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1905: Albert Einstein publishes the Special Theory of Relativity. Proposes the
Principle of Relativity and Principle of Invariant Light Speed.

1915: Albert Einstein finishes the General Theory of Relativity

1916: Based on his General Theory of Relativity, Einstein predicts the existence of
Gravitational Waves

1916: Karl Schwarzschild finds the spherically symmetric solution of Einstein’s
equation in vacuum

1918: Einstein continues studies on Gravitational Waves. Computes the energy lost
by a system emitting gravitational waves, i.e. the Quadrupole Formula

1919: Eddington leads expedition to island of Principe (near Africa) to measure light
deflection during solar eclipse. Confirms General Relativity prediction, major impact
on newspapers all over the world.
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Men of Science More or Less
Agog Over Results of Eclipse -
Observations.

EINSTEIN THEORY TRIUIMPHS

Stars Not Where They Seemed
or Were Calculated to he,
but Nobody Need Worry.

A BOOK FOR 12 WISE MEN

No More in All the Worid Could
Comprehend It, Said Einsteln When
His Daring Publishers Accepted It.

New York Times, Nov. 1919



1922: Eddington scepticism about gravitational waves: ‘gravitational waves
travel at the speed of thought'.

1936-38: Einstein doubts about gravitational waves being a mathematical
artefact of the theory. The Einstein-Rosen paper: ‘Do Gravitational Waves

exist?’



Einstein to Max Born (1936)

Einstein to J.T. Tate, The
Physical Review editor
(19306)

Together with a young collaborator, I arrived
at the interesting result that gravitational
waves do not exist, though they had been as-
sumed a certainty to the first approximation.
This shows that the non-linear general rela-
tivistic field equations can tell us more or,
rather, limit us more than we have believed up
to now.*

Dear Sir,

We (Mr. Rosen and I) had sent you our man-
uscript for publication and had not authorized
you to show it to specialists before it is printed.
I see no reason to address the—in any case er-
roneous—comments of your anonymous ex-
pert. On the basis of this incident I prefer to
publish the paper elsewhere.

Respectfully,

P.S. Mr. Rosen, who has left for the Soviet
Union, has authorized me to represent him in
this matter.

Infeld (his student) and Robertson (the referee) found a mistake in the
paper. Einstein told Infeld he had independenty found the error.




1922: Eddington scepticism about gravitational waves: ‘gravitational waves
travel at the speed of thought'.

1936-38: Einstein doubts about gravitational waves being a mathematical
artefact of the theory. The Einstein-Rosen paper: ‘Do Gravitational Waves
exist?’

1955: Einstein dies at the age of 76 in Princeton

1955: Bern conference (Einstein annus mirabilis semi-centennial). Rosen
reaffirms negative conclusion of 1936. Pirani/Roberson showed arguments of
role of curvature tensor in producing tidal accelerations

1957: Chapel Hill Conference. Feynman’s sticky bead argument



The geodesic deviation equation
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The sticky bead argument
(Feynman)




1957: Bondi publishes in Nature the ‘sticky bead argument’. Weber and Wheeler
publish ‘Reality of cylindrical waves of Einstein and Rosen’ where they state ‘the
disturbance in question is real and not removable by any change of coordinate system.’

1958: David Finkelstein identifies the Schwarzschild surface as an event horizon, ‘a
perfect unidirectional membrane: causal influences can cross it in only one direction’

1959: Weber pioneers the development of gravitational wave detectors with
the resonant bars.

1963: Roy Kerr discovers the solution of Einstein’s equation for spinning black
holes

1969: Weber announces first detection of gravitational waves

1970s: Heinz Billings leads coincidence experiments of room-temperature
resonant-mass experiments between Munich and Frascati. Results clearly
refutes Weber’s claim



1972: Rainer Weiss publishes ‘Electromagnetically Coupled Broadband
Gravitational Antennal’ as MIT report. Analysis of laser interferometer as
gravitational wave detector identitying noise sources and ways to deal with them

1975: Discovery of the first pulsar in a binary system ( Hulse and Taylor
pulsar)



1993 Physics Nobel Prize

"for the discovery of a new type of pulsar, a
discovery that has opened up new
possibilities for the study of gravitation™”
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Zravitataonal waves

Russell A. Hulse Joseph H. Taylor Jr.
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http://iopscience.iop.org/0004-637X/722/2/1030/article

1972: Rainer Weiss publishes ‘Electromagnetically Coupled Broadband
Gravitational Antennal’ as MIT report. Analysis of laser interferometer as
gravitational wave detector identitying noise sources and ways to deal with them

1975: Discovery of the first pulsar in a binary system ( Hulse and Taylor
pulsar)

Late 70s: Munich group starts (1975) construction of 3m laser interferometer
prototype. Drever, in Glasgow, starts similar research (1977).

1980: Announcement of the orbital decay of the Hulse and Taylor pulsar (20%
precision)

1992: Rainer Weiss, Ronald Drever and Kip Thorne founded LIGO (Laser
Interferometer Gravitational Wave Observatory ) as a National Science Foundation
project



Detector principle
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The effect of a gravitational wave
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The effect of a gravitational wave

A light beam in space-time

ds® =0 = g, dztdz”
= (N + hy) dztdz”
= —c*dt* + (1 + hy (27 ft — kz)) dz*

Integrate in the path-length

-

"Tout | L | L 1 |
,/“ at = ,_/“ \/l + hpdr ~ - / <| + Shn (27 ft — /::)) dx

C .

Taking two the path and some approximations

| 2L
AT(t) = h(t)= = h(t)Tr

(_'

ICE 02/07/18 GW detection - M. Nofrarias




The effect of a gravitational wave

Getting rid of coordinate systems, we consider just the effect of the passing
GW in the lab

We |locate a set of rulers and observe the effect of the wave

1 ol
In the lab frame, we have the Newtonian approach Fow = 3'”L : U{[,,”

We would observe a tidal force, proportional to length AL = hL /2

In this picture, we would say ‘light travel changes because test mass move’
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Generation of gravitational waves

Starting from the quadruple formula

2(7 -
Rc? ['”/

h/w —

Notice the pre-factor is 10-44

We take two 1 ton masses, rotating together at 1kHz

o e ]
lyay = 2.6 X 10 Bm x 7

We take two 1 ton masses, rotating together at 1kHz. We need to move at

hlab — 9 X 10_39

leat one wavelength, 300km!
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Thermal noise

* According to the Equipartition Theorem, each degree of freedom of

a system in thermodynamic equilibrium at temperature T should
have an energy whose expectation value is KpT/2

* First measurement in the 30s with galvanometers and electrical
resistance (Johnson noise)

« General dissipation-fluctuation theorem introduced by Callen and
Welton (50s) although originally introduced by Nyquist to explain
Johnson noise

S[«‘(u}) — lA[;TRC’(Z)

* Examples:
 mechanical viscosity - brownian

e ¢lectrical resistance - Johnson noise
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Historical digression: Galvanometer
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Measuring path-length

A interferometer detector translates GW into light power (transducer)

 |f we would detect changes of 1 wavelength (10-6) we would be limited to
10-11, considering the total effective arm-length (100 km)

* QOur ability to detect GW is therefore our ability to detect changes in light
power

* Power for a interferometer will be given by

L2/
P()ut — Pm COS ('I‘.I'L.z' o l‘ L,z/)

. "

* The key to reach a sensitivity of 1021 sensitivity is to resolve the path-
length difference in a tiny fraction, ie. 10-19
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 Modelling light tflux as a set of discrete photons with independent arrival

times: Poisson distribution

« QOur distribution is characterised by arrival rate in a giventime N = nr

 This leads to a fluctuation of the mean measurement and therefore of our
precision given by
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e Taking into account the photon energy

le’ — ‘_)ﬂ'h('//\

 The mean photon flux at the output will be

A
n = Pou.t
2mhe

 And the mean number of photons per interval and associated
fluctuations

N = (AN A4rhe) P, T ox/N = \/47rh(~//\P,-,,T.
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e Since we are measuring power fluctuations at the output, these
fluctuations are indistinguishable from mirror displacements

O5, =

ON/ 1 dle _¢ he
4\T ]—)()uf ([L —lﬂ']j,',,T

* And we are using mirror displacements to measure GW as the fractional
length change inone arm oy, = 051/ L

e S0 brightness fluctuations are interpreted as equivalent gravitational
wave noise

_ 1 [ hel
Oh = L\/ AP, T
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Radiation pressure

* The force exerted by an electromagnetic wave of power P reflecting from

a losses mirror

P
Frud — T

0
e The fluctuations of the force are due to shot noise in the power
1

OF = —0pP
c

e Inserting the photon energy we get to the power spectra
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Radiation pressure

e The fluctuating force turns into a displacement in the test mass

, | N 711’,,,
o) = m(27 f)? FJ) = m f* \/ 8¢,

« which can be expressed, as in the previous case, as an equivalent
gravitational wave noise

2 1 I’Pin
hep(f) = TI(f) — 2 \/ -

mfsL\ 2mc)

« Radiation pressure and shot noise are competing effects, what would be
the noise if we minimise this two contributions, hip(f,P) = hsnot(f,P)

, 1 h
/'QI.(./) — T fL \/;
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Michelson interferometer

end mirror
M»>
end mirror
.\Il
laser beamsplitter
N
. i / E

Y to photon detector

e Three free test masses

» Working at the ‘dark fringe’ (180° out of phase), reducing shot
noise and power fluctuations

* There is an optimal length, e.g. f =1kHz , L = ¢/2f = 150km
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A delay line Michelson interferometer

Mj

beamsplitter

laser

I

photo detector

3km x 50 bounces = 150km

Number of bounces limited by reflection losses

A problem: scattered light phase a = 2t AL/c (laser stab., laser modulation)

Garching 30m prototype
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Fabry-Perot interferometer

laser

beamsplitte

photo detector

Add two mirrors to form a cavity

Measure differential phase change between cavities (differential because laser
freq. noise)

A problem: scattered light phase a = 2t AL/c (laser stab., laser modulation)

Option: lock laser in wavelength to one cavity and then lock second laser to
wavelength
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The Pound-Drever-Hall technique
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Historical digression: The Pound-Rebka experiment

 Pound and Rebka measured for the first time the
gravitational redshift (1960)

« Based on the recently discovered Mdssbauer effect
(1958, Nobel prize 1961),14.4 keV gamma from °’Fe

o (ravitational redshift Av ~ 10-1°

! “Fe detector A

2
- 57
;’ e source

gamma photons
dropped

[l

Py,

226 M gamma photons
launched upward

3

< Fg source

L3

ICE 02/07/18 GW detection - M. Nofrarias




Historical digression: The Pound-Rebka experiment
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Power recycling

Recycling mirror

M3
“ M2 T M3’

Phase ,‘/ D2
modulator L - A P
polarixing Faraday n s 47

rotator Yy </

xtmdulu:('c';-: !

beamsplitier

. " Dl' . . "
Two competing error sources: shot noise (increase power) and radiation
pressure (reduce power)

AMC

An optimal power: Py =

RSN
e For a LIGO-like experiment: Pt = 60MW ie. the detector will be shot noise
imited (working at ‘dark fringe’ -> most of light lost)

* Recycling mirror: to recover light, carefully located to form a resonator
together with cavity and beam-splitter
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Dual recycling

Fabry-Perot cavitics

17\

power recycling
laser  Mirror M4 beamsplitter

S

B4 signal recycling
mirror M,

A M4 mirror located at the detector output

It perfectly matched, no light reaches M4

When GW signal reaches the detector, it produces sidebands that leak to M4
which can then ‘recycle’ this signal

The relative position of the M4 determines the tuning frequency of the dual
recycling
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Dual recycling
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Squeezed
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Squeezed light
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Summary
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