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Context: QCD phase diagram/ Quark Gluon Plasma

Complete QCD phase diagram far from being con�rmed:

T ̸= 0, µ = 0 well-established from lattice: no sharp phase transition,
continuous crossover at Tc ≃ 154± 9 MeV

Goal: more analytical approximations, ultimately in regions not much
accessible on the lattice: large density (chemical potential) due to the
famous �sign problem�

Tool: unconventional RG resummation of perturbative expansions

Very general: relevant both at T = 0 or T ̸= 0 (and �nite density too)
→ in particular addresses well-known problems of unstable +badly
scale-dependent T ̸= 0 perturbative expansions
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Introduction/Motivations

Tool: unconventional 'RG-optimized' (RGOPT) resummation of
perturbative expansions
Illustrate here T ̸= 0 nonlinear σ-model, + QCD (pure glue)

NB some previous results with our approach (T = 0):
estimate of the chiral symmetry breaking order parameter
Fπ(mu,d,s = 0)/ΛQCD

MS
: Fπ exp input → Λ

nf =3

MS
→ αMS

S (µ = mZ ).

N3LO: F
mq=0

π /Λ
nf =3

MS
≃ 0.25± .01 → αS(mZ ) ≃ 0.1174± .001± .001

(JLK, A.Neveu, PRD88 (2013))

(compares well with αS lattice and world average values [PDG2016-17])

Also applied to ⟨q̄q⟩ at N3LO (using spectral density of Dirac operator):

⟨q̄q⟩1/3mq=0
(2GeV) ≃ −(0.84± 0.01)ΛMS (JLK, A.Neveu, PRD 92 (2015))

Parameter free determination! (compares well with latest lattice result)



Problems of thermal perturbative expansion (QCD, gϕ4, ...)

known problem: poorly convergent and very scale-dependent (ordinary)
perturbative expansions:

QCD (pure glue) pressure at successive (standard) perturbation orders
shaded regions: scale-dependence for πT < µ < 4πT
(illustration from Andersen, Strickland, Su '10)



2. (Variationally) Optimized Perturbation (OPT)

Trick (T = 0): add and subtract a mass, consider m δ as interaction:

L(g ,m) → L(δ g ,m(1− δ)) (e.g. in QCD g ≡ 4παS)

where 0 < δ < 1 interpolates between Lfree and massless Lint ;
→ m: arbitrary trial parameter

• Take any standard (renormalized) pert. series, expand in δ after:

m → m (1− δ); g → δ g
then δ → 1 (to recover original massless theory):

BUT a dependence in m remains at any �nite δk -order:
�xed typically by stationarity prescription: optimization (OPT):
∂
∂m (physical quantity) = 0 for m = m̄opt(αS) ̸= 0:

•T = 0: exhibits dimensional transmutation: m̄opt(g) ∼ µ e−const./g

•T ̸= 0 similar idea: �screened perturbation� (SPT), or resummed �hard
thermal loop (HTLpt)� (QCD): expand around quasi-particle mass.
Does this 'cheap trick' always work? and why?



Expected behaviour (ideally)

Physical quantity

OPT 1st order

2d order

3rd order etc...

m0

Exact result

(non−perturbative)

O( Λ )

Not quite what happens, except in simple models:
•Convergence of this procedure for D = 1 ϕ4 oscillator
(cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping' Seznec, Zinn-Justin '79

•QFT multi-loop calculations (specially T ̸= 0) (very) di�cult:
→ empirical convergence? not clear

•Main pb at higher order: OPT: ∂m(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative �insight�??



3. RG compatible OPT (≡ RGOPT)

Main additional ingredient (JLK, A. Neveu '10):

Consider a physical quantity (perturbatively RG invariant)
e.g. in thermal context the pressure P(m, g ,T )):

in addition to: ∂
∂mP

(k)(m, g , δ = 1)|m≡m̃ ≡ 0, (OPT)
Require (δ-modi�ed!) result at order δk to satisfy (perturbative)
Renormalization Group (RG) equation:

RG

(
P(k)(m, g , δ = 1)

)
= 0

with standard RG operator :

RG ≡ µ
d

d µ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

β(g) ≡ −b0g2 − b1g
3 + · · · , γm(g) ≡ γ0g + γ1g

2 + · · ·

→ Additional nontrivial constraint



→ If combined with OPT, RG Eq. reduces to massless form:[
µ

∂

∂µ
+ β(g)

∂

∂g

]
P(k)(m, g , δ = 1) = 0

Then using OPT AND RG completely �x m ≡ m̄ and g ≡ ḡ .

But ΛMS(g) satis�es by def.:
[µ ∂

∂µ + β(g) ∂
∂g ] ΛMS ≡ 0 (consistently at a given order for β(g)).

equivalent to:

∂

∂m

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 ;

∂

∂ g

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 for m̄, ḡ

•Optimal m̄ ∼ ΛMS(g), but true physical result from P(m̄, ḡ ,T )

•At T = 0 reproduces at �rst order exact nonperturbative results in
simpler models [e.g. Gross-Neveu model]



OPT + RG = RGOPT main features
•Usual OPT/Screened PT: embarrassing freedom in interpolation trick:
why not m → m (1− δ)a ?
Most previous works (T = 0, Screened PT, HTLpt T ̸= 0) do
linear interpolation (a = 1) without deep justi�cation
but generally (we have shown) a = 1 spoils RG invariance!

•OPT gives multiple m̄(g ,T ) solutions at increasing δk -orders

→ Our approach restores RG, +requires optimal solution to match
perturbation (i.e. Asymptotic Freedom for QCD (T = 0)):
αS → 0 (µ → ∞): ḡ(µ) ∼ 1

2b0 ln
µ
m̄
+ · · · , m̄ ∼ ΛQCD

→ At successive orders AF-compatible optimal solution (often unique)
only appears for universal critical a:

m → m (1− δ)
γ0
b0 (in general γ0

b0
̸= 1)

→ RG consistency goes beyond simple �add and subtract� trick

and removes any spurious solutions incompatible with AF

•But does not always avoid complex OPT m̄ solutions
(if these occur, possibly cured by renormalization scheme change)



Problems of thermal perturbation (QCD but generic)

Usual suspect: mix up of hard p ∼ T and soft p ∼ αST modes.

Thermal 'Debye' screening mass m2

D ∼ αST
2 gives IR cuto�,

BUT ⇒ perturbative expansion in
√
αS in QCD

→ often advocated reason for slower convergence

Yet many interesting QGP physics features happen at not that large
coupling αS(∼ 2πTc) ∼ .5, (αS(∼ 2πTc) ∼ 0.3 for pure glue)

Many e�orts to improve this (review e.g. Blaizot, Iancu, Rebhan '03):

Screened PT (SPT) (Karsch et al '97) ∼ Hard Thermal Loop (HTLpt)

resummation (Andersen, Braaten, Strickland '99); Functional RG, 2PI

formalism (Blaizot, Iancu, Rebhan '01; Berges, Borsanyi, Reinosa, Serreau '05)

Our RGOPT(T ̸= 0) essentially treats thermal mass 'RG consistently':
→ UV divergences induce mass anomalous dimension.

(NB some qualitative connections with recently advocated �massive scheme�

approach (Blaizot, Wschebor '14))



RGOPT(T ̸= 0 generic example): ϕ4
(JLK, M.B Pinto, PRL116 '16)

•Start from usual 2-loop PT free energy m ̸= 0, T ̸= 0 (MS scheme):

(4π)2F0 = E0 − m4

8
(3+ 4 ln µ

m
)− T4

2
J0(

m
T
) +O(g)(2-loop)

J0(
m
T
) ∼

∫∞
0

dp 1√
p2+m2

1

e
√
p2+m2−1

•F(T = 0) has LO lnµ dependence: compensated by E0 �nite

T-independent 'vacuum energy' subtraction (well-known at T = 0):

E0(g ,m) = −m4

(
s0
g
+ s1 + s2g + · · ·

)
determined such that µ d

d µE0 cancels the lnµ dependence:

s0 =
1

2(b0−4γ0)
= 8π2; s1 =

(b1−4γ1)
8γ0 (b0−4γ0)

= −1, ...:

•Missed by SPT, HTLpt (QCD): explains the large scale dependence
observed at higher order in those approaches! (more on this below)

•Next: expand in δ, δ → 1 after m2 → m2(1− δ)a ; g → δg
RG only consistent for a = 2γ0/b0 (= 1/3 for ϕ4 while a = 1 in SPT)
NB: 1/g in E0 automatically cancels in optimized energy F(m̄).

•All together lead to a much better RGOPT residual scale dependence
(factor ∼ 3 better at 2-loops wrt PT/SPT, much better at 3-loops)



4. Closer to QCD: 2D O(N) nonlinear σ model (NLSM)
•Shares properties with QCD (asymptotic freedom, mass gap).
•At T ̸= 0 the pressure, trace anomaly, etc have QCD-like shapes

•Nonperturbative T ̸= 0 results available for comparison:
(lattice (N = 3)[Giacosa et al '12], 1/N-expansion [Andersen et al '04])

L0 =
1

2
(∂πi )

2 +
g(πi∂πi )

2

2(1− gπ2

i )
− m2

g

(
1− gπ2

i

)1/2
Two-loop pressure from:

•Advantage w.r.t. QCD: exact T -dependence at 2-loops:

Ppert.2loop = − (N − 1)

2

[
I0(m,T ) +

(N − 3)

4
m2gI1(m,T )2

]
+E0,

I0(m,T ) =
1

2π

(
m2(1− ln

m

µ
) + 4T 2K0(

m

T
)

)
K0(x) =

∫∞
0

dz ln
(
1− e−

√
z2+x2

)
, I1(m,T ) = ∂I0(m,T )/∂m2



One-loop RGOPT for NLSM pressure

Exact T -dependent mass gap m̄(g ,T ) from ∂mP(m) = 0:

ln
m̄

µ
= − 1

b0 g(µ)
− 2K1(

m̄

T
), (bnlsm0 =

N − 2

2π
)

•Exhibits exact (one-loop) scale invariance:

T = 0: m̄(T = 0) = µe
− 1

b0 g(µ) = Λ1−loop
MS

T ≫ m: m̄(T )

T
=

π b0 g

1− b0 g LT
, (LT ≡ ln

µ eγE

4πT
)

PRGOPT
1L,exact = − (N − 1)

π
T 2

[
K0(x̄) +

x̄2

8
(1+ 4K1(x̄) )

]
, (x̄ ≡ m̄/T )

PRGOPT
1L (T ≫ m) ≃ 1− 3

2
b0g(

4πT

eγE
)

with one-loop running g−1(µ) = g−1(M0) + b0 ln
µ
M0

)

→ nice RGOPT property: running with T emerges consistently
(for standard perturbation, SPT, HTLpt, µ ∼ 2πT 'chosen')



NLSM pressure [G. Ferrari, JLK, M.B. Pinto, R.0 Ramos, 1709.03457,PRD]

P/PSB(N = 4, g(M0) = 1) vs standard perturbation (PT), large N (LN),
and SPT ≡ ignoring RG-induced subtraction; m2 → m2(1− δ):
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(shaded range: scale-dependence πT < µ ≡ M < 4πT )
→ At two-loops a moderate scale-dependence reappears, although less
pronounced than 2-loop standard PT, SPT.

Higher order: RGOPT at O(gk) → m̄(µ) appears at O(gk+1) for any m̄,
but m̄ ∼ gT → P ≃ m̄2/g + · · · has leading µ-dependence at O(gk+2).



NLSM interaction measure (trace anomaly)

(normalized) ∆NLSM ≡ (E − P)/T 2 ≡ T∂T (
P
T2 )
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N = 4, g(M0) = 1 (shaded regions: scale-dependence πT < µ = M < 4πT )

•2-loop ∆SPT : small, monotonic behaviour + sizeable scale dependence.

•RGOPT shape 'qualitatively' comparable to QCD, showing a peak:
only obtained from interplay between T ̸= 0 and T = 0 nonperturbative
mass gap.
(But no phase transition in 2D NLSM (Mermin-Wagner-Coleman
theorem): just re�ects broken conformal invariance (mass gap)).



5. Thermal (pure glue) QCD: hard thermal loop (HTL)
QCD(glue) adaption of OPT → HTLpt [Andersen, Braaten, Strickland '99]:

same trick now operates on a gluon mass term [Braaten-Pisarski '90]:

LQCD(gauge)−
m2

2
Tr

[
Gµα⟨

yαyβ

(y .D)2
⟩yGµ

β

]
, Dµ = ∂µ−ig Aµ, yµ = (1, ŷ)

(e�ective, explicitly gauge-invariant but nonlocal Lagrangian):

originally describes screening mass m2 ∼ αST
2 + other HTL

contributions [dressing gluon vertices and propagators]
But here m is arbitrary: determined by optimization in RGOPT.

P
HTL,exact

1-loop
= (N2

c − 1)×{
m4

64π2
(C11 − ln

m

µ
) +

∫ ∞

0

dω

(2π3

1

e
ω
T − 1

∫ ∞

ω

dk k
2(2ϕT − ϕL)

− T

2π2

∫ ∞

0

dk k
2

[
2 ln(1− e

−ωT
T ) + ln(1− e

−ωL
T )

]
− π2T 4

90

}
where k2 +m2

[
1− ωL

2k
ln(ωL+kωL−k

)
]
= 0; f (ωT ) = 0; ϕL, ϕT : complicated.

•Exact 2-loop? daunting task...

NB possibly simpler e�ective gluon mass models/prescriptions exist...
[e.g. Reinosa, Serreau, Tissier, Weschbor '15]



...But HTLpt advantage: calculated up to 3-loops α2

S (NNLO)

at two-loops:

[Andersen et al '99-'15] BUT only as m/T expansions
Drawback: HTLpt ≡ high-T approximation (by de�nition)

P
HTLpt

1-loop,MS

= Pideal ×[
1− 15

2
m̂2 + 30m̂3 +

45

4
m̂4(ln

µ

4πT
+ γE − 7

2
+

π2

3
)

]
m̂ ≡ m

2πT Pideal = (N2
c − 1)π2 T

4

45



Standard HTLpt results
Pure gauge at NNLO (3-loops) [Andersen, Strickland, Su '10]:

Reasonable agreement with lattice results (down to T ∼ 2− 3Tc) only
emerges at NNLO (3-loop) for low scale µ ∼ πT − 2πT .

NB even better agreement with lattice (for central scale choice) when
including quarks.

Main HTLpt issue: drastically increasing scale dependence at NNLO order
Moreover HTLpt mass prescription: m̄ → m

pert
D (αS) [rather than

optimizing ∂mP(m), to avoid complex optimized solutions]:
but OPT generally captures �more nonperturbative� information.



RGOPT adaptation of HTLpt =RGOHTL

Main changes:
• Crucial RG invariance-restoring subtractions in Free energy (pressure):
PHTLpt → PHTLpt −m4( s0

αS
+ s1 + · · · ): re�ects its anomalous dimension.

• Interpolate with m2(1− δ)
γ0
b0 , where gluon mass anomalous dimension

de�ned from (available) counterterm.

•Scale dependence improves at higher orders since RG invariance
maintained at all stages:
-from subtraction terms (prior to interpolation)
-from interpolation keeping RG invariance.

•SPT,HTLpt,... do not ful�ll this:
yet harmless (scale dependence moderate) up to 2-loops,
because the (leading order) RG-unmatched term O(m4 lnµ) is
perturbatively '3-loop' O(α2

S) from m2 ∼ αS T
2.

→ But explains why HTLpt scale dependence dramatically resurfaces at
3-loops!



Preliminary RGO(HTL) results (1- and 2-loop, pure glue)

One-loop: exactly scale-invariant pressure (like ϕ4 and NLSM):
P(T≫m)
Pideal

= 1− 15

4
m̂2 + 15

2
m̂3 +O(m̂6)

m̂(OPT ) = G (1+
√
1− 1

3G
), G 'coupling' = (ln 4πT

Λ
MS

+ const.)−1

•Once accepting arbitrary m in LHTL, like in NLSM RGOPT includes
nontrivial P(T = 0) ≃ −const Λ4

MS

•Pb however: this 'exact' OPT m̂ becomes complex for small enough G :
essentially an artefact of MS-scheme +high-T approx
(gives small Im[P]/Re[P])

• Our attitude: one-loop approximation is not �nal stage:
Pragmatic: at one-loop we thus take Re[P(g)] in relevant T/Tc range.

• Yet consistent with Stefan-Boltzmann limit: P(g → 0) → Pideal

Alternatively evade this pb if adopting HTLpt prescription: m → mPT
Debye

(consistent with standard PT: P/PSB 1− 15/4(αS/π) + · · · )
but loose exact 1-loop scale invariance
• 2-loops: RGOPT gives a real unique solution.



RGOPT vs HTLpt: one-loop pressure
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NB: bending of PRGOPT for small T essentially due to
−PRGOPT (T = 0) ̸= 0.



2-loop RGOHTL: need new calculations...
Crucial RG-consistent 2-loop subtractions determined by αSm

4 lnµ term
(non-logarithmic terms relevant too).

But these are O(αST
4m

4

T4 ) of 2-loop HTL contributions, not available in
literature (to best of our knowledge):
give ∼ 30 independent integrals, half being (very) complicated, e.g.

∑∫
P,Q

TPTQ(p + q)2

p2P2q2Q2(P + Q)2
; TP ≡

∫ 1

0

dc
P2
0

P2
0
+ c2p2

(P2 = P2
0
+ p2), c ≡HTL angle (averaging).

Present status: work under good progress but need to be checked,
specially the di�cult non-logarithmic parts (i.e. �nite parts in dim.reg.)

NB high-T ↔ T = 0 correspondance:

C20 ln
2 µ
T
+ C21 ln

µ
T
+ C

(T≫m)
22

↔ C20 ln
2 µ
m
+ C21 ln

µ
m
+ C

(T=0)
22

•However Leading Log (LL) C20 determined straightforwardly from RG
from one-loop.

•Similarly the 2-loop (perturbative) scale invariance is guaranteed by
s1 = f [C10] independently of precise C10 value!



(Preliminary!) RGO(HTL) results (2-loop, pure glue)
2-loop illustrated here for simplest LL approx.: C21 = C22 = 0
but RG-subtraction s1(C21 = 0) consistent

Moderate scale-dependence reappears at 2-loops
but sensible improvement wrt HTLpt
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[JLK, M.B Pinto, to appear soon]

NB scale dependence should further improve at 3-loops, generically:

RGOPT at O(αkS) → m̄(µ) appears at O(αk+1

S ) for any m̄, but

m̄2 ∼ αST
2 → P ≃ m̄4

G/αS + · · · : leading µ-dependence at O(αk+2

S ).

• Warning: low T ∼ Tc genuine P(T ) shape sensitive to true C21,C22

(crucially needed before possibly comparing RGOPT vs lattice).



(Very) preliminary RGO(HTL) approximate 3-loop results

3-loops: exact m4α2

S terms need extra complicated calculations, but
P3l

RGOHTL ∼ P2l

RGOHTL +m4α2

S(C30 ln
3 µ
2πT

+ C31 ln
2 µ
2πT

+ C32 ln
µ

2πT
+ C33):

leading logarithms (LL) and next-to-leading (NLL) C30,C31 fully
determined from lower orders from RG invariance

Within this LL, NLL approximation and in T/Tc >∼ 2 range where it is
more trustable:
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We assume/expect true coe�cients will not spoil this improved scale
dependence.



Summary and Outlook

•RGOPT includes 2 major di�erences w.r.t. previous
OPT/SPT/HTLpt... approaches:

1) OPT +/or RG optimizations �x optimal m̄ and possibly ḡ = 4πᾱS

2) Maintaining RG invariance uniquely �xes the basic interpolation
m → m(1− δ)γ0/b0 : discards spurious solutions and accelerates
convergence.

• At T ̸= 0, exhibits improved stability + drastically improved scale
dependence (with respect to standard PT, but also w.r.t. HTLpt)

•Paves the way to extend such RG-compatible methods to full QCD
thermodynamics (work in progress, starting with T ̸= 0 pure
gluodynamics) specially for exploring also �nite density


