in QCD \rightarrow often advocated reason for slower convergence

Yet many interesting QGP physics features happen at not that large coupling $\alpha_{\rm S}(\sim 2\pi T_c) \sim .5$, $(\alpha_{\rm S}(\sim 2\pi T_c) \sim 0.3$ for pure glue)

Many efforts to improve this (review e.g. Blaizot, Iancu, Rebhan '03):

Screened PT (SPT) (Karsch et al '97) \sim Hard Thermal Loop (HTLpt) resummation (Andersen, Braaten, Strickland '99); Functional RG, 2PI formalism (Blaizot, Iancu, Rebhan '01; Berges, Borsanyi, Reinosa, Serreau '05)

Our RGOPT($T \neq 0$) essentially treats thermal mass 'RG consistently': \rightarrow UV divergences induce mass anomalous dimension.

(NB some qualitative connections with recently advocated "massive scheme" approach (Blaizot, Wschebor '14))

RGOPT ($T \neq 0$ generic example): ϕ^4 (JLK, M.B Pinto, PRL116 '16) •Start from usual 2-loop PT free energy $m \neq 0$, $T \neq 0$ ($\overline{\text{MS}}$ scheme):

$$(4\pi)^2 \mathcal{F}_0 = \frac{\mathcal{E}_0}{8} - \frac{m^4}{8} (3 + 4 \ln \frac{\mu}{m}) - \frac{T^4}{2} J_0(\frac{m}{T}) + \mathcal{O}(g) (2\text{-loop})$$
$$J_0(\frac{m}{T}) \sim \int_0^\infty dp \frac{1}{\sqrt{p^2 + m^2}} \frac{1}{e^{\sqrt{p^2 + m^2} - 1}}$$

• $\mathcal{F}(T = 0)$ has LO ln μ dependence: compensated by \mathcal{E}_0 finite T-independent 'vacuum energy' subtraction (well-known at T = 0): $\mathcal{E}_0(g, m) = -m^4 \left(\frac{s_0}{g} + s_1 + s_2g + \cdots\right)$ determined such that $\mu \frac{d}{d\mu} \mathcal{E}_0$ cancels the ln μ dependence:

$$s_0 = \frac{1}{2(b_0 - 4\gamma_0)} = 8\pi^2; \quad s_1 = \frac{(b_1 - 4\gamma_1)}{8\gamma_0 (b_0 - 4\gamma_0)} = -1, \dots;$$

•Missed by SPT, HTLpt (QCD): explains the large scale dependence observed at higher order in those approaches! (more on this below)

•Next: expand in δ , $\delta \to 1$ after $m^2 \to m^2(1-\delta)^a$; $g \to \delta g$ **RG** only consistent for $a = 2\gamma_0/b_0$ (= 1/3 for ϕ^4 while a = 1 in SPT) NB: 1/g in \mathcal{E}_0 automatically cancels in optimized energy $\mathcal{F}(\bar{m})$.

•All together lead to a much better RGOPT residual scale dependence (factor \sim 3 better at 2-loops wrt PT/SPT, much better at 3-loops)

4. Closer to QCD: 2D O(N) nonlinear σ model (NLSM)

•Shares properties with QCD (asymptotic freedom, mass gap). •At $T \neq 0$ the pressure, trace anomaly, etc have QCD-like shapes

•Nonperturbative $T \neq 0$ results available for comparison: (lattice (N = 3)[Giacosa et al '12], 1/N-expansion [Andersen et al '04])

$$\mathcal{L}_0 = rac{1}{2} (\partial \pi_i)^2 + rac{g(\pi_i \partial \pi_i)^2}{2(1 - g \pi_i^2)} - rac{m^2}{g} \left(1 - g \pi_i^2
ight)^{1/2}$$

Two-loop pressure from:

K

•Advantage w.r.t. QCD: exact *T*-dependence at 2-loops:

$$P_{\text{pert.2loop}} = -\frac{(N-1)}{2} \left[I_0(m,T) + \frac{(N-3)}{4} m^2 g I_1(m,T)^2 \right] + \mathcal{E}_0,$$
$$I_0(m,T) = \frac{1}{2\pi} \left(m^2 (1 - \ln \frac{m}{\mu}) + 4T^2 \mathcal{K}_0(\frac{m}{T}) \right)$$
$$I_0(x) = \int_0^\infty dz \ln \left(1 - e^{-\sqrt{z^2 + x^2}} \right), \quad I_1(m,T) = \partial I_0(m,T) / \partial m^2$$

One-loop RGOPT for NLSM pressure

Exact T-dependent mass gap $\bar{m}(g, T)$ from $\partial_m P(m) = 0$:

$$\ln \frac{\bar{m}}{\mu} = -\frac{1}{b_0 g(\mu)} - 2 \kappa_1(\frac{\bar{m}}{T}), \quad (b_0^{\text{nlsm}} = \frac{N-2}{2\pi})$$

•Exhibits exact (one-loop) scale invariance: $T = 0: \ \bar{m}(T = 0) = \mu e^{-\frac{1}{b_0 g(\mu)}} = \Lambda_{\overline{MS}}^{1-\text{loop}}$ $T \gg m: \qquad \frac{\bar{m}(T)}{T} = \frac{\pi b_0 g}{1 - b_0 g L_T}, \quad (L_T \equiv \ln \frac{\mu e^{\gamma \epsilon}}{4\pi T})$ $P_{1L,\text{exact}}^{\text{RGOPT}} = -\frac{(N-1)}{\pi} T^2 \left[K_0(\bar{x}) + \frac{\bar{x}^2}{8} (1 + 4K_1(\bar{x})) \right], \quad (\bar{x} \equiv \bar{m}/T)$ $P_{1L}^{\text{RGOPT}}(T \gg m) \simeq 1 - \frac{3}{2} b_0 g(\frac{4\pi T}{e^{\gamma \epsilon}})$

with one-loop running $g^{-1}(\mu) = g^{-1}(M_0) + b_0 \ln \frac{\mu}{M_0}$

 \rightarrow nice RGOPT property: running with T emerges consistently (for standard perturbation, SPT, HTLpt, $\mu \sim 2\pi T$ 'chosen')

NLSM pressure [G. Ferrari, JLK, M.B. Pinto, R.0 Ramos, 1709.03457, PRD]

 $P/P_{SB}(N = 4, g(M_0) = 1)$ vs standard perturbation (PT), large N (LN), and SPT \equiv ignoring RG-induced subtraction; $m^2 \rightarrow m^2(1 - \delta)$:

(shaded range: scale-dependence $\pi T < \mu \equiv M < 4\pi T$) \rightarrow At two-loops a moderate scale-dependence reappears, although less pronounced than 2-loop standard PT, SPT.

Higher order: RGOPT at $\mathcal{O}(g^k) \to \overline{m}(\mu)$ appears at $\mathcal{O}(g^{k+1})$ for any \overline{m} , but $\overline{m} \sim gT \to P \simeq \overline{m}^2/g + \cdots$ has leading μ -dependence at $\mathcal{O}(g^{k+2})$.

NLSM interaction measure (trace anomaly) (normalized) $\Delta_{\text{NLSM}} \equiv (\mathcal{E} - P)/T^2 \equiv T \partial_T (\frac{P}{T^2})$

 $N=4, g(M_0)=1$ (shaded regions: scale-dependence $\pi T < \mu = M < 4\pi T$)

•2-loop Δ_{SPT} : small, monotonic behaviour + sizeable scale dependence.

•RGOPT shape 'qualitatively' comparable to QCD, showing a peak: only obtained from interplay between $T \neq 0$ and T = 0 nonperturbative mass gap.

(But no phase transition in 2D NLSM (Mermin-Wagner-Coleman theorem): just reflects broken conformal invariance (mass gap)).

5. Thermal (pure glue) QCD: hard thermal loop (HTL) QCD(glue) adaption of OPT \rightarrow HTLpt [Andersen, Braaten, Strickland '99]: same trick now operates on a gluon mass term [Braaten-Pisarski '90]:

$$\mathcal{L}_{QCD}(\text{gauge}) - \frac{m^2}{2} \operatorname{Tr}\left[G_{\mu\alpha} \langle \frac{y^{\alpha} y^{\beta}}{(y.D)^2} \rangle_y G_{\beta}^{\mu}\right], \quad D^{\mu} = \partial^{\mu} - ig A^{\mu}, \quad y^{\mu} = (1, \mathbf{\hat{y}})$$

(effective, explicitly gauge-invariant but nonlocal Lagrangian):

originally describes screening mass $m^2 \sim \alpha_S T^2$ + other HTL contributions [dressing gluon vertices and propagators] But here *m* is arbitrary: determined by optimization in RGOPT.

$$P_{1-\text{loop}}^{HTL,\text{exact}} = (N_c^2 - 1) \times \\ \left\{ \frac{m^4}{64\pi^2} (C_{11} - \ln\frac{m}{\mu}) + \int_0^\infty \frac{d\omega}{(2\pi^3} \frac{1}{e^{\frac{\omega}{T}} - 1} \int_\omega^\infty dk \, k^2 (2\phi_T - \phi_L) \right. \\ \left. - \frac{T}{2\pi^2} \int_0^\infty dk \, k^2 \left[2\ln(1 - e^{-\frac{\omega_T}{T}}) + \ln(1 - e^{-\frac{\omega_L}{T}}) \right] - \frac{\pi^2 T^4}{90} \right\}$$

where $k^2 + m^2 \left[1 - \frac{\omega_L}{2k} \ln(\frac{\omega_L + k}{\omega_L - k}) \right] = 0$; $f(\omega_T) = 0$; ϕ_L, ϕ_T : complicated. •Exact 2-loop? daunting task...

NB possibly simpler effective gluon mass models/prescriptions exist... [e.g. Reinosa, Serreau, Tissier, Weschbor '15] ...But HTLpt advantage: calculated up to 3-loops α_s^2 (NNLO)

at two-loops:

[Andersen et al '99-'15] BUT only as m/T expansions Drawback: HTLpt \equiv high-T approximation (by definition)

$$P_{1-\text{loop},\overline{\text{MS}}}^{\text{HTLpt}} = P_{\text{ideal}} \times \left[1 - \frac{15}{2}\hat{m}^2 + 30\hat{m}^3 + \frac{45}{4}\hat{m}^4(\ln\frac{\mu}{4\pi T} + \gamma_E - \frac{7}{2} + \frac{\pi^2}{3})\right]$$
$$\hat{m} \equiv \frac{m}{2\pi T} \qquad P_{\text{ideal}} = (N_c^2 - 1)\pi^2 \frac{T^4}{45}$$

Standard HTLpt results

Pure gauge at NNLO (3-loops) [Andersen, Strickland, Su '10]:

Reasonable agreement with lattice results (down to $T \sim 2 - 3T_c$) only emerges at NNLO (3-loop) for low scale $\mu \sim \pi T - 2\pi T$.

NB even better agreement with lattice (for central scale choice) when including quarks.

Main HTLpt issue: drastically increasing scale dependence at NNLO order Moreover HTLpt mass prescription: $\bar{m} \rightarrow m_D^{pert}(\alpha_S)$ [rather than optimizing $\partial_m P(m)$, to avoid complex optimized solutions]: but OPT generally captures "more nonperturbative" information.

RGOPT adaptation of HTLpt = RGOHTL

Main changes:

• Crucial RG invariance-restoring subtractions in Free energy (pressure): $P_{HTLpt} \rightarrow P_{HTLpt} - m^4 (\frac{s_0}{\alpha_s} + s_1 + \cdots)$: reflects its anomalous dimension. • Interpolate with $m^2 (1 - \delta)^{\frac{\gamma_0}{b_0}}$, where gluon mass anomalous dimension defined from (available) counterterm.

 $\bullet Scale$ dependence improves at higher orders since RG invariance maintained at all stages:

-from subtraction terms (prior to interpolation) -from interpolation keeping RG invariance.

•SPT,HTLpt,... do not fulfill this: yet harmless (scale dependence moderate) up to 2-loops, because the (leading order) RG-unmatched term $\mathcal{O}(m^4 \ln \mu)$ is perturbatively '3-loop' $\mathcal{O}(\alpha_5^2)$ from $m^2 \sim \alpha_5 T^2$.

 \rightarrow But explains why HTLpt scale dependence dramatically resurfaces at 3-loops!

Preliminary RGO(HTL) results (1- and 2-loop, pure glue)

One-loop: exactly scale-invariant pressure (like ϕ^4 and NLSM): $\frac{P(T \gg m)}{P_{ideal}} = 1 - \frac{15}{4}\hat{m}^2 + \frac{15}{2}\hat{m}^3 + \mathcal{O}(\hat{m}^6)$ $\hat{m}(OPT) = G\left(1 + \sqrt{1 - \frac{1}{3G}}\right), G \text{ 'coupling'} = (\ln \frac{4\pi T}{\Lambda_{MS}} + const.)^{-1}$

•Once accepting arbitrary *m* in \mathcal{L}_{HTL} , like in NLSM RGOPT includes nontrivial $P(T = 0) \simeq -const \Lambda_{\overline{MS}}^4$

•Pb however: this 'exact' OPT \hat{m} becomes complex for small enough G: essentially an artefact of \overline{ms} -scheme +high-T approx (gives small Im[P]/Re[P])

• Our attitude: one-loop approximation is not final stage: Pragmatic: at one-loop we thus take Re[P(g)] in relevant T/T_c range.

• Yet consistent with Stefan-Boltzmann limit: $P(g
ightarrow 0)
ightarrow P_{ideal}$

Alternatively evade this pb if adopting HTLpt prescription: $m \rightarrow m_{Debye}^{PT}$ (consistent with standard PT: $P/P_{SB} \ 1 - 15/4(\alpha_S/\pi) + \cdots$) but loose exact 1-loop scale invariance

• 2-loops: RGOPT gives a real unique solution.

RGOPT vs HTLpt: one-loop pressure

NB: bending of P_{RGOPT} for small T essentially due to $-P_{RGOPT}(T=0) \neq 0$.

2-loop RGOHTL: need new calculations...

Crucial RG-consistent 2-loop subtractions determined by $\alpha_S m^4 \ln \mu$ term (non-logarithmic terms relevant too).

But these are $\mathcal{O}(\alpha_S T^4 \frac{m^4}{T^4})$ of 2-loop HTL contributions, not available in literature (to best of our knowledge):

give \sim 30 independent integrals, half being (very) complicated, e.g.

$$\oint_{P,Q} \frac{T_P T_Q (p+q)^2}{p^2 P^2 q^2 Q^2 (P+Q)^2}; \quad T_P \equiv \int_0^1 dc \frac{P_0^2}{P_0^2 + c^2 p^2}$$

 $(P^2 = P_0^2 + p^2)$, $c \equiv HTL$ angle (averaging).

Present status: work under good progress but need to be checked, specially the difficult non-logarithmic parts (i.e. finite parts in dim.reg.)

NB high- $T \leftrightarrow T = 0$ correspondance: $C_{20} \ln^2 \frac{\mu}{T} + C_{21} \ln \frac{\mu}{T} + C_{22}^{(T \gg m)} \leftrightarrow C_{20} \ln^2 \frac{\mu}{m} + C_{21} \ln \frac{\mu}{m} + C_{22}^{(T=0)}$

•However Leading Log (LL) C_{20} determined straightforwardly from RG from one-loop.

•Similarly the 2-loop (perturbative) scale invariance is guaranteed by $s_1 = f[C_{10}]$ independently of precise C_{10} value!

(Preliminary!) RGO(HTL) results (2-loop, pure glue) 2-loop illustrated here for simplest LL approx.: $C_{21} = C_{22} = 0$ but RG-subtraction $s_1(C_{21} = 0)$ consistent Moderate scale-dependence reappears at 2-loops but sensible improvement wrt HTLpt

[JLK, M.B Pinto, to appear soon]

NB scale dependence should further improve at 3-loops, generically:

RGOPT at $\mathcal{O}(\alpha_{S}^{k}) \to \bar{m}(\mu)$ appears at $\mathcal{O}(\alpha_{S}^{k+1})$ for any \bar{m} , but $\bar{m}^{2} \sim \alpha_{S} T^{2} \to P \simeq \bar{m}_{G}^{4}/\alpha_{S} + \cdots$: leading μ -dependence at $\mathcal{O}(\alpha_{S}^{k+2})$.

• Warning: low $T \sim T_c$ genuine P(T) shape sensitive to true C_{21} , C_{22} (crucially needed before possibly comparing RGOPT vs lattice).

(Very) preliminary RGO(HTL) approximate 3-loop results

3-loops: exact $m^4 \alpha_5^2$ terms need extra complicated calculations, but $P_{RGOHTL}^{3l} \sim P_{RGOHTL}^{2l} + m^4 \alpha_5^2 (C_{30} \ln^3 \frac{\mu}{2\pi T} + C_{31} \ln^2 \frac{\mu}{2\pi T} + C_{32} \ln \frac{\mu}{2\pi T} + C_{33})$:

leading logarithms (LL) and next-to-leading (NLL) C_{30} , C_{31} fully determined from lower orders from RG invariance

Within this LL, NLL approximation and in $T/T_c\gtrsim 2$ range where it is more trustable:

We assume/expect true coefficients will not spoil this improved scale dependence.

Summary and Outlook

•RGOPT includes 2 major differences w.r.t. previous OPT/SPT/HTLpt... approaches:

1) OPT +/or RG optimizations fix optimal \bar{m} and possibly $\bar{g} = 4\pi\bar{\alpha}_S$

2) Maintaining RG invariance uniquely fixes the basic interpolation $m \to m(1-\delta)^{\gamma_0/b_0}$: discards spurious solutions and accelerates convergence.

• At $T \neq 0$, exhibits improved stability + drastically improved scale dependence (with respect to standard PT, but also w.r.t. HTLpt)

•Paves the way to extend such RG-compatible methods to full QCD thermodynamics (work in progress, starting with $T \neq 0$ pure gluodynamics) specially for exploring also finite density